
Ideally, all infinite type surfaces can be triangulated.
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Abstract. We show that any surface of infinite type admits an ideal triangulation. Furthermore, we
show that a set of disjoint arcs can be completed into a triangulation if and only if, as a set, they
intersect every simple closed curve a finite number of times.

1. Introduction

Topological surfaces are often thought of as the result of pasting together polygons. Provided
you have enough topology, pants decompositions are a natural way of decomposing (orientable)
surfaces, or conversely one can build a surface by pasting together 3 holed spheres (pants) along
their cuffs. This latter point of view has the advantage of being naturally related to underlying
moduli spaces via the so-called length and twist Fenchel-Nielsen coordinates which parametrize the
space of (marked) hyperbolic metrics of the topological surface (Teichmüller space). Alternatively,
provided an underlying finite type surface has punctures, ideal triangulations are also used to
parametrize the same space of metrics using shear coordinates. The corresponding topological
construction is the process of pasting triangles along their sides and then forgetting the vertices
which become ideal points (which geometrically correspond to cusps).

When passing to (orientable) surfaces of infinite type, the pants decomposition description is often
used for describing how to construct these surfaces: one simply pastes together infinitely many
pairs of pants to obtain a connected surface. This natural point of view has been very useful in the
Teichmüller theory of these surfaces (see for instance [11, 33, 1111]). When wanting to do the same thing
for ideal triangulations, an immediate difficulty appears. In the finite type, an ideal triangulation is
a maximal collection (with respect to inclusion) of disjoint simple arcs with end points in the ends
[88, 99]. In particular any collection of disjoint arcs can be completed into a triangulation. As we shall
see, this no longer works in the infinite type case.

In this short note, we observe that one can overcome this apparent difficulty.

Theorem 1.1. Any orientable surface of infinite type admits an ideal triangulation.

Before outlining the proof we make note of the following restriction for such ideal triangulations.

Theorem 1.2. An ideal multiarc is a subset of an ideal triangulation if and only if it intersects any simple
closed curve a finite number of times.
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Hence, an ideal triangulation is a multiarc maximal with respect to inclusion among all multiarcs
which intersect any given simple closed curve a finite number of times. And as a consequence:

Corollary 1.3. Any ideal triangulation of an orientable surface must contain only finitely many arcs between
any distinct pair of ends.

Following this observation, the first step in proving Theorem 1.11.1 is to show that we can triangulate
a one-ended surface with countably many boundary components. We then show that any infinite
type surface can by decomposed into such subsurfaces.

2. Setup

By an orientable surface X of infinite type, we mean an orientable topological surface with infinitely
generated fundamental group. The homeomorphism type of a such a surface is determined by its
genus and space of ends.

An end is a nested sequence {Ui}i∈N of subsurfaces of X (so Ui ⊃ Ui+1). Two ends {Ui}i∈N,
{Vj}j∈N are equivalent if for any i0, there exists a j0 such that Ui0 ⊂ Vj0 and vice versa.

If each Ui contains genus then we say the end is nonplanar, and planar otherwise. An end e = {Ui}i∈N

is isolated if there exists some subsurface Ui0 such that every nested sequence containing Ui0 is
equivalent to e. Usually, we call an isolated planar end a puncture or cusp.

We adopt the standard definition of an arc between ends (see for instance [55], and note this is more
general than the definition in [77] which is adapted for flip graphs).

Definition 2.1. An arc of X is a proper embedding α : R → X such that the each of its ends
correspond to an end of X. Note that since X is orientable, each arc has exactly two sides.

Arcs play an important role in dynamical and topological considerations on infinite type surfaces,
see for instance [44, 66]. The definition above means that there exist ends {Ui}i∈N and {Vj}j∈N (not
necessarily distinct) such that for all i0, there exists t0 ∈ R such that α(t) ∈ Ui0 for all t > t0, and
there exists {Vj}j∈N such that for all j0, there exists s0 with α(t) ∈ Vj0 for all t < s0. An arc is
non-trivial if its complementary region does not contain a topological disk. This is equivalent to
there not existing an end {Ui}i∈N such that for any i0 ∈N, the arc can be freely homotoped to an
arc lying entirely inside Ui0 .

Curves (or simple closed curves) are much easier to define: they are just embeddings of S1. They
are non-trivial if they are not freely homotopic to a point or a puncture.

We are only interested in curves and arcs up to (free) homotopy.

A pants decomposition is a collection of dijoint curves whose complementary regions are homeo-
morphic to thrice punctured spheres. A corollary of Richards’ classification theorem for infinite
type surfaces [1010] is the following:
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Corollary 2.2. Any surface X can be obtained by pasting together pants. Equivalently, any surface can be
decomposed into a pants decomposition by cutting along disjoint simple closed curves.

Observe that dual to a pants decomposition is a (possibly infinite) trivalent (or cubic) graph.

Definition 2.3. An ideal triangulation of X is a collection of arcs µ = {µi}i∈N such that each
component of X \ µ is an open disk and each disk is bounded by at most three sides of arcs.

We end this section with a triangulation of the flute surface (see [22]).

Proposition 2.4. There exists an ideal triangulation of the flute surface.

Proof. First we take the standard Farey triangulation T of an open disk D. By removing a single
point from each triangle of T we arrive at a surface F ⊂ D homeomorphic to the flute surface (see
Figure 11).

Figure 1: The punctured Farey triangulation

While the projection of T onto F is not a triangulation, it can be extended to one by triangulating
each connected component of F \ T. Each such component is homeomorphic and can be easily
triangulated as in Figure 22.
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Figure 2: A triangulation of a punctured triangle

3. Triangulations galore

Our construction for more general triangulations draws inspiration from the example above.

3.1. Perforated Farey Triangulation

To obtain a perforated Farey triangulation, you start with the Farey triangulation of the hyperbolic
plane and you add a puncture or a boundary curve to a collection of triangles (see Figures 33 and 44),
and so that each arc leaves a puncture or a boundary curve on either side.

Figure 3: A perforated Farey triangulation

Note that with this condition, no two arcs are isotopic and any arc leaves infinitely many punctures
or boundary curves on either of its sides.

From now on we will use the term flute surface to refer to any surface obtained in this way. That is,
our flute surfaces may have compact boundary components as opposed to just punctures.

The following lemma is illustrated by Figure 55.

Lemma 3.1. Any two one holed triangles pasted together along their holes can be triangulated using 6 arcs.
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Figure 4: Triangles may be left as triangles, have a puncture, or a boundary curve

Figure 5: Triangulating a cylinder with three ideal vertices on each boundary

A key observation for our purposes is that any surface can be decomposed into subsurfaces
homeomorphic to flute surfaces.

Lemma 3.2. Any pants decomposition contains a collection of curves Γ such that X \ Γ is a disjoint union
of flute surfaces.

Proof. Consider P, a pants decomposition of X. Let GP be its dual graph. The edges of GP are the
curves of P, and the vertices are the pants. The degree of every vertex is 3, except for vertices which
correspond to pants with one or two boundary curves which are isolated planar ends, and whose
degree is either two or one.

Now choose a spanning tree T0 of GP. Every vertex of GP belongs to T0, but certain edges do not.
Let E0 be the set of edges of GP that do not belong to T and let Γ0 be the corresponding curves of P.
We set X0 = X \ Γ0. Note that by construction X0 is of genus 0, and we have a subset of P that is a
pants decomposition of X0 and whose dual graph is T0. Vertices of T0 are either of degree 1, 2 or 3:
those of degree 1 and 2 correspond to pants bounding either isolated planar ends, or curves in Γ0.

The next step in the construction will be iterated.

If T0 is one ended, then X0 is a flute surface. If not, it contains an infinite geodesic c1 (for the graph
metric). As T0 is a tree, each of its edges is separating. If an edge does not separate two infinite trees,
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we call it irrelevant. Otherwise it is relevant. Note that for instance if T0 is an infinite trivalent tree,
every edge is relevant. On the contrary, if T0 is one ended, all edges are irrelevant.

We consider the set of all edges of T0 that are both adjacent to c1 and relevant and denote by Γ1 ⊂ Γ0

the corresponding multicurve. Note that X0 \ γ1 = U t V where U is homeomorphic to a two
ended flute surface. We set X1 = V and repeat the above procedure, possibly infinitely many times.

The end result of the procedure is a multicurve Γ′ = ∪i∈IΓi ⊂ P where I is an index set (possibly
empty, possibly infinite) such that X \ Γ′ is a collection of one or two ended flute surfaces. To obtain
a collection of one ended flute surfaces, it suffices to add to Γ′ a single relevant curve for each of the
two end ended flute surfaces, which results in the multicurve Γ as desired.

3.2. Triangulating any surface

Here we prove the following, which is a slight generalization of Theorem 1.11.1.

Theorem 3.3. Let X be an infinite type surface with boundary consisting in a collection of simple closed
curves. Then there exists an ideal multiarc T such that X \ T is a collection of triangles or one holed
monogons.

Proof. Let Γ be the collection of curves described by Lemma 3.23.2 and let F be one of the flute
components of X \ Γ. We then take a perforated Farey triangulation of F and extend it to F by
adding three arcs for each isolated planar end, and a single arc for each boundary component of X.
Denote by T′ the resulting multiarc.

By construction each non-triangular component of X \ T′ is either a one holed monogon or two
triangles pasted together along a simple closed curve. By Lemma 3.13.1 we can extend T′ to a multiarc
T satisfying the properties of the theorem.

4. Completing ideal multiarcs into triangulations

We can now prove Theorem 1.21.2 which we restate for convenience.

Theorem 4.1. A collection of arcs µ0 can be completed into a triangulation if and only if i(µ0, α) < ∞ for
any simple closed curve α.

Proof. First, assume α and µ0 have infinite intersection. Let z be a point in α accumulated by
intersection points with µ0. Now, if µ is a triangulation of X containing µ0 then z cannot belong
to any disk in X \ µ, as this would imply infinitely many arcs in µ0 intersect this disk. Similarly, z
cannot belong an arc δ in µ, as this would imply that infinitely many arcs of µ0 intersect the union
of the two disks bounded by δ.

To prove the other direction, we construct a triangulation containing µ0. We begin by looking at
X \ µ0 to see if it contains any finite type pieces (hence bounded by arcs in µ0). If so, we triangulate

6



the pieces that are not already triangles, and we set X0 to be this collection of triangles. If not, X0 is
the empty set.

Let P be a pants decomposition of X. The main idea is to add arcs to µ0 such that they contain
triangles that contain every curve in P. To do so we give curves in P an order (so P = ∪i∈Nαi). Now
we proceed inductively to construct a multiarc µi, and a subsurface Xi, which will be triangulated
by arcs of µi and which contains all curves α1, . . . , αi. By construction µi will contain µi−1. The
induction starts with X0 and µ0.

We now describe the inductive step. Let i > 0. There are two cases for αi, depending on whether it
intersects µi−1.

Case 1: αi and µi−1 are disjoint.

First, suppose Y is a component of X \ αi such that Y and µi−1 do not intersect. (For this to happen,
note that αi must be a separating curve.) Then from Theorem 3.33.3 we can construct a multiarc in Y
whose complement is a collection of triangles and single one holed monogon containing ∂Y. We
can add this multiarc to µi−1 and look at another component.

Note that unless µi−1 = ∅, at least one component of X \ αi must intersect µi−1.

We now consider Y, a component of X \ αi which intersects µi−1. Suppose it has a connected
boundary (hence αi is again separating). Let a be an embedding of [0, 1] such that a ∩ µi−1 = a(0),
and a(1) ∈ ∂Y. Now, let γ be the arc of µi−1 intersecting a and let b be a component of γ \ a. Finally,
define γ1 be the boundary of a regular neighborhood of a ∪ b ∪ ∂Y. Note that, up to homotopy, γ1 is
an arc disjoint from µi−1 and Y \ γ1 contains a one holed monogon.

If Y contains arcs in µi−1 and does not have connected boundary (and in particular αi is nonseparat-
ing) then add γ1 to µi−1 and repeat the above step in order to define at an arc γ2 associated to the
second boundary component.

We therefore arrive at two arcs γ1, γ2 that are disjoint from µi−1 such that the component Z of
X \ {γ1, γ2} containing αi is of finite type. Let ζi−1 be a triangulation of Z. We then define µi to be
the union of µi−1, γ1, γ2, and ζi−1. We appropriately define Xi to be the subsurface spanned by µi,
that is, Xi = Xi−1 ∪ Z ∪ {γ1, γ2}.

Case 2: αi and µi−1 intersect.

Let Γ = αi ∪ µi−1 and let N(Γ) be a regular neighborhood of Γ. Define A(Γ) to be the set of
essential arcs in ∂N(Γ) and define C(Γ) to be the set of essential curves in ∂N(Γ). Note that since
i(µi−1, αi) < ∞ both C(Γ) and A(Γ) are finite. For each curve in C(Γ), repeat the argument from
case 1 to arrive at a multiarc µ′i−1 and a subsurface X′i−1. Now, there exists a subsurface Xi ⊂ X such
that X′i−1 ∪ A(Γ) ⊂ Xi and Xi \ X′i−1 is finite type. We can therefore extend µ′i−1 to a triangulation
µi of Xi. Note that Xi containts αi as desired.

The surfaces ∪i∈NXi clearly form an exhaustion of X. We set T = ∪i∈Nµi, which by construction is
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thus a triangulation of X.
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