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Abstract. Starting with a classical conjecture of Frobenius on solutions of
the Markoff cubic, we are lead, via the work of Harvey Cohn, to explore the

multiplicities of lengths of simple geodesics on surfaces. We indicate recent

progress on this and related questions stemming from the work of Schmutz-
Schaller. As an illustration we compare the cases of multiplicities on euclidean

and hyperbolic once punctured tori; in the euclidean case basic number theory

gives a complete understanding of the spectrum. We explain an elementary
construction using iterated Dehn twists that gives useful information about

the lengths of simple geodesics in the hyperbolic case. In particular it shows
that the marked simple length spectrum satisfies a rigidity condition: knowing

just the order in the marked simple length spectrum is enough to determine

the surface up to isometry. These results are special cases of a more general
result [10].

1. Introduction

The length spectrum of a hyperbolic surface is defined as the set of lengths of
closed geodesics counted with multiplicities, and has been studied extensively in its
relationship with the Laplace operator of a surface. A natural subset of the length
spectrum is the simple length spectrum: the set of lengths of simple closed geodesics
counted with multiplicities. This set is more naturally related to Teichmüller space
and the mapping class group. In the particular case of the one-holed torus, we
shall explore the following question: when, how often and on what type of subsets
of Teichmüller space can two distinct simple closed geodesics be of equal length?

The origins of this question can be traced back to Frobenius who conjectured
that any solution (a, b, c) of The Markoff cubic

a2 + b2 + c2 − 3abc = 0(1.1)

admits infinitely many solutions (a, b, c) in positive integers, and such a triple
(a, b, c) is called a Markoff triple. Frobenius was led to conjecture that a Markoff
triple is uniquely determined by max{a, b, c}. (The conjecture is generally called
the Markoff uniqueness conjecture.) Making the change of variable, (x, y, z) =
(3a, 3b, 3c) the Markoff cubic becomes

x2 + y2 + z2 − xyz = 0.(1.2)

Date: December 24, 2007.

1



2 GREG MCSHANE AND HUGO PARLIER

By work of Fricke and others, given a once punctured hyperbolic torus M and α, β, γ
a triple of simple closed curves, meeting pairwise in a single point, then

(2 cosh
`M (α)

2
, 2 cosh

`M (β)
2

, 2 cosh
`M (γ)

2
),

where `M (.) is the hyperbolic length, is a solution to (1.2). By work of Harvey Cohn
[8] and others, a solution over the integers corresponds to the lengths of a triple in
the so-called modular torus M. The modular torus is the unique hyperbolic torus
with a single cusp as boundary which is conformally equivalent to the flat hexagonal
torus. Stated otherwise, it is only once-punctured torus with an isometry group
of maximal order (the order is 12). It is called the modular torus because it can
be seen as the quotient of H by a subgroup of index 3 of PSL(2, Z). Frobenius’
conjecture on Markoff triples is in fact equivalent to the following conjecture on the
modular torus:

Given any two simple closed geodesics of M, there is an isometry of M which
takes one to the other.

This property of having an isometry between any two simple closed geodesics of
equal length on a torus will be called the Markoff uniqueness property.

There are a number of partial results which lend weight to the conjecture of
Frobenius, notably:

Theorem 1.1 (Baragar [2], Button [6], Schmutz-Schaller [12]). A Markoff number
is unique if it is a prime power or 2 times a prime power.

And:

Theorem 1.2 (Zhang [14]). A Markoff number c is unique if one of 3c + 2and
3c + 2 is a prime power, 4 times a prime power, or 8 times a prime power.

Zhang’s proof is elementary and relies on a clever study of congruences. Unfor-
tunately for a geometer, this leads one to think that the solution of the Markoff
uniqueness conjecture is outwith the scope of classical geometry. We think that our
study of Schmutz-Schaller’s conjecture leads further weight to this point of view.

Let us call simple multiplicity of a torus the maximum multiplicity which ap-
pears in the simple length spectrum. Another rephrasing of the Markoff unicity
conjecture is that the modular torus has simple multiplicity equal to 6. Schmutz-
Schaller [13] made the following generalization of the Markoff uniqueness conjecture:

All once-punctured tori have simple multiplicity at most 6.

Let us now consider the Teichmüller space T of all hyperbolic tori with either
geodesic or cusp boundary. The main result we would like to present is the following:

Theorem 1.3. The set of hyperbolic tori N eq with all simple closed geodesics of
distinct length is Baire dense in T . Conversely, the set N eq contains no arcs, and
as such is totally disconnected.
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The theorem is in fact true for any Teichmüller space [10]. Here we present only
a proof of the converse (which is in fact the interesting part).

As mentioned above, the modular torus is the unique once-puctured torus with
an isometry group of order 12, but it is not the only one-holed torus (tori with either
cusp or geodesic boundary). In fact, such tori represent a connected dimension 1
subset of T which we shall denote T ∗. The techniques used to prove the above
theorem can be used to show the following:

Theorem 1.4. [10] The set of one-holed tori with multiplicity at least 12 is dense
in T ∗.

Thus Schmutz-Schaller’s conjecture cannot be generalized to one-holed tori.

Note that theorem 1.3 implies that most tori do have the Markoff uniqueness
property. However, knowing whether a particular torus has this property is in gen-
eral a difficult question. An analogy can be made with the case of transcendental
real numbers. Although most real numbers are transcendental, given a particular
real number, proving that it is transcendental is often a very difficult question, for
example we know that ζ(3) is irrational but we do not know whether it is transcen-
dental.

This note is organized as follows. We begin by showing theorem 1.3 in the case
of flat tori. Sections 3 to 5 are dedicated to the proof of theorem 1.3 in the case
of hyperbolic tori. In the last section, we discuss bounds on simple multiplicity.
First, we show that there are flat tori with unbounded multiplicity. Finally, we
end our exposition by presenting certain tori which do have the Markoff uniqueness
property, and thus multiplicity bounded by 6.

2. The flat torus

Our general approach is to study the sets of Teichmüller space where two simple
closed geodesics are of equal length. In the case of flat tori, these sets are straight-
forward to characterize.

Recall that Riemann’s Uniformization Theorem tells us that every flat or eu-
clidean torus T2 is obtained as a quotient of its universal cover C by the group of
deck transformations Γ, which is isomorphic to Z ⊕ Z. The lift to C of a closed
geodesic on T2 is a straight line L ⊂ C invariant by some cyclic subgroup of deck
transformations 〈z 7→ z + ω〉. It follows that the length of the geodesic is equal
to the translation length of z 7→ z + ω, that is |ω|. Note that, if c ∈ C then
L + c/〈z 7→ z + ω〉 is a closed geodesic, freely homotopic to the original geodesic
and of the same length. We identify Γ with the fundamental group of T2 and note
that, contrary to strictly negatively curved spaces, there are infinitely many closed
geodesics in each free homotopy class. Thus, in order to make sense of multiplicity
in the spectrum, we choose the unique geodesic in the (free) homotopy class which
passes through the base point of T2.

In fact, given a flat torus T2 there exists τ, Im (τ) > 0 such that C/Γ is confor-
mally equivalent to T2 where Γ is generated by the translations z 7→ z+1, z 7→ z+τ .
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Teichmüller space of flat tori can be seen as H in the following way. Consider a torus
obtained by quotienting C by T2 generated by two complex translations z 7→ z + 1
and z 7→ z + τwith Im (τ) > 0. Teichmüller space can be seen as the space of de-
formations of such a torus by letting the parameter τ vary. As we exclude singular
tori, we only let τ live in H. Up to homothety, we have described all possible flat
tori, and of course a bit more. By the uniformization theorem, we’ve also described
all smooth tori up to conformal equivalence. To obtain the Moduli space of smooth
tori, that is the set of tori up to conformal equivalence, one takes our set of flat tori
and quotients by homothety. This corresponds to quotienting H by PSL(2, Z), the
mapping class group in this instance. The resulting space is the modular surface
and has an orbifold structure with three singular points. The modular surface is a
rather deep first example of a moduli space and is a very useful source of natural
questions one might want to ask for a moduli space in general.

Now simple closed geodesics on a flat torus (up to free homotopy) are naturally
associated to rational numbers (union infinity) in the following fashion. Consider
the square torus, i.e., when τ = i. Now consider a line in C of slope σ: clearly the
line projects to a simple closed geodesic if and only if σ ∈ Q (or if the line is vertical,
we say the line is of slope ∞ = 1

0 ). We are interested in primitive curves, meaning
curves that are not the n-iterate of another curve. Thus up to free homotopy, each
simple closed geodesic is described by a unique element of Q ∪∞.

Consider p
q , r

s ∈ Q ∪ ∞ distinct. The set of H where their associated simple
closed geodesics are equal is the set where τ satisfies

(2.1) |pτ + q| = |rτ + s|.
A straightforward calculation shows this set to be the Poincaré geodesic between

endpoints q−s
r−p and q+s

r+p .

Conversely, between any given pair of distinct rationals a
b , a′

b′ , the Poincaré geo-
desic [a/b, a′/b′] between them is the set of H where two simple closed geodesics are
of equal length. To show this, consider the map z 7→ −z. It preserves the rationals
and fixes [0,∞] = {z ∈ C | <z = 0}. For any rational m

n the curves of slope m
n

and −m
n have the same length at τ ∈ [0,∞]. One maps [0,∞] onto any geodesic

[a/b, a′/b′] using PSL(2, R), which is transitive on pairs of rationals and thus finds
a pair of curves which are of equal length on [a/b, a′/b′].

Using this characterization, we can now show the following.

Theorem 2.1. The set of flat tori N eq with all simple closed geodesics of distinct
length is Baire dense. Conversely, the set N eq contains no arcs, and as such is
totally disconnected.

The first statement follows from the fact that rationals are countable and the
second from the fact that any two distinct points in H are separated by a Poincaré
geodesic between rationals.

Unfortunately in the case of hyperbolic tori, the set of tori with two simple closed
geodesics of equal length is not so easy to characterize.
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3. Hyperbolic tori

Let us recall a few definitions and facts from the theory of surfaces; all this is
available in a more detailed treatment in either [1], [3] or [5]. Throughout M will
denote a surface with constant curvature −1 and we shall insist that M is complete
with respect to this metric (although we will only be concerned by what happens
inside the Nielsen core of the surface). This means that M is locally modeled on
the hyperbolic plane H2 and there is a natural covering map π : H → M . By T we
mean the Teichmüller space of M , meaning the space of marked complete hyperbolic
structures on M . The signature of a surface M will be denoted (g, n) where M
is homeomorphic to a surface of genus g with n simple closed boundary curves.
In this article, we are interested in hyperbolic tori with one boundary component,
which we will consider to be either a cusp or a simple closed geodesic (surfaces of
signature (1, 1)). (It is worth noting however, that all in fact all of our arguments
either apply, or are can easily be made to fit, the case of tori with a cone angle.) In
the case of surfaces of signature (1, 1), Teichmüller space is, topologically, R+×R2

where the first parameter corresponds to boundary length, and the other two to
the lent

Let us recall a few facts about curves on surfaces (see [5] or [7] for details).
Firstly, a simple curve is a curve which has no self intersections. A curve is said to
be essential if it bounds neither a disc nor a punctured disc (or an annulus). For
each free homotopy class which contains an essential simple loop, there is a unique
geodesic representative.

There is a natural function, ` : T × essential homotopy classes → R+, which
takes the pair M, [α] to the length `M (α) of the geodesic in the homotopy class
[α] (measured in the Riemannian metric on M). It is an abuse, though common
in the literature, to refer merely to the length of the geodesic α (rather than, more
properly, the length of the geodesic in the appropriate homotopy class). Using
length functions one can describe Teichmüller space. In the case of surfaces of
signature (1, 1), Teichmüller space is, topologically, R+ × R2. The first parameter
corresponds to boundary length, and the other two correspond to an interior (or
essential) simple closed geodesic in the following way. One can think of the first
parameter as being the length of the simple closed geodesic (thus formally its lies
in R+,∗) and the second is a twist parameter, a real valued parameter which tells
you how the simple closed geodesic is pasted together to get a torus. (These are
the Fenchel-Nielsen parameters.) Note that these parameters are not homogeneous
in nature. In the next section, we give a set of homogeneous parameters for the
Teichmüller space of one-holed tori.

4. A projectively injective map

In the case of one-holed tori, we will make essential use of the following lemma.
Recall that a projectively injective map is a map f such that f(x) = λf(y) for
λ ∈ R implies that x = y.

Lemma 4.1. There are four interior simple closed curves α, β, γ, and δ of a one-
holed torus such that the map ϕ : M 7→ (`M (α), `M (β), `M (γ), `M (δ)) is projectively
injective.

Proof. Let M be a one-holed torus and let α, β, γ, and δ be the simple closed
curves as in figure 1.
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We’ve chosen our curves as follows. We begin by choosing any α and β that
intersect once. It is not difficult to see that given α and β, there are exactly two
curves (γ and δ) that intersect both α and β exactly once. The curves γ and
δ intersect twice. Now the remarkable fact about the geodesic representatives of
simple closed curves on a one-holed torus is that they pass through exactly two
of the three Weierstrass points of the torus in diametrically opposite points. In
the case of the curves α, β, γ, and δ, their intersection points are all necessarily
Weierstrass points. Therefore they can be seen in the universal cover as in figure 1.

α

β

γ δ

α

β
γ δ

α

Figure 1. The one-holed torus with four interior geodesics and
the four curves seen in the universal cover

In fact the lengths of α, β, and γ determine a unique point in the Teichmüller
space of one-holed tori. One can show this by recovering the Fenchel-Nielsen pa-
rameters from the three lengths (this is done in detail in [4] for instance). However,
up to a multiplicative constant, they do not (otherwise the real dimension of the
Teichmüller space would be 2 and not 3). For this we need the curve δ. What we
need to prove is that if we have two one-holed tori M1 and M2 in Teichmüller space
with

(`M1(α), `M1(β), `M1(γ), `M1(δ)) = λ(`M2(α), `M2(β), `M2(γ), `M2(δ))

for some λ ∈ R, then λ = 1 and then, by what precedes, M1 = M2. Figure 1
shows four hyperbolic triangles. Consider the two bottom ones. The side lengths
of the bottom left triangle are `(α)

2 , `(β)
2 , and `(γ)

2 . The side lengths of the bottom
right triangle are `(α)

2 , `(β)
2 , and `(δ)

2 . The bottom intersection point between α
and β forms two angles depending on the surface M , say θ1(M) and θ2(M) such
that θ1 + θ2 = π. Suppose without loss of generality that λ ≥ 1. Now if for M1 the
triangle lengths are equal to a, b, c and d, the triangle lengths for M2 are λa, λb, λc
and λd. This implies that θ1(M1) ≤ θ1(M2) as well as θ2(M1) ≤ θ2(M2), equality
occurring only if λ = 1. As θ1+θ2 is always equal to π, this concludes the proof. �

We will make essential use of the following corollary to this lemma.
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Corollary 4.2. Let M1,M2 ∈ T be distinct tori, then there exist two interior
simple curves γ1 and γ2 such that

(4.1)
`M1(γ1)
`M1(γ2)

6= `M2(γ1)
`M2(γ2)

.

Proof. Suppose inequality 4.1 was in fact an equality for all pairs of simple curves
γ1, γ2, thus in particular for all pairs in the set of curves α, β, γ and δ. Then the
map of lemma 4.1 could not be projectively injective, a contradiction. �

5. Dehn twisting

Here we show the second part of Theorem 1.3 for one-holed tori, namely that
a path between two distinct points of T contains a surface with two simple closed
geodesics of equal length.

Let M1 and M2 be two distinct points of T . Corollary 4.2 guarantees the ex-
istence of two simple closed geodesics who satisfy inequality 4.1 above. For the
remainder of this section, these two curves shall be denoted α and β.

Given these curves, we can choose a pair of curves α̃ and β̃, such that int(α, α̃) =
int(β, β̃) = 1. Consider the two families of curves {αk}k∈N, {αk}k∈N obtained by
performing k right Dehn twists of α, resp. β, around α̃, resp. β̃. These two families
satisfy the following lemma.

Lemma 5.1. For each k ∈ N, and for any surface M we have
(1) int(α, αk) = 1, int(β, βk) = 1,
(2) k`M (α)− `M (α̃) < `M (αk) ≤ k`M (α) + `M (α̃),
(3) k`M (β)− `M (β̃) < `M (βk) ≤ k`M (β) + `M (β̃).

Proof. The first statement is obvious and the last two follow by lifting to the uni-
versal cover H and by applying the triangle inequality to the geodesics. �

For a surface M , set Bi(M) := {βk : `M (βk) ≤ `M (αi)}. Our aim is to calculate
the ratio `M (α)/`M (β) from the asymptotic formula in lemma 5.1.

Proposition 5.2. With the notation above:

]Bi(M)
i

−→ `M (α)
`M (β)

.

Proof. As M is fixed, we set Bi := Bi(M) and ` := `M .
By lemma 5.1 we have

]Bi ≤ ]{k : 2k`(β)− `(β0) ≤ 2i`(α) + `(α0)},
and

]Bi ≥ ]{k : 2k`(β) + `(β0) ≤ 2i`(α)− `(α0)}.
It follows that

i
`(α)
`(β)

− `(β0)
2`(β)

− `(α0)
2`(β)

≤ ]Bi ≤ i
`(α)
`(β)

+
`(α0)
2`(β)

+
`(β0)
2`(β)

.

The statement of the propostion is immediate. �

We can now establish the following.
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Corollary 5.3. There exist two simple closed geodesics αk and βk̃ such that

`M1(βk̃) > `M1(αk)

and

`M2(βk̃) > `M2(αk).

In particular, the marked order in lengths of simple closed geodesics determines
a unique surface in T .

Proof. Recall that α and β satisfy inequality 4.1. Applying proposition 5.2 to M1

and M2, we see that there is an integer k such that ]Bk(M1) 6= ]Bk(M2). In
particular, there exists a k̃ such that αk and βk̃ satisfy the desired inequalities. �

Now M 7→ `M (αk)− `M (βk̃) is a continuous function, so applying the intermedi-
ate value theorem to the arc A between the points M1 and M2, yields the existence
of a surface N ∈ A so that `Z(αk) = `Z(βk̃). This establishes the second part of
theorem 1.3.

Remark 5.4. In fact one can show something stronger than Corollary 5.3, namely
that for any given M1 6= M2 and any integer N , there exists a set of simple closed
geodesics αk, βk̃+1, . . . , βk̃+N such that

`M1(βk̃+i) > `M1(αk) and
`M2(βk̃+i) > `M2(αk)

for all i ∈ {1, . . . , N}. The proof goes as follows. In the proof of corollary 5.3, we
used the fact that ]Bk(M1) 6= ]Bk(M2). Suppose by contradiction that |]Bk(M1)−
]Bk(M2)| was bounded by some constant for all k. The limit of the ratios from
Proposition 5.2 would be then the same for both M1 and M2, a contradiction.

6. Bounds on multiplicity of simple closed geodesics

Although most surfaces have all simple multiplicities equal to 1, it is an open
question as to whether or not hyperbolic surfaces with unbounded simple multiplic-
ity exist. The remark at the end of the last section shows why it might be difficult
to prove that simple multiplicity is always bounded. For the full length spectrum,
a theorem of Randol [11], based on a construction of Horowitz, shows that mul-
tiplicity is always unbounded. In the particular case of tori with a single cusp,
Schmutz-Schaller [13] conjectured that all simple multiplicities of once-punctured
tori are bounded by 6. He also notes that, to the best of his knowledge, one does
not know a surface for which we are sure that simple multiplicity is bounded. Af-
ter having shown why multiplicities can be unbounded in the case of flat tori, we
shall give examples of hyperbolic tori for which we are sure that multiplicities are
bounded.

6.1. The multiplicity of the spectrum of a flat torus. In this section we give
a short account of unboundedness of multiplicities in the length spectrum of a flat
or euclidean torus. Our exposition is based on elementary number theory, and we
concentrate on only the two “most symmetric” such tori, though a more thorough
knowledge of class field theory [9] might allow more cases to be treated.
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Consider a flat torus T2. As explained in Section 2, there exists τ, Im τ > 0 such
that C/Γ is conformally equivalent to T2 where Γ is generated by the translations
z 7→ z + 1, z 7→ z + τ . For certain values of τ one can compute the multiplicities of
the numbers which appear in the length spectrum by studying the ring of integers
Z[τ ] of a quadratic field Q(τ). Throughout we will assume that Z[τ ] is a unique
factorization domain domain, that is every ω ∈ Z[τ ] factors as uq1q2 . . . qn where u
is a unit and qi are irreducible elements of Z[τ ] and this factorization is unique up
to permutation of qi and multipliction by the units of Z[τ ]. Whenever Z[τ ] is a Eu-
clidean domain e.g. τ = i,

√
−2,

√
−3,

√
−7,

√
−11 then it is a unique factorization

domain, the former condition being easier to verify [9].

We restrict our attention to τ such that τ is a quadratic irrational that is it
satisfies a quadratic with integer coefficients

τ2 + Bτ + C = 0,

since, for such τ , the ring Z[τ ] embeds in C as a lattice and there is an isomorphism
of abelian groups

Z[τ ] → Γ, x + τy 7→ (z 7→ z + x + τy),

where, as above, Γ denotes the group of deck transformations of T2. We are inter-

ested primarily in τ = i,
−1+

√
−3)

2 as the resulting torus, C/Γ, is respectively the
square torus and the regular hexagonal (or modular) torus.

By convention, the norm of ω ∈ Z[τ ] is defined to be ωω̄; this is an integer and
it is evidently the square of the translation length of z 7→ z +ω. For example when
τ = i the norm of x + τy ∈ Z[τ ] is just x2 + y2 and when τ = −1+

√
−3

2 the norm is
x2+xy+y2. Now a prime p 6= 2 can be written as a sum of squares x2+y2, x, y ∈ N
if and only if p is congruent to 1 modulo 4. and it can be written as x2 + xy + y2,
x, y ∈ N if and only if it is congruent to 1 modulo 3. It is a celebrated theorem
of Dirichlet that there are infinitely many primes in any arithemetic progression
and so there are infinitely many congruent to 1 modulo 4 and to 1 modulo 3. Such
a prime p admits a factorization p = (x + τy)(x + τ̄ y) where x + τy, x + τ̄ y are
irreducible elements of the ring of Z[τ ]. By Dirichlet’s theorem we may choose n
such distinct primes pk ∈ N, 1 ≤ k ≤ n, let ak ∈ Z[i], pk = akāk and let N denote
their product. Now N factorizes over Z[τ ] and

N = (a1ā1)(a2ā2) . . . (anān).

Consider the set RN ⊂ Z[τ ] of the form c1c2 . . . cn where ck ∈ {ak, āk}. Note
that the norm of each element of RN is N . It is easy to check, using the fact
that Z[τ ] is a unique factorization domain, that RN contains exactly 2n−1 distinct
elements. Note further that if c1c2 . . . cn ∈ RN and c1c2 . . . cn = x + iy then x, y
are coprime integers, for otherwise there is a prime p that divides x, y hence x+τy,
now as the ci are irreducible p factors as

p = uci1 . . . cil

for some unit u ∈ Z[τ ]. Considering the norms of both sides of the above one has

p2 = pi1 . . . pil
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which is contradicts the hypothesis that the pi were distinct. The set of deck
transformation z 7→ z+ω, ω ∈ RN yields a set of pairwise non-homotopic, primitive,
simple closed geodesics of length

√
N on the torus.

6.2. Hyperbolic tori. Given a hyperbolic structure on a surface M , not necessar-
ily of finite volume, then the holonomy of the metric gives a representation of the
fundamental group into the group of isometries of the hyperbolic plane PSL(2, R).
In fact, since there is no 2-torsion, one can lift this representation ρ̂ : π1 → SL(2, R)
and for any element γ ∈ π1

2 cosh(`M (γ)) = tr ρ̂(γ).

In the case of the once punctured torus one obtains a representation of the free
group on two generators 〈α, β〉 into SL(2, R).

Theorem 6.1 (Fricke, Horowitz, Keen). Let A,B be matrices in SL(2, C). If W
is a word in A,B then there is a polynomial PW ∈ Z[x, y, z] such that

trW = PW (trA, trB, trAB).

A celebrated construction of Horowitz, see [5] and [11] for details, yields pairs of
words W,W ′ such that W,W ′,W−1,W ′−1 are pairwise inconjugate but PW = PW ′ .
However, the Horowitz construction cannot be applied to W representing a simple
closed curve (see [10]):

FACT: If W represents a simple closed curve then PW = PW ′ then W ′ is conju-
gate to W or W−1. Thus, we remark that if W,W ′ represent simple closed curves
such that W,W ′,W−1,W ′−1 are pairwise inconjugate then PW −PW ′ is a non-zero
element of Z[x, y, z].

An immediate corollary of this remark is that, given λ > 2 a transcendental
real number and A,B,AB such that trA = trB = trAB = λ, then the quotient
H/〈A,B〉 is a hyperbolic one-holed torus which satisfies Markoff uniqueness.

References

[1] William Abikoff. The real analytic theory of Teichmüller space, volume 820 of Lecture Notes
in Mathematics. Springer, Berlin, 1980.

[2] Arthur Baragar. On the unicity conjecture for Markoff numbers. Canad. Math. Bull., 39(1):3–
9, 1996.

[3] Alan F. Beardon. The geometry of discrete groups, volume 91 of Graduate Texts in Mathe-

matics. Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original.
[4] P. Buser and K.-D. Semmler. The geometry and spectrum of the one-holed torus. Comment.

Math. Helv., 63(2):259–274, 1988.

[5] Peter Buser. Geometry and spectra of compact Riemann surfaces, volume 106 of Progress in
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