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Abstract. We study quasisymmetric maps, which act on the boundary of the
hyperbolic plane, by looking at their action on the Farey triangulation. Our
main results identify exactly which quasisymmetric maps correspond to pinched
lambda lengths in terms of shearing coordinates and, separately, in terms of
(simultaneous) flip distance of the Farey triangulation and its image by the
map. These extend and clarify previous results of Penner and Sullivan.

1. Introduction

The theories of quasiconformal, quasisymmetric and bi-Lipschitz maps of the
hyperbolic plane are related to a plethora of topics in Teichmüller theory and
deformation spaces of surfaces. In particular, the so-called universal Teichmüller
space, the space of all quasisymmetric maps of the unit circle that fix 1, i and −i,
contains as embedded subspaces, all other Teichmüller spaces. Qualifying which
maps correspond to quasisymmetric maps is a natural problem.

A map of the unit circle can be studied by investigating its action on one of the
standard (ideal) triangulations of the hyperbolic plane such as the classical Farey
triangulation. Penner and Sullivan [9] did exactly this, and gave a sufficient condi-
tion for a map to be quasisymmetric in terms of the lambda lengths of the image
of the Farey triangulation (see Section 2 for definitions). Their result says that if a
triangulation has pinched lambda lengths then it corresponds to a quasisymmetric
map.

We show a number of extensions and related results. We begin by showing that
the Penner-Sullivan condition is not exhaustive, that is that there exists trian-
gulations that are the image of a quasisymmetric map which do not admit any
decorations with pinched lambda lengths (Example 2.5). We then give a characteri-
zation of the subclass of quasisymmetric maps which do satisfy the Penner-Sullivan
condition. This characterization involves shearing coordinates:

Theorem 1.1. Let h : R̂ → R̂ be a quasisymmetric map and let s : F → R be
its shear function. Then the triangulation h(F) admits a decoration with bounded
lambda lengths if and only if there exists M > 0 such that for all fans Fp =

1
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{Ep
j }∞j=−∞ and for all n,m ∈ Z with n < m we have∣∣∣ m∑

j=n

s(Ep
j )
∣∣∣ ≤M.

It is interesting to compare this result to a previous result of the second author,
which characterizes quasisymmetric maps in terms of shearing coordinates (see
Theorem 2.1 in Section 2). Note that Theorem 2.1 and the above result give an
alternate proof of the Penner-Sullivan result.

Flip distances between triangulations are useful and by now classical tools in
the study of mapping class groups and Teichmüller spaces. A recent focus point
has been simultaneous graphs, where any number of flips are allowed on disjoint
quadrilaterals. These are particularly well adapted to infinite type surfaces (and
surfaces with infinitely many triangles such as the hyperbolic plane) and have been
recently studied by the first author and collaborators in different contexts [2, 8, 4].
Our next result is about characterizing Penner-Sullivan quasisymmetric maps in
terms of (simultaneous) flip distance.

Theorem 1.2. A homeomorphism h : R̂ → R̂ that preserves Q̂ is of Penner-
Sullivan type if and only if the triangulations F and h(F) are finite flip distance
apart.

The set M(H) of Penner-Sullivan type homeomorphisms of R̂ that preserve

Q̂ can be thought of as the universal modular group adapted to the Farey tri-
angulation F . It has the nice property of being transitive on the space of ideal
triangulations that are finite flip distance away from F . It is not clear (or obvious)
thatM(H) is a group under composition which is needed if we want to call it the
universal modular group. We establish this fact:

Theorem 1.3. The set M(H) is a group under composition.

By previously known results, M(H) contains as subgroups the mapping class
groups of all finite-type punctured surfaces and the punctured solenoid [11], [1].
Our definition ofM(H) can be compared with Penner’s definition [9] of a universal
modular group using the space of all triangulations of H. In recent work of Frenkel
and Penner [5], the universal modular group is defined to be the homeomorphisms
which map the Farey triangulation onto triangulations that agree with F except
for many edges. This corresponds to being finite flip distance away, but where you
only allow one edge to be flipped at a time. Our group M(H) has rather simple
combinatorial and analytic definitions, and it contains the group from [5] as well
as Thompson’s group (see for instance [3]).

These results also open other avenues of investigation. For instance, it would
be interesting to characterize quasymmetric maps among homeomorphisms that
preserve Q̂ in terms of flips on F .
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2. Shears, lambda lengths and preliminary results

Our base object is the hyperbolic plane H. Computations will often be in the up-
per half-plane model whereas figures will be represented in the disk model however.
The Farey triangulation F of H is constructed starting from the ideal hyperbolic
triangle ∆0 with vertices 0, 1 and ∞. The group generated by the hyperbolic re-
flections in the sides of ∆0 has PSL2(Z) as an index 2 subgroup. The orbit of this
reflection group (or of PSL2(Z)) of ∆0 is a an ideal triangulation of H, which we
will refer to as the Farey triangulation. Its set of edges is denoted by F and its set
of vertices is the extended set of rational numbers Q̂ = Q∪ {∞} = Q∪ {1

0
}. Note

that two vertices a
b

and c
d

are related by an edge if and only if |ad− bc| = 1. The
Farey triangulation can be visualized in the disk model of the hyperbolic plane as
in Figure 1.

Figure 1. The Farey triangulation

A horodisk is a disk in H tangent to a boundary point of ∂H (so it is of infinite
radius), and a horocycle is the boundary of a horodisk. A decoration H of F is

a choice of horocycle tangent to every q ∈ Q̂. A decoration H is a set, and an
element C ∈ H is a single horocycle. The standard horocycle H0 decoration of F
is the decoration that results in the corresponding disks being of maximal density
on each triangle of H \ F , meaning that they all look like the ideal triangle in
Figure 2.

A shear function is a function s : F → R. Geometrically, a shear measures
how two ideal triangles are glued together. Take two triangles, ∆1 and ∆2, pasted
along an edge E. We orient E according to the (positive) orientation of ∆1. Now
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Figure 2. An ideal triangle and tangent horocycles

for each triangle consider the unique circle tangent to all three sides and their
tangency points x1 and x2 at E (corresponding to ∆1 and ∆2). The shear is the
(signed) distance between x1 and x2 following the orientation of E. Note that this
quantity does not depend on which triangle is chosen to be ∆1.

A fan of edges Fp with tip p ∈ Q̂ consists of all edges of F with p as one of
its ideal endpoints. We list {Ep

j }∞j=−∞ the edges of Fp such that Ep
j and Ep

j+1 are
adjacent (meaning they share a triangle) and Ep

j comes before Ep
j+1 for the positive

orientation of a horocycle based at p.
The shear function s induces a developing map hs : Q̂→ R̂ such that the image

triangulation hs(F) realizes the shear function. Note that in general hs does not

extend to a homeomorphism of R̂.
Let k ∈ Z, n ∈ N and {Ep

j }∞j=−∞ be a fan of edges of F with tip p. By pre-
composing hs with an element of PSL2(Z) and post-composing with an element of
PSL2(R), we can assume that hs fixes −1, 0 and ∞, that the tip p is at infinity
and the edge Ep

k has endpoints 0 and ∞.
The developing map moves an edge Ep

j with endpoints ∞ and j to a geodesic
with endpoints ∞ and hs(j). Let C = {z = x + yi : y = 1} be a horocycle based
at ∞. Let αj be the length of the arc of C between the images by hs of edges Ep

j

and Ep
j+1.

Then we have

αj = es(E
p
k)+···+s(E

p
j )

for j ≥ k and

αj = e−s(E
p
k−1)−···−s(E

p
j )

for j < k − 1 and

αk−1 = 1.
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For k ∈ Z and n ∈ N, define

s(k, n; p) :=
αk + αk+1 + · · ·+ αk+n−1
αk−1 + αk−2 + · · ·+ αk−n

.

The expression s(k, n; p) is the ratio between the sum of the lengths of the first n
horocyclic arcs to the right of the geodesic hs(E

p
k) and the sum of the lengths of

the first n horocyclic arcs to the left of hs(E
p
k). While the lengths of horocyclic

arcs αj depend on the choice of the horocycle, the quotient s(k, n; p) does not.

An orientation preserving homeomorphism h : R̂→ R̂ is quasisymmetric if there
exists M > 0 such that for any two adjacent arcs I and J with |I| = |J | we have
1/M ≤ |h(I)|/|h(J)| ≤M , where |I| is the length of I. The ratios s(k, n; p) enable
a precise characterization of quasisymmetric maps via shears:

Theorem 2.1 (See [12], [13]). A shear function

s : F → R
is induced by a quasisymmetric map if and only if there exists M ≥ 1 such that
for all fans {Ep

j } of F and all k ∈ Z, n ∈ N
1

M
≤ s(k, n; p) ≤M.

We now define lambda lengths, which require decorated triangulations. A dec-
orated triangulation T̃ of H is an ideal (locally finite) triangulation T together

with a choice of a horocycle at each vertex. There is a homeomorphism f of R̂
which moves the (vertices of the) Farey triangulation F onto (those of) T and the
homeomorphism is unique once we decide where a fixed triangle of F is mapped
to.

A decorated triangulation T̃ assigns lambda lengths to the edges of F under the
corresponding homeomorphism as follows (see [10]). The lambda length of E ∈ F
is the quantity

λ(E) =
√
eδ(E)

where δ(E) is the signed hyperbolic distance between the intersection of the edge
f(E) ∈ T with the two horocycles at its endpoints from the decorated triangulation
T̃ (see Figure 3).

Conversely, given an assignment λ : F → R+ there exists a decorated (possibly
degenerate) triangulation T̃ that realizes λ (see [9], [10]). The triangulation may
not cover the whole hyperbolic plane and in this case we call it degenerate. Note
that this amounts to the developing map not extending to a homeomorphism of R̂.
We refer to [12] for a necessary and sufficient condition on the shears or lambda
lengths such that the developing map is a homeomorphism.

The horocycles and edges of T̃ divide the hyperbolic plane into hexagons and
triangles. The hexagons have three sides on the edges and three sides on the
horocycles and the triangles have one side on the horocycles and two sides on the
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Figure 3. Positive and negative δ(E)

edges. There are relations between the horocyclic lengths and the lambda lengths
of the sides as follows.

Assume that we have an ideal hyperbolic triangle with vertices a, b and c and a
fixed choice of corresponding horocycles Ca, Cb, Cc at the vertices. Let λa,b denote
the lambda length of the geodesic with endpoints a and b. Let αa be the length
of the arc of the horocycle Ca inside the triangle. Then [10, Lemma 4.9, Page 36]

(1) αa =
λb,c

λa,bλa,c
.

Assume that we have an ideal hyperbolic quadrilateral with vertices a, b, c and
d in the given order. The Ptolemy relation [10, Corollary 4.16, Page 41] holds

(2) λa,cλb,d = λa,bλc,d + λb,cλd,a.

Definition 2.2. A lambda length function

λ : F → R+

is pinched if there exists M > 1 such that

1

M
≤ λ(E) ≤M

for all E ∈ F .

Remark 2.3. We note that having pinched lambda lengths is a global condition
which depends on the decoration across all vertices and it is straightforward to find
decorations for the identity map that is not pinched. In contrast, the condition in
Theorem 2.1 is localized to fans and independent of a choice of decoration.

The following result relates pinched lambda lengths to quasisymmetric maps.

Theorem 2.4 (Penner-Sullivan [9]). Let λ : F → R+ be pinched. Then the
characteristic map is quasisymmetric.
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Proof. We show how to deduce this result from Theorem 2.1. Since 1
M
≤ λ(E) ≤

M for all E ∈ F and by (1) we have 1
M3 ≤ α(E) ≤M3, where α(E) is the length of

the horocyclic arc of the decoration with one endpoint on E and to the immediate
right of E. Then 1

M6 ≤ s(k, n; p) ≤ M6 and fλ is quasisymmetric by Theorem
2.1. �

The following example will show that the condition in the above theorem cannot
be an if and only if condition.

Example 2.5. We construct a shear function s : F → R corresponding to a
quasisymmetric map, but for which any decoration is unpinched.

Let s : F → R be zero on all edges of the Farey triangulation F that do not
belong to the fan F∞. Fix k ∈ N. Let Ej be the edge with endpoints j and ∞.
Define

s(E−16j) = log 2

and
s(E16j) = − log 2

for j ∈ N ∪ {0}. We set s to be zero on all other edges of F∞. Let hs : R̂ → R̂
be the corresponding homeomorphism that is normalized to be the identity on
[−1, 1]. The map hs multiples the distances on [1, 16] by 1

2
and the distances on

[16k, 16k+1] by 1
2k+1 .

To prove that hs is quasisymmetric we need to bound the quotient

hs(x+ t)− hs(x)

hs(x)− hs(x− t)
.

We assume that x+ t > 0 and x > 0. The case when x− t < 0 and x < 0 can be
proved analogously using the symmetry of the shears.

Case 1. Let 16k ≤ x+t < 16k+1, 16l−1 ≤ x < 16l and l ≤ k−1. Said otherwise,
the interval [x, x + t] contains at least one interval of the form [16k−1, 16k]. Then
we have

−16k+1 + 2 · 16l−1 < x− t < −16k + 2 · 16l

Note that x− t is negative. By l ≤ k − 1 we conclude

−16k+1 ≤ x− t ≤ −16k−1.

A direct computation gives

hs(16k) =
15

14
8k − 1

14
and by symmetry

hs(−16k) = −15

14
8k +

1

14
.

The above inequalities imply

15

14
8k − 1

14
≤ hs(x+ t) <

15

14
8k+1 − 1

14
,
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15

14
8l−1 − 1

14
≤ hs(x) <

15

14
8l − 1

14
,

and

−15

14
8k+1 +

1

14
≤ hs(x− t) < −

15

14
8k−1 +

1

14
.

The above three inequalities imply

7

2 · 82
≤ hs(x+ t)− hs(x)

hs(x)− hs(x− t)
≤ 82.

Case 2. Assume x ∈ [0, 1). This is similar to Case 1.

Case 3. Assume that 16k−1 ≤ x ≤ 16k ≤ x+ t ≤ 16k+1. There are two subcases
to consider: either x− t ≥ 16k−2 or x− t < 16k−2.

If x− t ≥ 16k−2 then we have

1

4
≤ hs(x+ t)− hs(x)

hs(x)− hs(x− t)
≤ 4

because the interval [x− t, x+ t] contains endpoints of at most two geodesics with
shears − log 2.

Now assume that x−t < 16k−2. Then the interval [x−t, x] contains [16k−2, 16k−1].
This implies

hs(x+ t)− hs(x)

hs(x)− hs(x− t)
≤

15
14

(8k+1 − 8k−1)
15
14

(8k−1 − 8k−2)
≤ 83.

To find a lower bound, note that hs(x+ t)−hs(x) ≥ 1
2k
t. We need an upper bound

on hs(x)− hs(x− t). For 16l ≤ x− t ≤ 16l+1 < 16k−1 we have

16k−1 − 16l+1 ≤ t ≤ 16k − 16l

which implies 15
16

16k−1 ≤ t ≤ 16 · 16k−1 and

hs(x)− hs(x− t) ≤
15

14
(8k − 8l) ≤ 162

14

1

2k
t.

This gives a lower bound for hs(x+t)−hs(x)
hs(x)−hs(x−t) when x− t ≥ 1.

For x − t ≤ 1 a similar estimate gives the desired bound. We have established
that hs is a quasisymmetric map. We now need to show that it does not admit a
pinched lambda length decoration.

Proposition 2.6. Let s be the shear function constructed above (Example 2.5).
Then no decoration on hs(F) has pinched lambda lengths.

Proof. We choose a horocycle based at ∞ to have Euclidean height 1 and show
that any choice of horocycles at other vertices cannot have pinched lambda lengths.
(Having pinched lambda lengths is invariant under scaling.) Indeed, the image
under hs of the endpoints of E16k and E16k+1 are at distance 1

2k+1 . If we want to
have pinched lambda lengths on E16k and E16k+1 we are forced to choose horocycles
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at the vertices hs(16k) and hs(16k + 1) to be circles with pinched Euclidean radii.
This implies that the lambda length on the geodesic with endpoints hs(16k) and
hs(16k + 1) is going to zero as k → ∞. Therefore no choice of decorations gives
pinched lambda lengths. �

3. Shears and quasisymmetric maps

The previous example shows that quasisymmetric maps need not be induced by
triangulations with bounded lambda lengths. The quasisymmetric maps with this
special property, in light of Theorem 2.4, will be said to be of Penner-Sullivan
type. This raises the question of which quasisymmetric maps come from bounded
lambda lengths, and in particular whether there is a characterization of this special
subclass of quasisymmetric maps as in Theorem 2.1. The following result answers
this positively (Theorem 1.1 from the introduction):

Theorem 3.1. Let h : R̂ → R̂ be an (orientation preserving) homeomorphism
and let s : F → R be its shear function. Then the triangulation h(F) admits a
decoration with bounded lambda lengths if and only if there exists M > 0 such that
for all fans Fp = {Ep

j }∞j=−∞ and for all n,m ∈ Z with n < m we have

(3)
∣∣∣ m∑
j=n

s(Ep
j )
∣∣∣ ≤M.

Proof. Assume that h(F) has a decoration with bounded lambda lengths. In other
words, there is a choice of a horocycle at each vertex of h(F) such that the lengths
of the cut offs on each edge of h(F) are bounded between a negative and positive
constant. This implies that the lengths of the horocyclic segments cut off by
the adjacent edges of the corresponding vertex are bounded between two positive
constants for all the horocycles (see equation (1) above).

We fix the standard decoration H0 on F such that all the horocyclic arcs have
length 1. Let Cp be the horocycle of the standard decoration on F based at the
vertex p. Let Ch(p) be the horocycle of the decoration on h(F) based at h(p) that
has bounded horocyclic segments. We scale Ch(p) to a horocycle C ′h(p) that has one
horocyclic segment d of length 1.

Let A ∈ PSL2(Z), B ∈ PSL2(R) be such that A−1(p) = B(h(p)) = ∞,
A−1(Cp) = {z ∈ H : y = 1} and B(C ′h(p)) = {z ∈ H : y = 1}. Additionally

we require that the image under B of the edges E1, E2 ∈ h(F) bounding d map
to the geodesics with endpoints 0,∞ and 1,∞ and that A maps edges of F with
endpoints 0,∞ and 1,∞ onto the edges h−1(E1), h

−1(E2). The quasisymmetric
map B ◦ h ◦A fixes 0, 1 and ∞ and it is the developing map of the shear function
s ◦ A−1 : F → R. The horocyclic segments of B(C ′h(p)) have lengths pinched be-
tween two positive constants. The length of the n-th horocyclic segment is given
by

e
∑n

j=1 s◦A−1(Ej)
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for n ≥ 1 and by

e−
∑0

j=n s◦A−1(Ej)

for n ≤ 0. Therefore we have an upper bound on
∣∣∣∑m

j=n s(Ej)
∣∣∣.

For the converse, assume that∣∣∣ m∑
j=n

s(Ej)
∣∣∣ ≤M.

for all n,m and all fans Fp. We need to construct a decoration with bounded
lambda lengths. As remarked before, this is equivalent to constructing a decoration
with bounded horocyclic segments.

At a vertex h(p) of h(F), we choose a horocycle Ch(p) that has one segment
of length 1. The lengths of the other segments on Ch(p) are either of the form

e
∑n

j=1 s(Ej) for n ≥ 1 or e−
∑0

j=n s(Ej) for n ≤ 0. Therefore all of the horocyclic
segments are bounded, and the lambda lengths are bounded. �

Definition 3.2. Following the above result, an orientation preserving homeomor-
phism of S1 will be said to be of Penner-Sullivan type if the corresponding shear
function satisfies inequality (3) for all fans of F .

Remark 3.3. Defining lambda lengths takes into account the relative positions
of the horocycles along the edges of the triangulation. To say that lambda lengths
are bounded one could expect that we need to think about these relative positions.
However, the second part of the proof above does not require us to think about rel-
ative positions of the horocycles because of the formulas in the hexagons. As soon
as one of the horocyclic arcs has length 1, our choice of horocycles is automatically
the correct one which simplifies the proof.

Remark 3.4. Theorem 3.1 above provides yet another proof of the Penner-
Sullivan pinched lambda lengths theorem. Indeed, the condition implies that each
horocyclic segment length is between e−M and eM . Then the condition of Theorem
2.1 is satisfied with the constant e2M .

4. Simultaneous flips and pinched lambda lengths

Here we are interested in the relationships between decorated ideal triangula-
tions and flip transformations. Given a triangulation, a flip is an operation that
consists in switching the diagonals of disjoint quadrilaterals (see Figure 4). These
are sometimes referred to as simultaneous flips as opposed to standard flips were
only one edge can be flipped at a time. When a surface is triangulated with an
infinite number of triangles, these more general flips allow one to connect a much
larger class of triangulations by flip sequences. Two triangulations are related by
a sequence of flips if and only if there exists a universal upper bound on the in-
tersection between the arcs of the triangulations and the other triangulation (see
[4]).
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Figure 4. An example of a flip

4.1. Pinched lambda lengths under flips. Let T̃ be a decorated ideal hyper-
bolic triangulation of H with pinched lambda lengths. Let D be a flip on disjoint
quadrilaterals of T .

Proposition 4.1. Let T̃ be a decorated ideal hyperbolic triangulation of H with
pinched lambda lengths. Then the image D(T̃ ) under a flip D has pinched lambda
lengths. In particular, the developing map h : F → D(T ) is of Penner-Sullivan
type and thus quasisymmetric.

Proof. Assume that the diagonal ac is flipped to the diagonal bd inside the rectangle
with vertices a, b, c and d made by the union of two triangles of T . The Ptolemy
equation (2) gives

λb,d =
λa,bλc,d + λb,cλd,a

λa,c
.

It follows that
2

M3
≤ λb,d ≤ 2M3.

Thus D(T̃ ) has pinched lambda lengths. �

From this, the following is immediate.

Corollary 4.2. The developing map of any triangulation obtained by finitely many
flips starting from the Farey triangulation is quasisymmetric.

Proof. Choose a standard decoration on the Farey triangulation such that all
lambda lengths are equal to 2. By Proposition 4.1 the resulting decorated tri-
angulation will be pinched and the result now follows from Theorem 2.4. �

Proposition 4.3. Let T = h(F) for a quasisymmetric map h and D a flip on T .
Then the characteristic map of D(T ) is quasisymmetric.

Before passing to the proof, we remark that in general the triangulation T does
not support a decoration with pinched lambda lengths. Therefore the proof of
Proposition 4.1 does not work in general.
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Proof. If the flip D does not preserve a single triangle of T , then we form two flips
D1 on T and D2 on D1(T ) such that D2 ◦ D1 = D and both D1 and D2 leave
at least one triangle fixed. It is enough to prove that the characteristic map h1
for D1(T ) is quasisymmetric because in that case D1(T ) is the image of F under
quasisymmetric h1 and the same argument applies to the flip D2 on D1(T ).

Let ∆1 be a complementary triangle of the triangulation T that is not changed
by D1. Let ∆∗1 be the complementary triangle of F such that h(∆∗1) = ∆1. We
define a flip D∗1 on F by h−1 ◦ D1 ◦ h. By definition D∗1(∆∗1) = ∆∗1. Let h∗1 be the
characteristic map from F to D∗1(F) that fixes the edges of ∆∗1. By the definition
of D∗1 we have that h∗1(F) = h−1 ◦ f1 ◦ h(F). Since both h∗1 and h−1 ◦ h1 ◦ h are
characteristic maps from F to D∗1(F) and they both fix the edges of ∆∗1 we have

h1 = h ◦ h∗1 ◦ h−1.
The map h1 is quasisymmetric because h is quasisymmetric by the assumption

and h∗1 is quasisymmetric by Proposition 4.1. �

4.2. Intersection and lambda lengths. The goal of this section is to prove a
type of converse to Proposition 4.1.

Theorem 4.4. Let T be a triangulation with pinched lambda lengths with respect
to the standard horocycle decoration H0 of H. Then T is finite flip distance from
F , the standard Farey triangulation.

To prove it, we use a few preliminary results. The first one states that an arc of
T never travels too deeply into a horocycle unless it ends at its point of tangency
on R̂. More precisely:

Lemma 4.5. There exists a constant K ′ such that any arc a ∈ T satisfies

`(a ∩DC) ≤ K ′

for any horodisk DC with horocycle boundary C ∈ H0 that is not tangent to one of
the endpoints of a.

Proof. This follows immediately from the pinched lambda lengths condition. In-
deed, if there is no upper bound on this length, then the lambda lengths are
arbitrarily large. �

Observe that this implies a universal upper bound on the distance between the
intersection of an arc a with a horocycle decoration H0, and the horocycle. It is
convenient to think of the depth of an arc here: an arc is said to have depth δa if
for each C ∈ H0, a ∩ C is at most Hausdorff distance δa from ∂C.

If we let δ0 := supa∈T {δa} then we can replace H0 with a new horocycle decora-
tion Hr obtained by retracting H0 by δ0 + 1 (see Figure 5).

The result of this is that T and Hr are, by construction, completely disjoint.
Our second preliminary result involves a uniform upper bound on the intersec-

tion between arcs of T and F and vice versa.



QUASISYMMETRIC MAPS, SHEARS, LAMBDA LENGTHS AND FLIPS 13

Figure 5. The standard decoration is replace by a retracted decoration

Lemma 4.6. There exists K ′′ such that for any a ∈ T we have

i(a,F) ≤ K ′′.

Proof. Cutting F along the horocycles of Hr (by which we mean removing the
horodisks), results in a collection of hexagons. These hexagons pasted together is
the “large” connected component of H\Hr. We now consider T on this truncated
hyperbolic plane HHr and we continue to denote it T . An arc a of T on HHr

is finite length, and leaves from one of the horocycle boundaries, crosses a finite
number of arcs of F , and then returns to another horocycle boundary in its other
endpoint. Each intersection point with an arc of F creates length: that is there is
a lower bound of its length in terms of intersection with F that goes to infinity as
the intersection goes to infinity (see Figure 6).

Figure 6. Each time an arc of T crosses an arc of F this forces it
to have a certain length
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Note that this is exactly why we retracted by δ0 + 1. As we have a universal
upper bound on the length of a restricted to HHr , this proves a uniform upper
bound on i(a,F) as desired. �

The proof of Theorem 4.4 now follows directly from the main result of [4] which
says that the finite intersection property above implies finite flip distance. From
Theorem 4.4 and Proposition 4.3 we now have, as an immediate corollary, a char-
acterization of being of Penner-Sullivan type in terms of flips (Theorem 1.2 from
the introduction):

Corollary 4.7. A homeomorphism h : R̂→ R̂ such that h(Q̂) = Q̂ is of Penner-
Sullivan type if and only if the triangulations F and h(F) are finite flip distance
apart.

The above corollary characterizes when a homeomorphism h that preserves Q̂
is of Penner-Sullivan type in terms of the intersections of F and h(F). We pose
the following problem.

Open problem: Characterize when a homeomorphism h : R̂→ R̂ such that h(Q̂) =

Q̂ is quasisymmetric in terms of the intersection properties of F and h(F).

5. The universal modular group

The above characterization of quasisymmetric maps encourages a more system-
atic study of triangulations of H with vertex set Q̂. The quasiconformal mapping
class group Modqc(H) of the hyperbolic plane consists of all quasisymmetric maps

of R̂ without requiring to fix three points (see [6] and [7]). Somewhat surpris-
ingly, the group Modqc(H), which acts by isometries on the universal Teichmüller
space T (H), contains the whole space and more. In order to make the theory
more in line with finite surfaces (which was Penner’s original intention) we intro-
duce a countable group acting on the universal Teichmüller space (the normalized
quasisymmetric maps) and the space of Penner-Sullivan maps arising by the flip
construction.

Definition 5.1. An allowable triangulation of H is a locally finite ideal triangu-
lation whose set of vertices is Q̂. (By locally finite we mean that every compact
region of the hyperbolic plane intersects a finite number of edges of the triangula-
tion.)

Definition 5.2. Two allowable triangulations T1 and T2 have the finite intersection
property if

sup
α1∈T1

i(α1, T2) <∞

and

sup
α2∈T2

i(α2, T1) <∞.
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As we have just seen, the maps of Penner-Sullivan type that preserve the ratio-
nals are of the following form:

Definition 5.3. The set M(H) is the set of all homeomorphisms h : R̂ → R̂
preserving Q̂ such that F and h(F) have the finite intersection property.

Lemma 5.4. The finite intersection property on allowable triangulations is tran-
sitive.

Proof. Assume that T1 and T2, and T2 and T3 have the finite intersection prop-
erty. We will show that T1 and T3 have the finite intersection property. Let n =
supα1∈T1 i(α1, T2). Then any arc α1 ∈ T1 is covered by at most n+2 complementary
triangles of T2. Let m = supα2∈T2 i(α2, T3). Then any arc α2 ∈ T2 is covered by at
most m+ 2 complementary triangles of T3. Then any arc α1 ∈ T1 is covered by at
most 3(n+ 2)(m+ 2) complementary triangles to T3 and therefore it is intersected
by at most 9(n+2)(m+2) arcs of T3. Therefore supα1∈T1 i(α1, T3) ≤ 9(n+2)(m+2)
and by symmetry we obtain supα3∈T3 i(α3, T1) <∞. Thus T1 and T3 have the finite
intersection property. �

Proposition 5.5. The set M(H) is a group under composition.

Proof. Assume h ∈M(H). Then h(F) and F have the finite intersection property.

This property remains invariant under homeomorphisms of R̂ that preserve Q̂.
Therefore h−1(h(F)) = F and h−1(F) have the finite intersection property and
h−1 ∈M(H).

Let h1, h2 ∈ M(H). Then F and h1(F), and F and h2(F) have the finite
intersection property. The finite intersection property is preserved under home-
omorphisms of R̂ that setwise fix Q̂. Then h2(F) and h2(h1(F)) have the finite
intersection property. By Lemma 5.4, F and h2 ◦h1(F) have the finite intersection
property. Therefore h2 ◦ h1 ∈M(H). �

We end with the observation that the groupM(H) contains as interesting proper
subgroups (lifts of) the mapping class (semi-)groups of finite-type punctured sur-
faces (see [9] and [10]) and the baseleaf preserving mapping class group of the
punctured solenoid (see [11] and [1]).
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