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ABSTRACT: Our main theorem identifies a class of totally geodesic subgraphs
of the 1-skeleton of the pants complex, each isomorphic to the product of two
Farey graphs. We deduce the existence of many convex planes in the 1-skeleton
of the pants complex.
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§1. Introduction.

Let Σ be a compact, connected and orientable surface, possibly with non-empty
boundary, of genus g(Σ) and |∂Σ| boundary components, and refer to as the
mapping class group Map(Σ) the group of all self-homeomorphisms of Σ up to
homotopy.

After Hatcher-Thurston [HT], to the surface Σ one may associate a simpli-
cial graph P(Σ), the pants graph, whose vertices are all the pants decompositions
of Σ and any two vertices are connected by an edge if and only if they differ
by an elementary move; see §2.2 for an expanded definition. This graph is con-
nected, and one may define a path-metric d on P(Σ) by first assigning length 1
to each edge and then regarding the result as a length space.

The pants graph, with its own geometry, is a fundamental object to study.
Brock [B] revealed deep connections with hyperbolic 3-manifolds and proved the
pants graph is the correct combinatorial model for the Weil-Petersson metric on
Teichmüller space, for the two are quasi-isometric. The isometry group of (P , d)
is also correct in so far as the study of surface groups is concerned, for Margalit
[Mar] proved it is almost always isomorphic to the mapping class group of Σ. In
addition, Masur-Schleimer [MasS] proved the pants graph of any closed surface
of genus at least 3 to be one-ended. With only a few exceptions, the pants graph
is not hyperbolic in the sense of Gromov [BF].

In [APS], the authors prove that every subgraph of P isomorphic to the
Farey graph is in fact totally geodesic in (P , d). The purpose of this paper is to
study the extrinsic geometry of another class of subgraphs of the pants graph,
each determined by 2-handle multicurves as defined at the end of §2.1.

Theorem 1 Let Σ be a compact, connected and orientable surface, and denote

by Q any 2-handle multicurve on Σ. Then, PQ is totally geodesic in P(Σ).
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The completion of the Weil-Petersson metric can be characterised by at-
taching so-called strata [Mas]. These are totally geodesic subspaces of the com-
pletion, by a result of Wolpert [W], and correspond to lower dimensional Te-
ichmüller spaces, or products thereof, each with their own Weil-Petersson metric,
or product metric. Combining this with Theorem 1.1 of Brock [B], one finds the
2-handle subgraphs of the pants graph are uniformly quasi-isometrically embed-
ded. This fact is also implicit in the earlier work of Masur-Minsky [MasMi].

Theorem 1 offers a complete analogy between the geometry of the 2-handle
subgraphs in a pants graph and the geometry of the corresponding strata ly-
ing in the completed Weil-Petersson space. In order to prove Theorem 1, we
shall project paths in the pants graph to paths in the given 2-handle graph of
no greater length. All the notation of Theorem 2 will be explained in §2, but
for now we point out the finite set of curves πQ(ν) is the subsurface projection
after Masur-Minsky [MasMi] of a pants decomposition ν to the subgraph PQ

determined by the 2-handle multicurve Q. Note, our definition is the same in
spirit but differs slightly from that given in [APS]. The intrinsic metric on the
graph PQ, assigning length 1 to each edge, is denoted by dQ.

Theorem 2 Let Σ be a compact, connected and orientable surface and denote

by Q any 2-handle multicurve on Σ. Let (ν0, . . . , νn) be a path in the pants

graph P(Σ). For each index i ≤ n − 2 and for each ωi ∈ πQ(νi), there exists

an integer j ∈ {1, 2} and a pants decomposition ωi+j ∈ πQ(νi+j) of Σ such that

dQ(ωi, ωi+j) ≤ j.

To the authors’ knowledge, it has yet to be decided whether there exists
a distance non-increasing projection from the whole pants graph to any one of
its 2-handle subgraphs. In the absence of an affirmative result, Theorem 2 may
well hold independent interest.

Let us indicate two consequences of Theorem 1. First, by considering a
pair of bi-infinite geodesics, one in either factor Farey graph for a 2-handle mul-
ticurve, we deduce the following. By a plane we shall mean a graph isomorphic
to the Cayley graph of the group Z ⊕ Z with standard generating set.

Corollary 3 Let Σ be a compact, connected and orientable surface of complex-

ity at least 3. Then, P(Σ) contains infinitely many convex planes.

Second, we exhibit convex planes in the pants graph invariant under the
action of a particular family of mapping classes.

Corollary 4 Let f ∈ Map(Σ) be a mapping class fixing two disjoint and in-

compressible complexity 1 subsurfaces of Σ, acting on each as a pseudo-Anosov

mapping class and fixing a pants decomposition of their complement. Then,
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there exists a convex plane in P(Σ) on which f2 acts by translation.

The plan of this paper is as follows. In §2 we recall all the terminology we
need, much of which is already standard. In §3 we give an elementary proof to
Theorem 2. In §4 we apply Theorem 2 to give an elementary proof to Theorem
1. Finally, in §5 we prove Corollary 3.
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§2. Background and definitions.

We supply all the background and terminology needed both to understand the
statements of our main results, and to make sense of their proofs. Throughout,
we define a loop on Σ as the homeomorphic image of a standard circle. A sub-
surface of Σ is said to be incompressible only if its natural inclusion descends
to an injection on fundamental groups.

§2.1. Curves and multicurves. A loop on Σ is said to be trivial only if it
bounds a disc and peripheral only if it bounds an annulus whose other boundary
component belongs to ∂Σ. For a non-trivial and non-peripheral loop c, we shall
denote by [c] its free homotopy class. A curve is by definition the free homotopy
class of a non-trivial and non-peripheral loop. Given any two curves α and β,
their intersection number ι(α, β) is defined equal to min{|a∩ b| : a ∈ α, b ∈ β}.

We shall say two curves are disjoint only if they have zero intersection
number, and otherwise say they intersect essentially. A pair of curves {α, β} is
said to fill the surface Σ only if ι(δ, α) + ι(δ, β) > 0 for every curve δ. In other
words, every curve on Σ intersects at least one of α and β essentially.

A multicurve is a collection of distinct and disjoint curves, and the intersec-
tion number for a pair of multicurves is to be defined additively. We denote by
κ(Σ) the cardinality of any maximal multicurve on Σ, equal to 3g(Σ)+ |∂Σ|−3,
and refer to this as the complexity of Σ. Note, the only surfaces of complexity
1 are the 4-holed sphere and the 1-holed torus.

Given a set of disjoint loops L, such as the boundary of some subsurface
of Σ, we denote by [L] the multicurve maximal among all multicurves whose
every curve is represented by some element of L. We shall say a multicurve
ω has codimension k, for some non-negative integer k, only if |ω| = κ(Σ) − k.
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We shall say a codimension 2 multicurve Q is a 2-handle multicurve only if
the complement of every simple representative of Q contains two complexity 1
components, each either a 1-holed torus or a 4-holed sphere containing three
components of ∂Σ.

§2.2. Pants decompositions. A pants decomposition of a surface is a maximal
collection of distinct and disjoint curves, in other words a maximal multicurve.
Two pants decompositions µ and ν are said to be related by an elementary

move only if µ ∩ ν is a codimension 1 multicurve and the remaining two curves
together either fill a 4-holed sphere and intersect twice or fill a 1-holed torus
and intersect once; consider Figure 1 below.

Figure 1: The two types of elementary move.

§2.3. Arcs. An arc on Σ is the homotopy class, relative to ∂Σ, of an embedded
interval ending on ∂Σ that does not bound a disc with ∂Σ. There are broadly
two types of arc: those that end on only one component of ∂Σ, referred to as
waves, and those that end on two different components of ∂Σ, referred to as
seams. In this paper, we shall be considering only waves.

We may similarly define the intersection number of a pair of arcs, or an arc
and a curve, and say two arcs are disjoint or intersect essentially.

§2.4. Graphs and paths. For us, a path in a graph shall be a finite sequence
of vertices such that any consecutive pair spans an edge; one can recover a topo-
logical path by joining up the dots. A geodesic is then a path realising distance.
A subgraph F of a graph G is said to be totally geodesic only if every geodesic
in G whose two endpoints belong to F is entirely contained in F . A subgraph
F of a graph G is said to be convex only if any two vertices of F are connected
by a geodesic entirely contained in F . Any totally geodesic subgraph is convex,
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though a convex subgraph need not be totally geodesic. Finally, the double of

a graph G, denoted G ∗ G, is the graph with vertex set G × G and two distinct
vertices (x1, x2) and (y1, y2) are connected by an edge if and only if either x1

and y1 span an edge in G and x2 = y2 or x2 and y2 span an edge in G and
x1 = y1.

§2.5. Subsurface projections. Given a curve α and an incompressible sub-
surface Y of Σ, we shall write α ⊂ Y only if α can be represented by a non-
peripheral loop on Y . If every loop representing α has non-empty intersection
with Y we can say α and Y intersect, otherwise we say they are disjoint. If
every loop representing α intersects Y in at least one interval, we can say α
crosses Y .

Let Y denote any complexity 1 incompressible subsurface of Σ. Let α be
any curve intersecting Y , and choose any simple representative c ∈ α such that
#(c∩∂Y ) is minimal. We refer to each component of c∩Y as a footprint of c on

Y , and to the homotopy class, relative to ∂Y , of such a footprint as a footprint

of α on Y . Note, footprints of a curve can be arcs or curves.
Given a footprint b for the curve α there only ever exists one curve on Y

disjoint from b, and such a curve shall be referred to as a projection of α. Note
the set of α projections, each counted once, depends only on α and the isotopy
class of the surface Y , and we denote this set by πY (α). For a second multicurve
ν we may similarly define πY (ν). If ν is disjoint from Y then we define πY (ν) to
the empty set. The set πY (ν) is well-defined, and is an example of a subsurface

projection as defined by Masur-Minsky in §1.1 of [MasMi].
If Q is a 2-handle multicurve and Y1 and Y2 are two non-isotopic incom-

pressible complexity 1 subsurfaces of Σ disjoint from Q, for any multicurve ν
on Σ we define πQ(ν) to be equal to {{δ1, δ2} ∪ Q : δ1 ∈ πY1

(ν), δ2 ∈ πY2
(ν)}.

It follows πQ(ν) is the empty set whenever ν is disjoint from both Y1 and Y2.
However, if ν is also a pants decomposition, then each element of πQ(ν) is a
pants decomposition containing Q and thus is a vertex of PQ. Moreover, πQ

restricts to the identity on PQ.

Remark. We note that if ν is a pants decomposition with two distinct curves
α, β both distinct and disjoint from each curve in a 2-handle multicurve Q, then
πQ(ν) = {{α, β} ∪ Q}.

§3. Proof of Theorem 2.

We begin with three results, the third of which plays an especially important role
in the proof of Theorem 2. In what follows, we shall make use of the fact that
a pair of disjoint waves projects to a pair of curves either equal or intersecting
minimally.

Lemma 5 Let Q be a codimension 1 multicurve on Σ, and denote by Y an

incompressible complexity 1 subsurface of Σ disjoint from Q. For two disjoint
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waves or curves a1 and a2 on Y , denote by α1 and α2 the unique curves on Y
such that ι(α1, a1) = 0 and such that ι(α2, a2) = 0. Then, d({α1} ∪ Q, {α2} ∪
Q) ≤ 1.

Proof: If at least one of a1 and a2 is a curve, then α1 and α2 are equal and
d({α1} ∪ Q, {α2} ∪ Q) = 0. Otherwise, α1 and α2 are either equal or intersect
minimally, and as such d({α1} ∪ Q, {α2} ∪ Q) ≤ 1. ♦

Lemma 6 Let Q be a 2-handle multicurve on Σ, and let ν0 and ν1 be two

vertices of P(Σ) such that d(ν0, ν1) = 1. For ω0 ∈ πQ(ν0), if there exists

ω1 ∈ πQ(ν1) such that ω0 ∩ ω1 is not equal to Q, then there exists ω′

1 ∈ πQ(ν1)
such that d(ω0, ω

′

1) ≤ 1.

Proof: Let ω0 ∈ πQ(ν0), and supppose there exists ω1 ∈ πQ(ν1) such that
ω0 ∩ ω1 is not equal to Q. Note then, ω0 ∩ ω1 is a codimension 1 multicurve
properly containing Q. If d(ω0, ω1) ≥ 2, then necessarily there exists a pants
decomposition ω′

1 ∈ πQ(ν0 ∩ ν1). Since ω′

1 ∈ πQ(ν0), so d(ω0, ω
′

1) ≤ 1. If on the
other hand d(ω0, ω1) ≤ 1, then we may define ω′

1 to be equal to ω1. ♦

Lemma 7 Let Q be a 2-handle multicurve on Σ, and denote by Y1 and Y2 two

non-isotopic incompressible complexity 1 subsurfaces of Σ disjoint from Q. Let

ν0, ν1, ν2 be any geodesic in P(Σ) of length 2, and let ω0 ∈ πQ(ν0). If ω0 ∩ ω1

is equal to Q for each ω1 ∈ πQ(ν1), then the multicurve ν0 ∩ ν1 ∩ ν2 intersects

both Y1 and Y2.

Proof: There exists a unique curve δ ∈ ν0 such that ω0 ∈ πQ(δ). Let R denote
the multicurve ν0 ∩ ν1 ∩ ν2, noting |R| ≥ κ(Σ) − 2.

Suppose for contradiction that R does not intersect Y1. Then, we may
project δ to the complement of Y1 in Σ to find a curve δ′ disjoint from Y1 such
that δ′ intersects Y2 and such that ι(ω0 − Q, δ′) is zero.

We now note that δ′ is distinct and disjoint from every curve in R, for
respectively ω0 ∩ ω is equal to Q for each ω ∈ πQ(R), by assumption, and
both ι(R, [∂Y1]) and ι(R, δ) are zero. It follows that R ⊔ {δ′} is a multicurve
disjoint from Y1 and, since it cannot contain [∂Y1], as such has cardinality at
most κ(Σ) − 2. Thus,

|R| = |(R ⊔ {δ′}) − {δ′}| = |R ⊔ {δ′}| − |{δ′}| ≤ κ(Σ) − 2 − 1 = κ(Σ) − 3.

To be more succinct, |R| ≤ κ(Σ) − 3. We therefore have two incompatible
estimates for the cardinality of R, and this is a contradiction.

A parallel argument applies to Y2, and the statement of the lemma there-
fore holds. ♦

We now turn to proving Theorem 2, denoting by Y1 and Y2 two incompress-
ible non-isotopic complexity 1 subsurfaces of Σ disjoint from Q. Let ω0 denote
any element of πQ(ν0).
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Suppose inductively we have chosen the vertex ωk ∈ πQ(νk), for some k ≥ 0.
If there exists a pants decomposition ω ∈ πQ(νk+1) such that ωk∩ω is not equal
to Q, then by Lemma 6 there exists a pants decomposition ω′ ∈ πQ(νk+1) such
that d(ωk, ω′) ≤ 1. We define ωk+1 to be equal to ω′.

We now consider the remaining case, that ωk ∩ ω is equal to Q for every
pants decomposition ω ∈ πQ(νk+1). Note then, k ≤ n − 2. By Lemma 7, there
exists a multicurve R, contained in νk ∩νk+1∩νk+2, such that R intersects both
Y1 and Y2. Taking one footprint of R on Y1 and then on Y2, we may construct
vertices ωk+1 and ωk+2 of PQ such that ωk ∩ ωk+1 and ωk+1 ∩ ωk+2 are both
codimension 1 multicurves, and where ωk+2 ∈ πQ(R) ⊆ πQ(νk+2). Note though,
ωk+1 need not be contained in πQ(νk+1). As each footprint of ω on Y1 and on
Y2 is either a wave or a curve, by Lemma 5 we have in turn d(ωk, ωk+1) ≤ 1 and
d(ωk+1, ωk+2) ≤ 1. Thus, d(ωk, ωk+2) ≤ 2 and the induction continues from
k + 2.

This concludes a proof of Theorem 2. ♦

§4. Proof of Theorem 1.

Let Q be a 2-handle multicurve on Σ. Suppose, for contradiction, that PQ is
not totally geodesic. Then, there exists a geodesic ν0, ν1, . . . , νn in P(Σ) such
that {ν0, νn} ⊂ PQ but νj /∈ PQ for each j ∈ {1, 2, . . . , n − 1}.

Applying Theorem 2 inductively, we find an increasing sequence of integers
{k1, k2, . . . , km} ⊆ {1, 2, . . . , n}, containing 1 and at least one of n − 1 and n,
and a corresponding sequence of pants decompositions ωkj

∈ πQ(νkj
) such that

0 < kj+1 − kj ≤ 2, for each j, and such that dQ(ωkj
, ωkj+1

) ≤ kj+1 − kj , for
each j. Necessarily, ωk1

= ν0 and ωkm
= νn, by the closing remark of §2.5. We

note that

dQ(ωk1
, ωkm

) ≤
∑

j

dQ(ωkj
, ωkj+1

) ≤
∑

j

kj+1 − kj ≤ n − 1,

and it follows that

d(ν0, νn) = d(ωk1
, ωkm

) ≤ dQ(ωk1
, ωkm

) ≤ n − 1.

This is a contradiction, and the statement of Theorem 1 follows. ♦

§5. Proof of Corollary 3.

We will need the following two results. The first identifies doubled Farey graphs
in the pants graph, and the second, stated without proof, recalls a standard
property of graph doubles.

Lemma 8 Let Q be a 2-handle multicurve on Σ. Then, the graph PQ is iso-

morphic to the double of a Farey graph.
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Proof: Let Q1 and Q2 be two disjoint codimension 1 multicurves on Σ such that
Q1 ∩ Q2 is equal to Q. Then, there exist natural retractions πi : PQ → PQi

,
for i ∈ {1, 2}, and there exists an isomorphism φ : PQ2

→ PQ1
. The map

f : PQ → PQ1
∗PQ1

defined by f(v) = (π1(v), φ ◦ π2(v)), for all vertices v of P ,
is thus an isomorphism. Finally, recall that PQ1

is a Farey graph. ♦

Lemma 9 Let G be a graph, and denote by L a convex subgraph of G. Then,

the double L ∗ L is a convex subgraph of G ∗ G.

A proof of Corollary 3 can be completed as follows. Let Q be any 2-handle
multicurve on Σ, so that PQ is isomorphic to the double of a Farey graph. If L
denotes a bi-infinite geodesic line in this Farey graph, then L ∗ L corresponds
to a convex subgraph of the totally geodesic subgraph PQ of P . Thus, L ∗ L
corresponds to a convex subgraph of P . Finally, L ∗ L is isomorphic to the
Cayley graph of Z ⊕ Z with standard generating set, and as such is a plane. ♦
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