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Abstract. This article is about measuring and visualizing distances between domino tilings.

Given two tilings of a simply connected square tiled surface, we’re interested in the min-

imum number of flips between two tilings. Given a certain shape, we’re interested in

computing the diameters of the flip graphs, meaning the maximal distance between any

two of its tilings. Building on work of Thurston and others, we give geometric interpreta-

tions of distances which result in formulas for the diameters of the flip graphs of rectangles

or Aztec diamonds.

1. INTRODUCTION

Let S be a square tiled surface by which we mean a surface obtained by pasting together 1

by 1 Euclidean squares. We’ll generally be interested in when S is a simply connected shape

cut out from standard square tiling of the plane. A good example to keep in mind is when

S is an n by m rectangle. A domino tiling of S is a tiling of S by 2 by 1 rectangles (dominos).

Note that even if S is made of an even number of squares, it might not be tileable. An

example is given by the infamous mutilated chessboard, an n by n board with two opposite

corners removed. We’re interested in understanding the set of all tilings of S when they

exist.

If a tiling T of S has two dominos that share a long edge, they fill a 2× 2 square and one

can obtain a new tiling T′ of S by rotating the square by a quarter turn. This operation we

call a flip (see Figure 1Figure 1).

Dual to the square tiling of S is a graph S∗ and domino tilings of S are easily represented in

S∗ as collections of disjoint edges that cover all vertices (see Figure 1Figure 1 for an example).

With this in mind, associated to tilings of a tileable S is the domino flip graph FS, defined

as follows. Vertices of FS are tilings and we place an edge between two tilings if they are

related by a single flip. We think of the graph FS as a metric space by assigning length 1

to each edge and we denote the induced distance on the vertices of FS by dFS . This gives
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(a) A tiling of a sur-
face

(b) A new tiling ob-
tained by a flip

(c) The dual repre-
sentation

Figure 1

natural metric on the space of tilings of S. We are interested in the geometry of FS.

To illustrate the type of questions we’re interested in, consider the example of when S is a

n× 2 rectangle with n ≥ 1. The number of tilings of S is the (n + 1)th Fibonacci number.

This is a well known puzzle/exercise that can be proved by an induction argument. A

geometric property of these graphs that we’ll pay close attention to is their diameter by

which we mean the maximal distance between any two domino tilings. In this case, it’s not

too difficult to work out.

(a) A tiling of a n x 2 rectangle (b) Our standard tiling

Figure 2

We begin with an upper bound on the diameter. For simplicity, suppose that n is even

but the general argument is identical. Among all tilings, there is one that stands out: the

tiling where all dominos are upright (Figure 2Figure 2 (b)). Now observe that any two tilings can

be joined by a path that passes through this tiling. To construct such a path is easy: if a

tiling has any dominos that aren’t upright, they must come in pairs of flippable horizontal

dominos. For a given tiling, at most n
2 flips are required to put all of the dominos in upright

position. In particular that means there is a path of length at most n
2 + n

2 = n between

any two tilings. Now to actually require n flips would mean that all n dominos on both

tilings were in horizontal position, but there is only one such tiling, the tiling illustrated on

the left in Figure 3Figure 3. So the two tilings were identical to begin with and were at distance 0.

That allows us to improve the upper bound: any two tilings are at distance at most n− 1.

Perhaps surprisingly, this new upper bound is sharp.
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Figure 3

The two tilings illustrated above are realize the bound. Indeed, to get from the left tiling to

the right one, it will be necessary to flip all of the dominos. That will require n
2 flips in total

and in particular they will all be in upright position at one point. Now to reach the right

hand tiling, n− 2 of them will have to put back in a horizontal position, which will require

an additional n−2
2 flips. All in all, any path between them contains last least n− 1 flips.

Of course arbitrary shapes won’t have nice formulas for their diameters like that, but what

about other shapes? How does one compute the diameter of the flip graph of the n×m
rectangles?

Before getting into our results, we observe that some of the questions we ask are similar in

spirit to questions that have been investigated for triangulations of surfaces. Given a poly-

gon, the set of its triangulations has a similar structure: one moves between triangulations

by flipping edges in the triangulation. The number of triangulations of a polygon is the

n− 2th Catalan number. The associated flip graph has been extensively studied, namely

by Sleator, Tarjan and Thurston, who found sharp bounds on the diameter [66]. Recently,

Pournin [33] sharpened their result and produced explicit examples of triangulations at

maximal distance. In fact, the example we give above for the n by 2 rectangle illustrates, in

a much simpler form of course, Pournin’s examples. Again an example of a configuration

space where the size (number of vertices) and the diameter are elegant quantities. As such,

it portrays our point of view quite well and in particular why we are viewing our graphs

as a type of moduli space.

Before getting into the geometry of these flip graphs, what about it’s topology? In particular,

are tilings always related by a sequence of flips? A remarkable theorem, which can be

deduced from ideas of Thurston [88, 11, 55], says that if S is simply connected, then FS is
connected. This elegant relationship between the topologies of S and FS is not a priori

obvious and can be showed using Thurston’s height function which we’ll describe later.

Note there are simple examples of non-simply connected surfaces whose flip graph is

disconnected, see Section 22.

One of the main tools we’ll be using is the observation (see for instance [55]) which is that

associated to an ordered pair of tilings T, T′, one obtains a collection of disjoint oriented
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cycles C := C(T, T′) in S∗. We’ll give details on why its true in Section 22. Using these cycles

we can define a value function ν defined on the vertices V(S) of S

ν(v) := |ν+(v)− ν−(v)|

where

ν+(v) := number of positive cycles of C(T, T′) surrounding v

and

ν−(v) := number of negative cycles of C(T, T′) surrounding v

Our first interpretation of distance is the following, which relies heavily on a distance

formula by Saldanha, Tomei, Casarin and Romualdo [55], which in turn uses Thurston’s

height function.

Theorem A. The distance between T and T′ is given by the formula

dFS(T, T′) = ∑
v∈V(S)

ν(v)

The advantage of this formula is that it allows another geometric interpretation of distances.

In fact, we associate to C(T, T′) a 3-dimensional shape constructed as follows. We think of

S as a subset of R2 and thus living in R3. (Strictly speaking this may not be true if S in not

geometrically embeddable in R2 - but its a useful picture to keep in mind.) Now in any

order, construct the following. To each positive cycle construct the 1-thick volume above

it. To each negative cycle, dig a 1-thick hole below it. We think of the ”holes” below S as

negative volume. The resulting shape we call the filling shape F associated to T and T′. Note

that F = F+ ∪ F− where F+ is a volume lying above S and F− is hole below. An immediate

consequence of Theorem A is the following.

Theorem B. Let F = F+ ∪ F− be the filling shape associated to T and T′. Then

dFS(T, T′) = vol(F+)− vol(F−)

As in our n× 2 rectangle example above, we’d like to compute diameters diam(FS) for

certain natural shapes S such as when S is a rectangle or an Aztec diamond. These are

examples of particular kinds of S that we call Saturnian because they can be constructed as

collection of rings of 1× 1 squares. By using the techniques that go into Theorem B, we’re

able to obtain an expression for the diameters of Saturnian shapes which gives in particular

the following theorem.
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Theorem C. When S is a n× n square (with n even):

diam(FS) =
n3 − n

6

When S is an m× n rectangle (with m > n and at least one is even):

diam(FS) =

{
mn2

4 −
n3

12 −
n
6 if n is even

mn2

4 −
n3

12 +
n
12 −

m
4 otherwise

When S is an Aztec diamond of order n:

diam(FS) =
n3

3
+

n2

2
+

n
6

We note that the cardinalities of the number of vertices of FS for these shapes have al-

ready been studied extensively. The number of tilings of an m× n rectangle is given by a

spectacular exact formula:

dm
2 e

∑
j=1

d n
2 e

∑
k=1

4
(

cos2 π j
m + 1

+ cos2 πk
n + 1

)
due independently to Kasteleyn and Temperley-Fischer [22, 77]. The number of tilings of the

Aztec diamond is

2n(n+1)/2

This result, due to Elkies, Kuperberg, Larsen, Michael and Propp [11] is referred to as the

Aztec diamond theorem. Using the moduli space analogy, these results constitute the

computations of the size whereas our results are about the shape.

Acknowlegements. The authors are grateful to Béatrice de Tilière for many interesting

domino conversations.

2. COMPUTING DISTANCES

As described above, S is a surface obtained by gluing 1 by 1 squares. As such, its vertices

V(S) are the points that are the images of the vertices of the squares under the pasting.

These are not to be confused with the vertices of S∗, the dual graph to the pasting. Vertices

of S∗ are the squares that form S and two squares share an edge if the corresponding squares

are adjacent. We think of S∗ as geometrically embedded with the vertices being represented

as the centers of the squares (see Figure 1Figure 1). Tilings are now in 1 to 1 correspondence with

perfect matchings of S∗: these are collections of edges of S∗ so that every vertex of S∗ belongs

to exactly one edge.
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Figure 4: A surface S which cannot be embedded into R2

We’re mainly interested in when S is simply connected embedded subset of the usual

square tiling of the Euclidean plane. However, the results follow for a more general setup.

We ask that S is simply connected and that any interior vertex of S (coming from the pasting

of the squares) be surrounded by exactly 4 squares. Said otherwise, we ask that every

interior point of S be locally Euclidean (of curvature 0). This will be necessary in order

to inherit a coloring from a standard black/white coloring of the square tiled Euclidean

plane. Observe that S may not necessarily be geometrically embeddable in R2; an example

is given in Figure 4Figure 4. Nonetheless, it might sometimes be convenient to think of S as lying

inside the plane z = 0 inside R3.

When S is domino tileable (it can be tiled by 2 by 1 rectangles) we denote FS the flip graph

of S. As mentioned above, S being simply connected implies that FS is connected. A simple

example of a non-simply connected S with disconnected FS is given by a 3 by 3 square with

the middle unit square removed. There are only two possible domino tilings of it, clearly

not related by a flip, and so the flip graph in this case consists of two isolated vertices. A

much less obvious result, which can be deduced from [55], is that a 2n + 1 by 2n + 1 square

with the middle unit square removed has n + 1 connected components.

2.1. Thurston’s height function and distance formulas

In [88], Thurston described a function which turned out to be quite useful in understanding

these flip graphs and similarly structured relatives. We briefly describe it in our context to

keep our article as self-contained as possible. Given a tiling T, it attributes to each vertex v
of S a height hT(v).

We begin by coloring the squares of S like those of a chessboard. The existence of such

a coloring is immediate if S is embedded in the plane, but otherwise it can either be

sequentially colored from a given base square or can be colored via an immersion in a chess

colored plane. We orient edges of S so that they run clockwise around black squares and

counterclockwise around whites. (Equivalently, edges are oriented so that the black square

is to their right.) We then choose a boundary vertex v0 and set hT(v0) = 0.
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v

v0

0 -1 0 -1 0

1 2 1 1

0 -1 0

(a) Different paths give v the
same height

v0

0 -1 0 -1 0

1 2 1 2 1 2

0 -1 0 -1 0 3

-2 -3 -2 1 2

-1 0 -1 0

(b) Set of heights of a tiling

Figure 5

The height of a vertex v is then defined as follows. We begin by finding a path between v0

and v that does not cross T (a sequence of edges (e1, . . . , en) not covered by the dominos of

T). We then define

hT(v) :=
n

∑
i=1

o(ei),

where

o(ei) =

{
+1 if the orientation of ei corresponds to that of the path

−1 otherwise

The function is well defined as, perhaps surprisingly at first, it doesn’t depend on the choice

of path. Moreover, associated to a height function is a unique tiling and so height functions

and tilings are in 1 to 1 correspondence. This allows to define a partial order on tilings:

T ≤ T′ if hT(v) ≤ hT′(v) for every vertex v of S, giving FS the structure of a distributive
lattice.

Observe that a flip will only modifies the height of its central vertex (the value will change

by 4). A key result [44, 88] states that T ≤ T′ if and only if there exists a sequence of flips

transforming T into T′ and while always increasing the height of the vertices. Now using

the lattice structure, given tilings T and T′, there exists a supremum tiling T ∧ T′. This gives

us a natural path in FS between T and T′ by combining the height increasing path between

T and T ∧ T′ and the height decreasing path between T ∧ T′ and T′.

The resulting path is a geodesic and thus as a consequence, we get the following distance

formula.

Theorem 2.1 (Theorem 3.2 of [55]).

dFS(T, T′) =
1
4 ∑

v∈V(S)
|hT(v)− hT′(v)|
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We’ll use this formula to give a geometric interpretation of distances below.

2.2. Cycles associated to tilings

We fix S and a black/white coloring of its squares, or equivalently, of the vertices of S∗. We

look at the set of cycles c of S∗ such that the complementary region (S∗\c)∗ is tileable. (The

set (S∗\c)∗ is simply S with the squares that c passes through removed.)

We’ll build cycles by considering tilings represented by disjoint edges in S∗ and completing

the edges to form a cycle: we’ll call these domino cycles. When a cycle is built upon a tiling,

one out of every two edges is a domino edge. If a cycle is given an orientation, it’s easy

to see that all domino edges will begin on the same color. This observation can be used to

give domino cycles a natural orientation. We orient dominos from black to white and this

gives the cycle an orientation. Using the natural orientation of the plane (counter clockwise

is positive), this allows us to distinguish between positive and negative domino cycles. A

cycle collection C is a disjoint set of (oriented) cycles.

We’ll now use cycles to compute the distance between tilings. We consider an ordered
pair T, T′ of tilings. We draw both tilings simultaneously on S∗, erasing all perfectly

superimposed tiles.

Claim: The union of all non superimposed tiles consists in collection of cycles C(T, T′), each

cycle consisting of edges that alternatively belong to T and T′.

Proof of Claim: Unless T = T′, there are vertices of S∗ not covered by superimposed domi-

nos. Consider such a vertex. Now there must be exactly one domino of both T and T′ in

the vertex. As such the subgraph of S∗ formed by all non superimposed edges of T and T′

is a finite subgraph of degree 2 in every edge. The claim follows.

We now orient the cycles of C(T, T′) using the orientation given by the dominos of T (hence

the importance of the order).

As described in the introduction, we define the value function ν on vertices v of S:

ν(v) := |ν+(v)− ν−(v)|

where ν+(v), resp. ν−(v), are the number of positive, resp. negative, cycles surrounding v.

We can now interpret distances in terms of cycles.

Theorem A. The distance between T and T′ is given by the formula

dFS(T, T′) = ∑
v∈V(S)

ν(v)
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Proof. With the help of the distance formula from Theorem 2.12.1, it suffices to show that for

every vertex v, |hT(v)− hT′(v)| = 4ν(v).

Height functions always coincide on the boundary of S so we need to check the above

formula for a vertex v inside S. To do so, consider an oriented path from a boundary vertex

vb to v which follows only positively oriented edges of S. To construct such a path, consider

any edge path between vb and v, and if any of the edges are oriented in the negative

direction, they can be replaced by a 3 edge detour of positively oriented edges.

As we evolve along this path, we’re going to play close attention to how hT and h′T evolve

when we cross cycles. Before doing so we observe the following.

Consider a cycle c of C(T, T′). There are natural inside and outside regions of S \ c. Perpen-

dicular to the edges of c are the oriented edges of S, oriented as in the definition of the

height function (black is on their right). When you follow the edges of c, the edges of S
encountered alternate between pointing inside the cycle and out. Since the edges of a cycle

alternate between corresponding to dominos of T and T′, we also have the following. If the

cycle is positive, dominos of T cover all the exiting edges of S and dominos of T′ cover the

entering ones. The opposite situation occurs for negative cycles.

Suppose the edge ~e = (v′, v′′) enters a positive cycle (there is one more positive cycle

surrounding v′′ than v′, i.e., ν+(v′′) = ν+(v′) + 1).

Then, the edge~e is not covered by a domino of T. Thus:

hT(v′′) = hT(v′) + 1

However,~e is covered by a domino of T′. To contour this domino, there is a 3 edge path of

negatively oriented edges and thus

hT′(v′′) = hT′(v′)− 3

So entering a positively cycle changes the difference hT − hT′ by +4.

The same argument shows that both entering a negatively oriented cycle or exiting a

positively oriented cycle affect hT− hT′ by−4. And as one might expect, exiting a negatively

oriented cycle changes the difference hT − hT′ by +4.

All in all, for a vertex v, we’ve shown that

hT(v)− hT′(v) = 4ν+(v)− 4ν−(v)

and hence

|hT(v)− hT′(v)| = 4ν(v)
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as claimed.

For an example application of the theorem, see Figure 7Figure 7(c). It becomes straightforward

to compute the distance between the two tilings (in this example 54) by counting cycles

surrounding vertices.

We’re now going to interpret distance in terms of a filling shape as described in the intro-

duction.

2.3. Filling shapes

We associate to C(T, T′) a 3-dimensional shape, subset of S×R. When S is a subset of

R2, the shape belongs to R3. The notion of being above and below is all relative to S. For

instance in R3, a point ”above” S is a point with the same x, y coordinates as a point of S
but a positive z coordinate.

We choose any order on the cycles of C(T, T′) and for each one we perform the following

construction. If the cycle is positively oriented, we construct the 1-thick volume above it. If

it is negatively oriented, we dig a 1-thick hole below it. The resulting shape is a collection

of ”buildings” and ”holes” and we think of the holes below S as being of negative volume.

This is the filling shape F = F+ ∪ F− associated to T and T′ where F+ is a volume lying

above S and F− is hole below. Notice that exchanging T and T′ reflects F through the plane

containing S. An example of two tilings such that their associated filling shape is entirely

(a) C(T, T′) obtained by superim-
posing the tilings T and T′ (dotted)

(b) The associated filling shape showing
dFS (T, T′) = 16

Figure 6

above S is given in Figure 6Figure 6. A more complicated example with non empty F+ and F− is

given in Figure 7Figure 7.

Observe that a filling shape can be built using 1× 1× 1 cubes set on or below vertices of S

10



(a) A tiling T (b) A tiling T′ (c) The cycle collection C(T, T′)

(d) The associated filling shape showing that dFS (T, T′) = 54

Figure 7

(and not of S∗).

The filling shape is of interest to us because its volume embodies the distance between the

tilings. The following is now a direct consequence of Theorem A.

Theorem B. Any T, T′ ∈ FS with filling shape F = F+ ∪ F− satisfy

dFS(T, T′) = vol(F+)− vol(F−)

3. DIAMETERS OF FLIP GRAPHS

Let us now focus on the diameters of FS for different surfaces S.

The lattice structure implies the existence of a unique maximal element T+ and a unique

minimal element T−. Given any tiling T and any vertex v, we have

hT−(v) 6 hT(v) 6 hT+(v)

with at least strict inequality for some vertex v (different tilings have different height

functions). Now using the distance formula of Theorem 2.12.1, T+ and T− are the unique
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tilings that realize the diameter of FS.

In addition, it follows from Theorem B that diam(FS) is the maximal volume of filling

shapes. Note that if C(T, T′) is a set of cycles realizing the maximal volume, all of the cycles

must have the same orientation, otherwise reorienting cycles in the same way will give a

larger volume. By reversing the order of the two diameter realizing tilings if necessary, we

can thus suppose that the diameter is realized by a collection of positive cycles.

We denote by vol+1(c) for the 1-thick volume built upon a cycle c and we have the following.

Theorem 3.1. diam(FS) = maxC of S ∑c∈C vol+1(c)

A filling shape of volume of 137 realizes the diameter of the flip graph of Figure 7Figure 7

Figure 8

The maximal filling shape seems to be related to a type of isoperimetric profile of S. In

general, it may be difficult to find it. For example, to find the maximal filling shape

illustrated in Figure 8Figure 8, one could either look at Thurston’s height function or find local

arguments based on colorings. However, for certain types of surfaces, we can exhibit

explicit formulas.

To do so we define the first ring R1 to be the set of all 1× 1 squares of S that the boundary

of S belongs to. We define S1 to be S \ R1. We then define the rings Ri iteratively: R2 is the

set of squares of S1 that the boundary of S1 belongs to. Generally, Ri is the set of squares of

Si−1 that contain ∂Si−1 (where S0 = S). We’ll denote by Vi the set of vertices that belong to

Ri but not to Si−1.

It will be convenient to define a function on vertices of S as follows: the level lev(s) of

s ∈ V(S) is the number of 1 by 1 squares of S needed to connect s to the boundary of S. So

vertices on the boundary of S are of level 0 and those of level i are exactly the vertices Vi.

With this in mind, we say a surface is Saturnian if each of its rings Ri corresponds to a cycle
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in S∗ (and S \ Ri is tileable). For these surfaces, the following holds.

Theorem 3.2. If S is Saturnian, then

diam(FS) = ∑
v∈V(S)

lev(v) = ∑
i≥1

i|Vi|

where |Vi| is the cardinality of Vi.

Proof. The volume of a filling shape is positive and can be computed by summing the

number of 1× 1× 1 blocks beneath the vertices of S. For a vertex v, this number cannot

be any more than its level. The set of vertices Vi are those at exactly distance i from the

boundary, and so we get the upper bound of

∑
v∈V(S)

lev(v) = ∑
i≥1

i|Vi|

Now if S is Saturnian, then the natural cycle decomposition of the rings gives the same

lower bound.

For standard surfaces that are Saturnian, we can compute this formula explicitly.

Theorem C. When S is a n× n square Q(n), with n even:

diam(FQ(n)) =
n3 − n

6

When S is an m× n rectangle R(m, n), with m > n and at least one is even:

diam(FR(m,n)) =

{
mn2

4 −
n3

12 −
n
6 if n is even

mn2

4 −
n3

12 +
n
12 −

m
4 otherwise

When S is an Aztec diamond A(n) of order n:

diam(FA(n)) =
n3

3
+

n2

2
+

n
6

Proof. We’ll prove the formula for the rectangle and for the Aztec diamond (the square

simply being the R(n, n) rectangle).

To begin, we note the self scaled-similarity the two figures have in common: by removing

the ring R1 of R(m, n), resp. of A(n), we obtain R(m− 2, n− 2), resp. A(n− 2). We are

also interested in the number of interior vertices (we denote by V̊ (X) the set of interior

vertices of X).

13



(a) The maximal filling shape for A(4) of
volume 30

(b) The maximal filling shape for Q(6)
of volume 35

Figure 9

For the rectangle, we have

|{v ∈ V̊ (R(m, n))}| = (n− 1)(m− 1)

We can also count those of the Aztec diamond column by column, starting from the central

column:

|{v ∈ V̊ (A(n))}| = (2n− 1) + 2
(
(2n− 3) + (2n− 5) + · · ·+ (2n− (2n− 1))

)
= 2

( n

∑
i=1

2n− (2i− 1)
)
− (2n− 1)

= 2
(
(2n + 1)n− 2(n + 1)

n
2

)
− (2n− 1)

= 2n2 − 2n + 1

From the previous theorem we have

diam(FS) = ∑
v∈V(S)

lev(v) = ∑
i≥1
|{v ∈ P : lev(v) > i}|

For the rectangle this becomes

diam(FR(m,n)) =
d n

2 e

∑
i=1

(
n− (2i− 1)

)(
m− (2i− 1)

)
and for the Aztec diamond

diam(FA(n)) =
d n

2 e−1

∑
i=0

2(n− 2i)2 − 2(n− 2i) + 1

The results follow by expanding the terms and by using the classical identities
m

∑
i=1

i = (m + 1)
m
2

and
m

∑
i=1

i2 = (m + 1)(2m + 1)
m
6
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