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Abstract
Using new methods, we investigate in this paper the problem of deciding whether or not determinants
of binary matrices (i.e. matrices with entries in either {0,1} or {—1,1}) can reach Hadamard’s bound.
Several results are presented using new tools, such as the AG inequality. A direct consequence of this
study can be applied to the existence of Barker sequences. The general point of view is to find conditions
so that a binary circulant matrix can reach the maximum value given by the Hadamard inequality.

1 Introduction

This paper presents a connection between the Hadamard matrix conjecture, the circulant Hadamard matrix
conjecture (which if proved true would imply the Barker conjecture) and the AG inequality. The circulant
Hadamard matrix conjecture was first stated in 1963 in Ryser’s book “Combinatorical Mathematics” [11]. It
states that there are no circulant Hadamard matrices of order n for n > 4. Turyn [13] was the first to show
that if such a matrix exists then its order n verifies n = 4m? with m > 55 odd . He also showed that the
existence of a Barker sequence of order n > 13 implies the existence of a circulant Hadamard matrix of order
n > 4. Since then many articles have been published on the subject and some of them were found incorrect
(see [8] for details). The methods used are either elementary or make use of the theory of difference sets.
Among the existing results, the most interesting come from Bernhard Schmidt who proved that given any
finite set of primes p; the conjecture is true for all but finitely many n which are products of powers of the
p; [12]. The ideas given in the present article are self-contained and do not use the notion of difference sets.

The general approach is to find necessary and sufficient conditions for the determinant of binary circulant
matrices to reach the maximum value given by the Hadamard inequality. This general approach, when applied
to matrices with {0, 1} entries, leads to the following result:

Theorem 1 Let M be a circulant matriz with first line [bo, ...,bm—1], bi € {0,1}, and p(z) = E;n:_ol bjzd.
The following conditions are equivalent:

1. The determinant of M is mazimum, i.e., det M = 2 (mT“)(mH)/Q.

2. The polynomial p satisfies the following equalities:
mil - if j =0,
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and m = —1 mod 4.
3. m=—1 mod 4 and the set D := {j | b; = 1} is a (m,(m + 1)/2,(m + 1)/4) difference set in Z/mZ.
When applied to matrices with {—1,1} entries, this method leads to the following theorem:
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Theorem 2 Let N be a circulant matriz with first line [ag, ..., an—1], a; € {—1,1}, and p(z) = Zf !

The following conditions are equivalent:

1. The determinant of N is mazimum, i.e., det N = n™/2,

2. The polynomial p satisfies |p(¢)| = \/n for all j.

Moreover, the existence of a Barker sequence of length n > 13 implies the existence of a polynomial of degree
> 4 with coefficients in {—1,1} that satifies the above conditions.

2 The Maximum Determinant Problem

Let M (resp. N) be a {0, 1}-matrix (resp. {—1,1}-matrix), i.e., a square matrix with entries in {0, 1} (resp.
in {—1,1}). For a fixed dimension n let f(n) be the maximum determinant of {0, 1}-matrices and g(n) be
the maximum determinant of {—1,1}-matrices (for a n x n matrix by dimension we mean n). J.Cohn [2]
has shown that the following equality and inequalities hold:

(2.1)

n+1 (n+1)/2
1 .

2" f(n—1) = g(n) , g(n) <n™?, f(n) < z(

The equality comes from a standard constructive manipulation between {0, 1}-matrices of dimension n — 1
and {—1, 1}-matrices of dimension n [2, 3]. Consequently, the existence of a {0, 1}-matrix of dimension n —1
with determinant equal to 2(n/4)™/? implies the existence of a {—1, 1}-matrix of dimension n with maximum
determinant. The first inequality comes from the Hadamard Inequality (see Proposition 6) and the second
inequality is a consequence of the previous two relations.

Let A be a circulant n X n matrix, i.e., a matrix of the form

Circplao, a1, ..y an—1] = (Aij)ij=1.n  With Ajj = ai_jmod n-

From classical theory of such matrices, e.g. [4], it is known that for a given primitive n-th root of unity, say

¢, one has
n—1 n—1
det Circylag, a1, .., Gn—1] = H p(¢?) where p(z) = Z apzk. (2.2)
=0 k=0

Note that any primitive n-th root of unity can be considered in the product. In the sequel, we will write (,
i

%

The main subject of study of this article is to decide whether equality in (2.1) can be reached by circulant

for exp(22) and call p(z) the associated polynomial to A.

matrices, both in the case where entries lie in {0,1} and in {—1,1}. By mazimal determinant we will always
mean a determinant that reaches equality in Inequlity 2.1. This study has two faces each connected to
well-known conjectures. In order to state them, recall that a Hadamard matrix H,, is a {—1,1}-matrix
of dimension n such that H,H! = nl, and a circulant Hadamard matrix is a Hadamard matrix which is
circulant. It is well known, e.g. [7], that Hadamard matrices exist in dimension n > 2 only when n is a
multiple of 4. In the sequel we will always assume n > 2. Let us also recall that a Barker sequence {ar}}_;
is a real sequence that satisfies |ZZ;{ arapsj| <1, j=1,..,n—1 and |ag| = 1.

Conjecture 3 (Hadamard Conjecture) Ifn is a multiple of 4, then there exists a Hadamard matriz H, .



Conjecture 4 (Circulant Hadamard Conjecture) Ifn > 4 then there does not ezist a circulant Hadamard
matriz of dimension n.

Conjecture 5 (Barker conjecture) There is no Barker sequence of length > 13.

The following result establishes the connection between these conjectures and our study.

Proposition 6 (Hadamard’s Inequality) For any real n x n matriz A, one has

n /n 1/2
|det A| < H (Z afj)
j=1

i=1

with equality if and only if a column is the zero vector or AA! is diagonal. A {—1,1}-matriz N of dimension
n is a Hadamard matriz if and only if det N is mazimal, i.e., if and only if det N = n™/2.

The proof is in essence already contained in Hadamard’s original paper on the subject [6] and a complete
proof can be found in [5], p.153. Proposition 6 shows that Conjecture 4 is true if and only if there does not
exist a circulant {—1,1}-matrix with maximal determinant in any dimension strictly bigger than 4. It also
shows that if one can find a n — 1 dimensional circulant {0, 1}-matrix with maximal determinant, then there
exists a Hadamard matrix of dimension n. One of the tools we use is the well-known arithmetico-geometric
inequality:

Proposition 7 (Arithmetico-Geometric Inequality) For any set of non-negative numbers
T, .-y Tn_1 ONE has

3|
:\
-

n—1 1
H 7| <X (2.3)
=0 J=0

Equality holds if and only if x; = x; for all i and j.
For a proof, see e.g. [9], p. 15. We will also use the following version of the Plancherel equality:

Proposition 8 Let p(z) = Z;Z(Jl aja:j be a polynomial with complex coefficients. Then
1 n—1 n—1
=~ (P = D eyl
j=0 j=0

3 The case of {0,1}-matrices

Let M be a circulant {0, 1}-matrix of dimension m. This matrix is then of the form M = Circ,[bo, b1, ..., b —1]
where b; € {0,1}. Let p(z) := Z?:_()l bz’ be its associated polynomial. This section provides necessary and
sufficient conditions on p for det M to be maximal. First, we have from Equality (2.2):

m—1 m—1

(det M)* = ] p(¢Z)?* =p(1)* ] Ip(G)I%-

j=0 j=1
Let k be the number of 1s among the b;, i.e., k := p(1). Using Proposition 8 and Inequality (2.3), we have

m—1

3

1
(det M)? < p(1)? % p(¢2)1?
j=1



_ k2< m_ X |p<cz;)|2—k2>”l
m

-1 m
1 m—1
_ R m ~ ., K
= — it
m—1 = m
km+1-(m—k)m_1- 1
(m —1)m-1"
ince T -(m—2) = is maximum in [0,m] if and only if z = ™= we have
Since z™+1 met 0,m] if and only if z = ™+ we h
m+1\""" (m-1\"" 1 m+1\"
t M) < [ —— | — —— =4 — . 1
(de )\< 2 ) 2 (m — 1)m—1 4 (3.1)

Finally, we have

m+1

m+1 (m+1)/2
) ;

det M < 2 (—

1 , with equality if and only if k =

We have found Inequality 2.1 using Inequality 2.3. This comes with the proof of Theorem 1 and an extra
condition connecting our problem to cyclic difference sets. The equivalence of points 1. and 3. below is not
new but we were not able to find it stated in the litterature.

Theorem 1 Let M and p(z) be as above. The following conditions are equivalent:
1. The determinant of M is maximum.
2. The polynomial p satisfies the following equalities:

. mil if =0,
|p<c3n>|={\/@

otherwise,

and m = —1 mod 4.
3. m=—1 mod 4 and the set D := {j | b; = 1} is a (m,(m + 1)/2,(m + 1)/4) difference set in Z/mZ.

Proof: If det M is maximum, then using Inequality (3.1) and the previous discussion, we see that m = —1
mod 4 as well as p(1) = (m+1)/2. Because of the property of Inequality (2.3), we also have |p(¢Z,)| = |p(¢F,)]
for all j and k different from 0. This shows that 1. implies 2.. Reciprocally, if the conditions of 2. are fullfilled
then clearly 1. holds. Next, we show that 2. is equivalent to 3. by considering the polynomials

g(z) == p(x) - (a:mp (%)) mod 2™ —1 and f(z):= mT-l-l + mTH(l +z+...+z™ .

Note that g(¢Z,) = |p(¢%,)|? , Vj. Classical theory in difference sets, see, e.g., [1], shows that D is a difference
set if and only if f = g. If 2. is fullfiled, we have

2
fy="r L, A o),

and if j #0

F(G) = == +0=1p(G)I = P(GP(GaT) = 9(&)-
Since both g and f have degree less or equal to m — 1 and have the same value on m points, f = g and 3.
is proven. If 3. is fullfiled, then f = g and 2. is clearly satisfied. O



Remark 9 As stated in Section 2, there is a standard manipulation that will create a {—1,1}-matrix N
from any {0, 1}-matrix M with the property that det N is maximal among all {—1, 1}-matrices if and only
if det M is maximal among all {0, 1}-matrices. Therefore, in order to build a Hadamard matrix of order n,
one could try to find a circulant {0, 1}-matrix with maximal determinant. The previous theorem shows that
this procedure will succeed if only if there exists a Hadamard difference set in Z /(n — 1)Z, i.e., a difference
set with the parameters described in point 3. of the theorem. However, it is known that there does not exist
a Hadamard difference set when n — 1 = 55 (c.f. [1]) but a Hadamard matrix of order 56 does exist. Hence
this strategy in building Hadamard matrices is not complete.

4 The case of {—1,1}-matrices

Let N be a circulant {—1, 1}-matrix of dimension n. This matrix is then of the form
N = Circylag, a1, ...,an—1] where a; € {-1,1}.

Let p(z) := Z;‘;Ol ajz? be its associated polynomial. This section provides necessary and sufficient conditions
on p for det N to be maximal. The developpment is the same as in the previous section but the details are
different. First,

n—1 1 n—1 ]
n=Ylai? = = 3" (P
j=0 j=0

due to Proposition 8. Then using 2.3, one has

3N

3=

n—1 n—1
- .
n> | [T =1 »¢)
j=0 =0
and since we have the expression of det N given by 2.2, we can write

n > (det N)% ie. detN <n"2. (4.1)

Once again we have found the bound stated in (2.1) via Inequality (2.3). In addition this brings Theorem 2
below.

Theorem 2 Let N and p(x) be as above. The following conditions are equivalent:

1. The determinant of N is mazimum.

2. |p(G)] = v/n for all j.

Moreover, the existence of a Barker sequence of length n > 13 implies the existence of a polynomial of degree
> 4 with coefficients in {—1,1} that satifies the above conditions.

Proof: From inequality 4.1, the determinant of IV is maximum if and only if the inequality that comes from
(2.3) is an equality. This is the case if and only if all the |p(¢J)| are equal, i.e., if and only if |p(¢)| = /n for
all j. This proves the equivalence. The last point comes from Turyn’s work [13] and Proposition 6. O

The case n = 4 is well known and a circulant Hadamard matrix is given by the polynomial p(z) =1+ z —
22 + 3 and all polynomials obtained by a cyclic permutation of the coefficients. These polynomials give rise
to the following equalities

p(C4) =2 sza ke {0717273}'



This is clearly a sign that if a circulant Hadamard matrix N exists of degree > 4, then the associated
polynomial p might satisfy p((,) = v/n - (¥. We prove now that such a situation is not possible. First,
for such a k, consider the polynomial p(z) := 2" *p(z) mod 2" — 1 and the circulant matrix N associated
to it. Note that p(z) is obtain from p(z) by a cyclic permutation of its coefficient and that N is still a
circulant Hadamard matrix. But now 5({,) = v/n. Therefore, without loss of generality, we can assume that

p(Cn) = V/n.

Lemma 11 Letn € N and d be any divisor of n with the property that if p is a prime divisor of n then p
divides d. Then B = {1,(,, (2, ..., n/d- 'Y is a basis of the Q(Ca)-vector space Q((n).

The proof is left to the reader.

Theorem 12 If a circulant Hadamard matriz of dimension n > 1 exists with associated polynomial p such

that p(C) = v/n - CE, then n = 4.

Proof: If n = 4 the case is clear. Let n = [, | = p(¢,) € N and consider the Q({;)-vector space Q({,). Note
that [ is a divisor of n that satisfies the condition of Lemma 11. Let us define \ as

-1 -1
A= ZaﬂCfZ = Zajlclj € Q(G)-
7=0

j=0
Then
n—1 -1 -11-1 -1 fi-1 .
L=A= Y aidh = Y anGl = 30 i Cit - Zazé‘”’ 2| 2and | G
=0 7=0 =0 j=0 =1 =0
and finally
-1
1=N-1- Z“WQ (=0
" t=1

€Q(&1)
€Q(¢)
This is a Q({;)-linear combination of the elements of the basis B (see Lemma 11) which is equal to zero.
Hence all the coefficients are zero and A = Zé;}) alelj =1. Applying the Cauchy-Schwarz inequality, which
is in that case an equality, we see that the sequences {a;;} and {¢]} must be proportional (e.g. [9], p. 84),
which is possible if and only if I = 1 or [ = 2. The case Il = 1 was excluded, which proves the theorem.
O

Remark 13 There is a surprising connection between Theorem 2 and D.J. Newman’s article “Norms of
Polynomials”. In his paper, Newman considers polynomials of degree n — 1 with coefficients in {—1,1} and
proves that any such polynomial P satisfies a stronger form of the Cauchy-Schwarz inequality:

1 . 1 27 X
/ |P(e) dt = - / |P(et)|dt < v/n—0.08,
0 ™ Jo

although Cauchy-Schwarz would only give the inequality < n. The circulant Hadamard conjecture can be
seen as a discrete version of this result since the conjecture is equivalent to the conjecture that for such
polynomials, we have

1 n—1 .
ﬁ Z |P(e27rzj/n)| < \/ﬁ
j=0

for n > 4.
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