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Abstract. This article is dedicated to a careful analysis of distances and lengths
of separating simple closed geodesics on a hyperbolic Riemann surface. One of
the main results is a sharp upper-bound on the length of the shortest separating
curve on a surface of genus 2.

1. Introduction and preliminaries

1.1. Introduction. Hyperbolic Riemann surfaces are very beautiful and central ob-
jects in mathematics, and the study of their geometry has been a subject of active
research since the works of Fricke and Klein. More recently, a considerable amount
of work has focussed on the study of systoles or systolic loops, i.e., the shortest non-
trivial closed curve of a surface (see for instance [1], [2], [16]). The main objective is
to find a sharp upper-bound on the systole length in function of the topology of the
surface. Generally the problem is attacked by trying to find the surfaces on which
the bound is attained (and the bound is always attained by at least one surface).
In the compact case, the sharp bound is only known in the case of genus 2 [9],
although there is a very promising candidate in the case of genus 3 [18] and in the
non-compact case (with cusp boundary), one could resume the state of knowledge
by saying that the systoles of surfaces arising from the quotient of principal congru-
ence subgroups of PSL(2, Z) generally do the trick [17]. The extremal surfaces for
systole length that we know always seem to have other remarkable properties such
as being arithmetic and with many self isometries. The systole problem in general
is essentially the search for an upper-bound on the length of the shortest non-trivial
non-separating simple closed curve. By taking a surface constructed by gluing pairs
of pants with very short boundary curves, its not too difficult to see that no such
bound exists for separating simple closed curves. A bound on the length of shortest
separating curves necessarily depends on both the topology and the systole length,
thus corresponds to limiting oneself to a fat part of Moduli space, i.e., the portion
of Moduli space consisting of surfaces with systole length bounded from below. The
underlying theme of this article is to further explore what type of bounds one can
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find on separating curves, in function of the topology and in function of a lower-
bound on systole length.

In the first part of the article (section 2) we study and find maximal distance
between boundary geodesics on hyperbolic surfaces of signature (1, 2) and (0, 4)
(surfaces homeomorphic to a twice-punctured torus, resp. to a four times punc-
tured sphere, with totally geodesic boundary). If one thinks of Riemann surfaces
in terms of their Fenchel-Nielsen coordinates, one is immediately confronted of the
problem of the non-homogeneity of the coordinates, i.e., lengths and twists. Surfaces
of signature (1, 2) and (0, 4) can be seen as building blocks for other surfaces which
already take into account twist parameters. As mentioned above, it is necessary to
impose a lower bound on the (interior) systole of such a surface. Within the set of
all surfaces with such a bound and of given signature (the fat part of the associated
Moduli space), the surfaces with maximal distance between boundary curves are
given (Theorems 2.8, 2.9 and 2.10). As a corollary, we obtain a sharp upper bound
on the length of a shortest separating geodesic on surfaces of signature (1, 2) and
(0, 4).

The second part of the article (section 3) is devoted to the relationship between
lengths of separating simple closed geodesics and lengths of homology bases. We call
a canonical homology basis B(S) on a surface S of genus g is a set of simple closed
geodesics {(α1, β1), . . . , (αg, βg)} with the following properties.

(1) int(αi, αj) = int(βi, βj) = 0.
(2) int(αi, βj) = δij .

We consider them as a set of non-oriented simple closed geodesics and the inter-
section number int(·, ·) is geometric. (To obtain a true basis of H1(S, Z) one would
orient them and consider algebraic intersection number instead.) These bases were
first studied from a geometric point of view by P. Buser and M. Seppälä in three
distinct articles ([4], [5] and [6]). The original motivation was their usage for the
calculation of period matrices of surfaces, which in turn are used in explicit numer-
ical uniformization. The idea of the articles was to prove that for a given surface,
one can chose a canonical homology basis with bounded length (in the articles the
length ℓ of such a basis is defined as the length of the longest geodesic in the basis).
To be more precise, the length ℓ of such a basis can be chosen bounded by the genus
and the systole of the surface. Furthermore, in [6] the bound is shown to be asymp-
totically optimal by example. Note that studying the relationship between simple
closed geodesics and homology has other uses: for instance, in the case of the once
punctured torus, G. McShane and I. Rivin [14], [13] used a norm on homology to
calculate the asymptotic growth of simple closed geodesics in function of length.

Here we further explore the problem of finding a bound on length of canonical
homology bases. To begin, a new definition of length of such bases is introduced.
The geodesics of a basis are defined in pairs, and each pair {αj , βj} is contained
in a unique surface of signature (1, 1) with boundary geodesic the commutator γj
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of the two elements in the pair. These boundary geodesics do not intersect, and
by cutting along these geodesics, one obtains a surface of signature (0, g). We now
define the length ℓ′ of a basis as the length of the longest boundary geodesic of the
pieces of signature (1, 1) constructed as above. This new definition of length takes
into account both geodesics in a pair, and, using the results known for ℓ, a basis can
be clearly be chosen such that its length ℓ′ is bounded. The idea is to find extremal
surfaces for this length, meaning surfaces of a given genus and given systole, such
that the length of a shortest canonical homology basis is maximal.

In section 3 addresses the following problems. By carefully analysing one holed
tori, we show how the two definitions of length (ℓ and ℓ′) are related. Among other
things, it is shown that a bound on ℓ′ is “stronger” than a bound on ℓ. The main
result concerns surfaces of genus 2. Using results in section 2, the following theorem
is proven.

Theorem 1.1. Let S be a surface of genus 2 with systole σ. Then there is a
separating simple closed geodesic γ with

ℓ(γ) ≤ 2 arccosh
2 cosh3 σ

2 + 3 cosh2 σ
2 − cosh σ

2

cosh σ
2 − 1

.

This bound is sharp.

By definition, this theorem of course implies that there is canonical homology basis
B on S whose length ℓ′ satisfies the same inequality. In section ??, fundamental
properties of extremal surfaces for ℓ′ in all genus are shown and surfaces conjectured
to be extremal for given genus and systole are constructed.

Finally, note that the problem described in this article is related to the problem
of finding surfaces with maximum size systoles. Some of the techniques used are
similar to those used by P. Schmutz-Schaller in [16] and the resolution of the genus
2 case uses the corresponding result for maximum size systoles [9].

1.2. Notations. Here a surface will always be a compact Riemann surface, possibly
with geodesic boundary, equipped with a metric of constant curvature −1. Such a
surface is always locally isometric to the hyperbolic plane H. A surface will gener-
ally be represented by S and distance on S (between points, curves or other subsets)
by dS(·, ·). The signature of such a surface will be denoted (g, n) (genus g with n
boundary curves). All boundary curves will be simple closed geodesics. A surface
of signature (0, 3) is called a Y -piece or a pair of pants and will generally be repre-
sented by Y or Yi. A surface of signature (1, 1) will often be referred to as a one
holed torus or a Q-piece. A surface of signature (0, 4) is referred to as an X-piece.
The Teichmüller space for surfaces of signature (g, n) will be denoted denoted by
Tg,n, and note that boundary curve length is allowed to vary.
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A curve, unless specifically mentioned, will always be non-oriented and primitive.
The set of all free homotopy classes of closed curves of a surface S is denoted π(S).
A non-trivial curve on S is a curve which is not freely homotopic to a point. A closed
curve on S is called simple if it has no self-intersections. Closed curves (geodesic
or not) will generally be represented by greek letters (α, β, γ and γi etc.) whereas
paths (geodesic or not) will generally be represented by lower case letters (a, b etc).
The function that associates to a finite path or curve its length will be represented
by ℓ(·), although generally a path or a curve’s name and its length will not be dis-
tinguished. This may cause some confusion: in the same statement “α” can denote
both a simple closed geodesic and its length. However this is deemed necessary in
order to avoid extremely heavy notation and the distinction between the two usages
should be clear in a given context. The shortest simple closed geodesic of a surface
is called a systole or systolic loop, and its length is referred to as systolic length.
This is somewhat non-standard notation in the differential geometry context, but
has become standard for hyperbolic Riemann surfaces. In general, both a systole
and its length will be denoted σ.

The geometric intersection number between two distinct curves α and β will be
denoted int(α, β). As a noun, the term geodesic will sometimes be used in place of a
simple closed geodesic curve. A non-separating closed curve is a closed curve γ such
that the set S \γ is connected. Otherwise, a closed curve is called separating. Twist
parameters are defined as in [3]. A pasting with half twist corresponds to when the
twist parameter is exactly 1

2 .

A geodesic length function is an application that associates length to geodesics
according to homotopy class under the action of a continuous transformation of a
surface. In [11], S. Kerckhoff proves that geodesic length functions are convex along
earthquake paths, i.e., convex along twist paths. In the article we shall only use the
fact that they are convex along twists along simple closed geodesics.

The remainder of the article is organized as follows. Section 2 is dedicated to the
study of surfaces of signature (1, 2) and (0, 4). Section 3 then builds on the previ-
ous section to prove Theorem 1.1 and the relationship between different lengths of
canonical homology bases and lengths of separating simple closed geodesics. Finally,
for convenience, a list of well-known trigonometric formulae for hyperbolic polygons
is given in the Appendix.

2. Maximal distances between boundary curves on surfaces of

signature (1, 2) and (0, 4)

We shall be considering surfaces of signature (1, 2) and (0, 4) with fixed boundary
length. We can think of them lying in a slice of the Moduli space of surfaces of
given signature. We begin by identifying, in a given slice, the surfaces of signature
(1, 2) with maximal distance between the two boundary curves. The tools used
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are generally explicit computation using hyperbolic trigonometry, the convexity of
geodesic length functions along earthquake paths and simple topological arguments.

2.1. Maximal lengths on surfaces of signature (1, 2). The set of all surfaces of
signature (1, 2) with boundary geodesics α and β and with all simple closed geodesics
in the interior of S of length ≥ σ shall be denoted Fα,β,σ. For fixed α and β and if
σ is sufficiently large, this set is empty. We shall always consider σ to be such that
this is not the case. Note the following: if S ∈ Fα,β,σ, then there is not necessarily
a closed geodesic of length σ on S. In other words the lower bound on the systole
can not be broken, but is not necessarily reached. This implies that for x < x′ then
Fα,β,x′ ⊂ Fα,β,x. Also notice that either α or β (or both) can have length inferior to
σ. Furthermore, notice that we have not imposed that α, β ≥ σ.

With these notations, the first problem treated is the following: for which S ∈
Fα,β,σ is dS(α, β) maximal? Finding this Smax gives an explicit upper bound on
dS(α, β). The main result is the following. Take two Y -pieces (α, γ, γ̃) and (β, γ, γ̃)
with γ = γ̃ = σ. Paste them along γ and γ̃ with half twists. The surface obtained
is Smax.

To begin, we will deal with some basic properties of compact surfaces of signature
(1, 2) and make a few remarks concerning the problem.

In this subsection, a maximal surface will mean a surface belonging to Fα,β,σ with
maximal distance between α and β. A minimizing path on S is a shortest path
between α and β. Notice that a minimizing path is always a simple geodesic path.
The first step is to prove that the distance between two boundary geodesics has an
upper bound under the assumption that the length of all interior geodesics on S has
a lower bound. The existence of an upper bound is the object of the next lemma.
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Figure 1. A piece of signature (1, 2) and a minimizing path

Lemma 2.1. The length of a minimizing path on S can not be greater than 2π
sinh σ

4

.

Proof. The hyperbolic area of S is exactly 4π. Let c be a minimizing path between
α and β. Let Tr(c) = {p ∈ S | dS(p, c) < r} be the tubular neighborhood around c
of radius r. Using Fermi coordinates (see [12]) one can show that if Tr(c) is simply
connected then its area is 2c sinh r. Here we must prove that Tσ/4(c) is simply
connected. Suppose Tσ/4(c) is not simply connected. Then there are two points p, q
on c that are joined a geodesic arc of length inferior to σ/2. The geodesic segment of
c that joins p and q has length inferior to σ/2 as well, otherwise c is not minimal. In
this case, the simple closed geodesic in the homotopy class of the reunion of the two
segments would be of length inferior σ). This gives 2c sinh σ

4 ≤ 4π and the result
follows. �

The set of surfaces Fα,β,σ is a bounded subset in the underlying moduli space [7],
and because the length of a minimizing path is bounded, it follows that there is at
least one surface for which the lowest upper bound is reached. The surface attaining
this property will be given explicitly in what follows.

On a given surface the distance between the boundary geodesics is given by the
length of the shortest path between them. There can be several minimizing paths,
but these paths do not intersect. (If they did in a point p, then both paths c and d
are necessarily of equal distance from α to p and from p to β. We can construct a new
path using half of c and half of d which also joins the two boundary geodesics and has
the same length. In the neighborhood of p this new path is not length minimizing
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and can be shortened. With the same arguments, such a path is necessarily simple.)
Thus we need to know how many simple disjoint topologically different paths can
go from boundary to boundary. From now on, a seam will be a simple path joining
the two (distinct) boundary geodesics. Two seams will be called non-homotopic if
they are not in the same free homotopy class of paths with end points moving along
the boundary geodesics.

Lemma 2.2. There are at most 4 simple disjoint non-homotopic seams on a topo-
logical surface of signature (1, 2).

Proof. Let c1 be such a path. Cutting along this path we obtain a one holed torus.
Let c2 be a path joining what were formerly the two boundary curves such as in
figure 2.

α

β

c1

α

β

c2

α1

β2 α2

β1

c3

Figure 2. No cuts, one cut, two cuts

Cutting along c2 we obtain a cylinder such as in figure 2.
There are exactly two non-homotopic disjoint seams possible and this because

the original boundary curves are now disjoint and separated on the boundary of the
cylinder. All further paths are either homotopic to one of the four paths, or intersect
them. �
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α11

β11

c4

α2

β2 α12

β12

Figure 3. Three cuts

From this lemma it follows that there at most four distinct minimizing paths on
a given surface. In fact, we will see that on a maximal surface there are exactly four
such paths.

We will need a certain number of lemmas in order to find a maximal surface. If
γ is a simple closed geodesic on S, and c is a geodesic seam with int(γ, c) = 1 there
is a natural way to view the twist parameter along γ. (Notice that γ is necessarily
non-separating in this case). There is only one simple closed geodesic γ̃ that does not
intersect either γ or c. γ and γ̃ form a pants decomposition of S (cutting along both
of them separates S into two Y -pieces). The twist parameters are now naturally
defined.

Let S be a surface of signature (1, 2) obtained by pasting two Y -pieces (α, γ, γ̃)
and (β, γ, γ̃) along γ and γ̃. A zero twist along γ will mean that the perpendicular
between α and γ intersects the same point on γ as the perpendicular between β and
γ. A half twist along γ corresponds to when the perpendicular between α and γ
intersects the same point on γ as the perpendicular between γ and γ̃.

The idea behind the forthcoming lemmas is the following. Let S be a maximal
surface. In order to prove properties of such surfaces, two types of transformations
will be performed. Let γ be a closed geodesic on S. The verb lengthening γ corre-
sponds to replacing S by a surface defined with the same Fenchel-Nielsen parameters,
except with γ of greater length. As previously defined in the preliminaries, the verb
twisting along γ is replacing S with a surface defined with the same parameters,
only a different twist parameter along γ. Both operations act continuously on geo-
desic length functions. Continuous twisting is moving along an earthquake path in
T1,2. We recall that the geodesic length function of a geodesic that intersects γ is
strictly convex, and the geodesic length function of a geodesic that does not cross γ
is constant along these paths.
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Lemma 2.3. Let c be a minimizing path on a maximal surface S. Let γ be a simple
closed geodesic on S with γ ∩ c 6= ∅. Then at least one of the following statements
is true.

(1) There is a path d between α and β such that c ∩ d = ∅, ℓ(c) = ℓ(d) and
d ∩ γ 6= ∅.

(2) γ crosses a systole.

Proof. Performing a continuous twist along γ only affects paths and closed geodesics
that intersect γ. The convexity of geodesic length functions along earthquake paths
implies that either in at least one of the two possible twist directions the length of
c is increased. Since S is maximal that means such a twist must have caused one of
the two following events:

1. There is now a path shorter than c was originally. This of course cannot be
the image of c as the image of c is longer.

2. There is now a closed geodesic on S with length < σ.

The twist applied to γ can be as small as possible. Thus, before twisting, either
there was a closed geodesic of length σ or a second geodesic seam d with the same
length as c. �

Lemma 2.4. Let c be a minimizing path on a maximal surface S. Let γ1 and γ2

be non-intersecting simple closed geodesics on S with γ2 ∩ c = ∅ and int(γ1, c) = 1.
Then at least one of the following statements is true.

(1) There is a minimizing path that crosses γ2.
(2) γ2 crosses a systole.

Proof. The length of c can be given, using hyperbolic trigonometry, by the lengths
of γ1, γ2 and the twist parameter along γ1. If one lengthens γ2, one necessarily
lengthens c. As in the previous lemma, because S is supposed to be maximal, one
of two events must have occurred.

(1) There is now a path shorter than c was originally. This of course cannot be
the image of c as the image of c is longer.

(2) There is now a closed geodesic on S with length < σ.

As lengthening γ2 can be performed continuously and acts continuously on geo-
desic length functions, the lemma follows. �

The following lemma deals with asymmetric situations.

Lemma 2.5. Let S be the surface obtained by gluing two Y -pieces (α, γ, γ̃) and
(β, γ, γ̃) along γ and γ̃ with half twists. Let c be a shortest seam that intersects γ
(and does not intersect γ̃) and c̃ be a shortest seam that intersects γ̃ (and does not
intersect γ). If ℓ(γ) ≥ ℓ(γ̃), then ℓ(c) ≤ ℓ(c̃).
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α

β

γ̃ γ
1
2

1
2

Figure 4. An asymmetric situation

Proof. First notice that int(c, γ) = 1 and int(c̃, γ̃) = 1. The proof is a calculation,
which here is shown when ℓ(α) = ℓ(β) = 2a. The general case works the same way,
but the method is less apparent. Looking at the two following figures, we can deduce
the following.

α

β

c

Figure 5. Pasting with half-twists
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a

al

l

c

γ
2γ̃

2

γ̃
2

Figure 6. The corresponding figure in the hyperbolic plane

First of all neither c nor c̃ are unique. There are two possibilities for both. Using
hyperbolic trigonometry (proposition 4.3) we can calculate the length of the side of
the non-convex hexagon labeled l as in figure 7.

cosh l =
cosh γ̃

2 + cosh a cosh γ
2

sinh a sinh γ
2

.
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l

l

cγ
2

Figure 7. The hexagon linking l and c

This hexagon yields:

cosh c = cosh
γ

2
sinh2 l − cosh2 l.

Similarly for c̃ we obtain:

cosh c̃ = cosh
γ̃

2
sinh2 l̃ − cosh2 l̃

with

cosh l̃ =
cosh γ

2 + cosh a cosh γ̃
2

sinh a sinh γ̃
2

.

Once these formulas are obtained the length comparison between c and c̃ is relatively
simple. �

Lemma 2.6. Let c1, . . . , c4 be four minimizing seams. Let γ and γ̃ be two disjoint
closed geodesics such that (γ ∪ γ̃, ci) = 1 for i = 1, . . . , 4. Then:

(1) c1, . . . , c4 are disjoint.
(2) Both γ and γ̃ intersect exactly two of the four paths.
(3) S is obtained by pasting (α, γ, γ̃) and (β, γ, γ̃) along γ and γ̃ with half twists.
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Proof. 1. This has been previously proved in the paragraph that precedes lemma 2.2.

2. Both γ and γ̃ intersect at least two of the paths. If they do not intersect
exactly two then this contradicts the hypotheses.

3. Let c and d be minimizing paths intersecting a closed geodesic once each. Then
figure 8 holds.

α

β

γ̃

γ̃

c

d

γ

Figure 8. The X-piece obtained by cutting along γ̃

There are three possible paths from α to β that intersect γ only once. Two of
these intersect. The only case where two that do not intersect have equal length is
when the twist is a half. �

The next lemma deals with symmetric surfaces.

Lemma 2.7. Let Sx be the surface obtained by pasting (α, γ, γ̃) and (β, γ, γ̃) along
γ and γ̃ with half twists with lengths of both γ and γ̃ equal to x > 0. The function
f(x) = cosh(dSx

(α, β)) is strictly convex.

Proof. Let lαγ , lαγ̃ , lβγ and lβγ̃ be the perpendiculars as on figure 9.
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lαγ lαγ̃

α

γ
γ̃

lβγlβγ̃

β

γ
γ̃

Figure 9. The two Y -pieces obtained by cutting along γ

There are four seams on Sx that have length cosh dSx
(α, β). Their length is the

length of the path c in the following generalized right-angled hexagon as in the
following figure.

lαγ

lβγ

c

γ
2

Thus f(x) = sinh lαγ sinh lβγ cosh x
2 + cosh lαγ cosh lβγ . Considering that α and β

are considered fixed, both lαγ and lβγ only depend on x. Using the formula for the
right-angled hexagon we can see that:

cosh lαγ =
cosh x

2 + cosh x
2 cosh α

2

sinh x
2 sinh α

2

= coth
x

2

1 + cosh α
2

sinh α
2

= A coth
x

2

and
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cosh lβγ = coth
x

2

1 + cosh β
2

sinh β
2

= B coth
x

2

where A, B > 1 are constants. We can now rewrite f as

f(x) =

√

(A2 coth2 x

2
− 1)(B2 coth2 x

2
− 1) cosh

x

2
+ AB coth2 x

2
.

Let us call g(x) the first part of the summand and h(x) the second part. It easy
to show the convexity of h(x) by calculation.

h′′(x) =
AB

2
(coth2 x

2
− 1)(3 coth2 x

2
− 1) > 0.

For g the calculation is straightforward but extremely long and tedious and for this
reason is not included. Both g and h are convex and thus so is f . �

If σ is sufficiently small, then two simple closed geodesics of length σ cannot
intersect. For instance if σ ≤ 2 arcsinh1 this is always the case. There is a more
precise condition on σ but it depends on α and β. In a sense, this is the more
important case because it is in this case that seams are very long.

Theorem 2.8. Let Fα,β,σ be the set of all surfaces of signature (1, 2) with boundary
geodesics α and β and with all interior closed geodesics of length superior or equal
to σ. Furthermore, let σ be such that two closed geodesics of length σ cannot cross.
Then, among all elements of Fα,β,σ, Sσ has maximal distance between α and β.

Proof. Let Smax be a maximal surface in Fα,β,σ. Let c be a minimizing path. By
applying lemmas 2.3 and 2.4 repeatedly we can prove that there are four minimizing
paths on Smax. This is due to the fact that two systoles cannot intersect, so applying
lemma 2.3 to a closed geodesic of length σ automatically proves the existence of a
different minimizing path. We are thus in the case of the following figure:
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Figure 10. Surface with four minimizing paths

Let γ and γ̃ be two disjoint simple closed geodesics on Smax that each intersect
two of the four paths. Lemmas 2.5 and 2.6 prove that ℓ(γ) = ℓ(γ̃) and that γ and γ̃
are pasted with half twists. There are two possibilities:

1. ℓ(γ) = ℓ(γ̃) = σ and the theorem is correct.

2. ℓ(γ) = ℓ(γ̃) = x > σ. In this case, using the convexity proved in lemma 2.7,
it is possible to continuously modify x to increase the distance between α and β.
The original surface however was considered maximal so this operation must create
a closed geodesic of length inferior to σ, meaning there is a closed geodesic δ of
length σ on Smax. A systole cannot cross a minimizing path more than once, and
thus δ intersects exactly two minimizing paths, and each exactly once. Let δ̃ be a
simple closed geodesic that does not intersect δ and which crosses the two remaining
paths exactly once. Once again, applying lemmas 2.5 and 2.6, ℓ(δ) = ℓ(δ̃) and Smax

is obtained by pasting (α, δ, δ̃) to (β, δ, δ̃) with half twists. The theorem is thus
proven. �

Distance between boundary geodesics becomes extremely long when the length
of systoles is very small. If systoles are long enough to intersect then their length is
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necessarily greater than 2 arcsinh1. Having an exact value when systoles are large
is not very telling, so here we give an explicit maximal surface for all surfaces with
systoles greater or equal to 2 arcsinh1. It is the same surface as before, with the
systoles of length 2 arcsinh1.

Theorem 2.9. Let S be a surface of signature (1, 2) with boundary geodesics α and
β, and with systole of length ≥ 2 arcsinh1. Then dS(α, β) ≤ dSmax

(α, β) where Smax

is the gluing of two Y -pieces with lengths respectively (α, 2 arcsinh1, 2arcsinh1) and
(β, 2 arcsinh1, 2arcsinh1) along the equal sides with half-twists.

Proof. We have, for α and β fixed, Fα,β,x ⊂ Fα,β,x′ if x′ < x. The surface described
above has been proved maximal within the set Fα,β,2 arcsinh1 and this proves the
theorem. �

2.2. Maximal lengths on surfaces of signature (0, 4). Let X be an X-piece.
Let Xα,β,γ,δ,σ be the set of all X-pieces with boundary lengths α, β, γ and δ and all
interior closed geodesics of length superior or equal to σ. Notice that X ∈ Xα,β,γ,δ,σ

does not necessarily contain a closed geodesic of length σ. The problem solved in
this chapter is the following: for given values (α, β, γ, δ, σ), what X ∈ Xα,β,γ,δ,σ has
maximal distance between the geodesics α and β? In this section a maximal surface
will mean a surface with maximum distance between α and β among all elements
of Xα,β,γ,δ,σ. Finding a solution to this problem is not as technical as the previous
section but the methods used are essentially the same.

The topology of an X-piece differs from that of a piece of signature (1, 2), essen-
tially in the following properties. Between two given boundary geodesics there are at
most two disjoint non-homotopic paths. On an X-piece X , an interior simple closed
geodesic is always separating, and separates the X-piece into two Y -pieces. Finding
a minimal path on X between α and β is equivalent to finding the shortest closed
geodesic on X that separates α and β from the other two boundary geodesics. Once
again, this comes from the formula for the hyperbolic hexagon (see 4.2). Before
answering the question described, it is easier to answer the question on the short-
est minimal path between α and β among all elements of Xα,β,γ,δ,σ. This minimal
surface is obtained by pasting (α, β, σ) and (γ, δ, σ) along σ as in figure 11.

We can now treat the problem of maximum distance between boundary geodesics.

Theorem 2.10. Let α ≤ β and γ ≤ δ be positive values. Let Xα,β,γ,δ,σ be the set
of all surfaces of signature (0, 4) with boundary geodesics of length α, β, γ and δ and
with all interior closed geodesics of length superior of equal to σ. Furthermore, let
σ ≤ 2 arcsinh1. The surface obtained by pasting (α, δ, σ) and (β, γ, σ) along σ with
half twists (such as in figure 12) has maximal distance between α and β among all
elements of Xα,β,γ,δ,σ.
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α

β

σ

γ

δ

Figure 11. The X-piece with minimum distance between α and β

β

γ

σ

δ

α

Figure 12. The X-piece with maximum distance between boundary geodesics
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Proof. Let X be a maximal surface. Let c be a minimizing path. Let γ̃ be a simple
closed geodesic with int(c, γ̃) = 1. X being maximal, the surface obtained by twisting
along γ̃ to increase the length of c must contain a shorter path between α and β or
has a shortest closed geodesic shorter than σ. This means that one of the following
two statements holds.

(1) X has a second minimizing path d that is disjoint from c.
(2) X contains a closed geodesic γ′ of length σ that intersects γ̃.

In case 2, γ′ separates α and β into two different Y -pieces (otherwise X is a mini-
mal surface). Twisting along γ′ shows that there is necessarily a second minimizing
path d that also intersects γ′. We will come back to this case later.

In case 1, there are two minimizing paths on X . Let γ′′ be a simple closed geodesic
with int(c, γ′′) = int(d, γ′′) = 1. As there are two minimizing paths, as in the case
of the piece of signature (1, 2), the twist parameter along γ′′ is 0 and α and β are
placed on opposite ends of the X-piece, as in figure 12.

Let x be the length of γ′′. Let Xx be the surface obtained with the same pasting
conditions as X , only the length of γ′′ is left variable. As in the proof of 2.7, the
function f(x) = cosh(dXx

(α, β)) can be shown to be strictly convex. (The proof is
identical). Thus, x can be chosen so that the distance between α and β is greater
than on X . As X is supposed to be maximal, this means that either x = σ or that
γ′′ crosses a closed geodesic γ′′′ of length σ. As in case 2, γ′′′ separates α and β into
two different Y -pieces.

In both cases, we have shown that there is a closed geodesic γσ of length σ separat-
ing X into two Y -pieces with α on one and β on the other. The pasting conditions
along γ′′ are predetermined by the fact that there are two minimizing paths be-
tween α and β. The only remaining question is on whether X is obtained by pasting
(α, γ, γσ) and (β, δ, γσ) (case (i)) or by pasting (α, δ, γσ) and (β, γ, γσ) (case (ii)).
To answer the question, we shall calculate the length obtained in both cases, and
compare them using the relationships between the different lengths as imposed by
hypotheses.

In case (i), the length of the minimizing path can be calculated on the following
hyperbolic octogon.
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α
2

γ
2

c

δ
2

β
2

lασ

lβσ

Figure 13. Case (i)

By using the formulas for hyperbolic hexagons, one obtains the following.

cosh c = cosh
σ

2
sinh lασ sinh lβσ + cosh lασ cosh lβσ,

cosh lασ =
cosh γ

2 + cosh σ
2 cosh α

2

sinh σ
2 sinh α

2

,

cosh lβσ =
cosh δ

2 + cosh σ
2 cosh β

2

sinh σ
2 sinh β

2

.

In case (ii) the length of the minimizing path is calculated on this octogon.
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α
2

γ
2

c′

δ
2

β
2

l′ασ

l′βσ

Figure 14. Case (ii)

The length of the minimizing path c′ is given by these expressions.

cosh c′ = cosh
σ

2
sinh l′ασ sinh l′βσ + cosh l′ασ cosh l′βσ,

cosh l′ασ =
cosh δ

2 + cosh σ
2 cosh α

2

sinh σ
2 sinh α

2

,

cosh l′βσ =
cosh γ

2 + cosh σ
2 cosh β

2

sinh σ
2 sinh β

2

.

By calculation we shall show that c′ ≥ c. First of all

cosh l′ασ cosh l′βσ − cosh lασ cosh lβσ

=

cosh
σ

2

cosh γ
2 cosh α

2 + cosh β
2 cosh δ

2 − (cosh δ
2 cosh α

2 + cosh β
2 cosh γ

2 )

sinh2 σ
2 sinh α

2 sinh β
2

.

Notice that α ≥ β and γ ≥ δ implies that
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cosh
α

2
(cosh

γ

2
− cosh

δ

2
) ≥ cosh

β

2
(cosh

γ

2
− cosh

δ

2
).

This in turn implies that

cosh
γ

2
cosh

α

2
+ cosh

β

2
cosh

δ

2
− (cosh

δ

2
cosh

α

2
+ cosh

β

2
cosh

γ

2
) ≥ 0,

and thus

cosh l′ασ cosh l′βσ ≥ cosh lασ cosh lβσ.

Also

sinh l′ασ sinh l′βσ − sinh lασ sinh lβσ =

√
N1N2 −

√
N3N4

D
where

N1 = cosh2 δ

2
+ 2 cosh

δ

2
cosh

α

2
cosh

σ

2
+ cosh2 σ

2
+ cosh2 α

2
− 1,

N2 = cosh2 γ

2
+ 2 cosh

γ

2
cosh

β

2
cosh

σ

2
+ cosh2 σ

2
+ cosh2 β

2
− 1,

N3 = cosh2 δ

2
+ 2 cosh

δ

2
cosh

β

2
cosh

σ

2
+ cosh2 σ

2
+ cosh2 β

2
− 1,

N4 = cosh2 γ

2
+ 2 cosh

γ

2
cosh

α

2
cosh

σ

2
+ cosh2 σ

2
+ cosh2 α

2
− 1,

D = sinh2 σ

2
sinh

α

2
sinh

β

2
.

To prove that this quantity is positive it suffices to prove that

N1N2 − N3N4 ≥ 0.

By calculation
N1N2 − N3N4

=

2 cosh
σ

2
(1 − cosh2 σ

2
+ cosh

α

2
cosh

β

2
+ cosh

γ

2
cosh

δ

2
)

×
(cosh

α

2
cosh

γ

2
+ cosh

β

2
cosh

δ

2
− cosh

α

2
cosh

δ

2
− cosh

β

2
cosh

γ

2
)

+

cosh2 α

2
cosh2 γ

2
+ cosh2 β

2
cosh2 δ

2
− cosh2 α

2
cosh2 δ

2
− cosh2 β

2
cosh2 γ

2
.

With our hypotheses cosh2 σ
2 ≤ 2. This combined with

cosh
α

2
cosh

γ

2
+ cosh

β

2
cosh

δ

2
− cosh

α

2
cosh

δ

2
− cosh

β

2
cosh

γ

2
≥ 0
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proves that N1N2 − N3N4 ≥ 0 and thus c′ ≥ c. �

It is interesting to look at why the condition on σ was important in the proof. It
was necessary for only two reasons: first of all it was necessary to insure that two
interior geodesics of length σ could not cross, and secondly it was necessary in the
calculation of the positioning of γ and δ on a maximal surface. If, for other reasons
these two problems do not play a role, the proof remains correct. The following
corollary is a stronger result in the particular case where the boundary geodesics are
of equal length σ.

Corollary 2.11. Let σ > 0 be a constant. Let Xσ be the set of all surfaces of
signature (0, 4) with boundary geodesics α, β, γ and δ of length σ and with all interior
closed geodesics of length superior of equal to σ. If Xσ is not empty, then the
surface obtained by pasting (α, δ, σ) and (β, γ, σ) along σ with half twists has maximal
distance between α and β among all elements of Xσ.

Proof. What is needed to prove the claim is to insure that the two reasons for the
condition σ ≤ 2 arcsinh1, necessary in the previous proof, are not necessary in the
present case. The first condition no longer applies because if two interior geodesics of
length σ intersect, then they necessarily intersect at least twice, and in consequence
one of the four boundary geodesics is necessarily of length inferior to σ. The second
reason no longer applies because the lengths of γ and δ are equal and the two
candidates for maximal surfaces in the previous proof are identical. �

Remark 2.12. There is a somewhat subtle point in the previous corollary. An X-
piece with four equal boundary geodesics obtained by pasting along σ with a half-twist
is isometric to the X-piece obtained by pasting along σ with zero twist. There is thus
a marking involved in the result. The seam we claim to render maximal is the seam
between α and β. If (α, δ, σ) is pasted to (β, γ, σ) along σ with a half-twist, there
are shorter seams than the shortest seam between α and β: the ones between α and
δ may be shorter, and in any case the seam between α and γ is necessarily shorter.

3. Extremal surfaces for the length of canonical homology bases

The length of a homology basis B(S), as defined by M. Seppälä and P. Buser
in [4], is ℓ(B(S)) = maxδ∈B(S) ℓ(δ). The following question was answered in the
affirmative [5]: let S be a given surface of genus g and systole σ, and let B(S) be
the (or a) shortest homology basis on S. Can ℓ(B) be bounded by a constant Bg,σ

that depends only on g and σ?
This problem is not unlike the search for Bers’ partition constant (a bound on

the length of the longest geodesic in a pants decomposition) where the asymptotic
bound is not known. In the case of homology bases however, the best bound known
(see [6]), namely Bg,σ ≤ (g − 1)(45 + 6arcsinh 2

σ ), is asymptotically optimal.
The definition of the length of a homology basis in what follows is going to be

modified, and this not only in the interest of confusing the reader. The idea be-
hind this definition is to link the length of homology bases to lengths of separating
geodesics. This new definition takes in account the length of both elements in a
pair {αi, βi}. Furthermore, the new definition has allowed us to prove properties of
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extremal or maximal surfaces for homology bases. A maximal surface for a given
genus g and a given systole σ is a surface Smax such that a minimal homology basis
is of maximal length among all surfaces of same systole and genus.

Notice the following: each pair {αi, βi} is contained in a unique embedded Q-piece
Qi, where the boundary geodesic γi is the commutator of αi and βi.

Definition 3.1. The length of a homology basis B on a surface S is defined as
ℓ′(B) = maxi∈{1,...,g} ℓ(γi).

There is a certain equivalence between the two definitions of length. For a given
length ℓ′ we can calculate a sharp bound for ℓ and vice-versa. The relationship
between the two lengths functions is discussed in the next section.

α1

β1

γ1

αk

βk

γk

αg

βg

γg

Figure 15. A canonical homology basis and the separating geodesics
used to calculate ℓ′

3.1. Lengths of simple closed geodesics on one holed tori. The two previous
definitions of the length of a homology basis are the main reason we shall have to
look into length of simple closed geodesics on Q-pieces. The length of the boundary
geodesic of a Q-piece naturally bounds lengths of certain simple closed geodesics.
This is the object of the following proposition (previously found in [16] expressed
differently and without proof).

Proposition 3.2. Let Q be a surface of signature (1, 1) with boundary geodesic γ.
Then Q contains a simple closed geodesic δ satisfying

cosh
ℓ(δ)

2
≤ cosh

ℓ(γ)

6
+

1

2
.

This bound is sharp.

Proof. The idea of the proof is to use hyperbolic polygons to obtain an equation
from which we can deduce the sharp bound.

Let δ be the shortest closed geodesic on a Q-piece Q with boundary geodesic γ.
Let c be the perpendicular from δ to δ on the Y -piece (δ, δ, γ) obtained by cutting
Q along δ. The length of c is given by the following formula:



SEPARATING SIMPLE CLOSED GEODESICS AND SHORT HOMOLOGY BASES 25

cosh c =
cosh γ

2 + cosh2 δ
2

sinh2 δ
2

.

Another way of expressing it is using one of the four isometric hyperbolic pen-
tagons that form a symmetric Y -piece as in the following figure.

δ δ

γ

c
2

c
2

Figure 16. A symmetric Y -piece

The pentagon formula implies that

cosh2 c

2
=

cosh2 γ
4 + cosh2 δ

2 − 1

cosh2 δ
2 − 1

.

The shorter c is, the longer δ is. As we would like an upper bound on δ, we
need to find a minimal c, under the constraint that δ is the shortest geodesic in the
interior of Q. Any other simple closed geodesic crosses δ. Let δ′ be the shortest
simple closed geodesic that crosses δ once. For a given δ and γ, this δ′ is of maximal
length when Q is a Q-piece obtained by pasting δ with a half twist. The length of
this maximal δ′ can be calculated in the following quadrilateral.
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δ
4

δ
4

δ′

2

δ′

2

c
2

c
2

Figure 17. Quadrilateral for a maximal δ

From one of the two right-angled triangles that compose the quadrilateral we have

cosh
δ′

2
= cosh

c

2
cosh

δ

4
.

Using the fact the δ ≤ δ′ we can deduce

cosh2 δ

2
≤ cosh2 c

2
cosh2 δ

4

=
cosh2 γ

4 + cosh2 δ
2 − 1

cosh2 δ
2 − 1

cosh2 δ

4

=
cosh2 γ

4 + cosh2 δ
2 − 1

2(cosh δ
2 − 1)

.

From this we obtain the following condition:

2 cosh3 δ

2
− 3 cosh2 δ

2
+ 1 − cosh2 γ

4
≤ 0.

With x = cosh δ
2 and C = cosh2 γ

4 > 1 we can study the following degree 3
polynomial

f(x) = 2x3 − 3x2 + 1 − C

and find out when it is negative for x > 1. The function f verifies f(1) = −C < 0
and f ′(x) > 0 for x > 1. The sharp condition we are looking for is given by the
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unique solution x3 to f(x) = 0 with x > 0. Using for instance Cardano’s method
we have

x′
3 =

1

2
(−1 + 2C + 2

√

−C + C2)
1

3 +
1

2

1

(−1 + 2C + 2
√
−C + C2)

1

3

+
1

2
.

Now we replace x and C by their original values. Using hyperbolic trigonometry
we can show

cosh
δ

2
≤ 1

2
((cosh

ℓ(γ)

2
+ sinh

ℓ(γ)

2
)

1

3 + (cosh
ℓ(γ)

2
+ sinh

ℓ(γ)

2
)−

1

3 + 1)

which in turn can be simplified to

cosh
ℓ(δ)

2
≤ cosh

ℓ(γ)

6
+

1

2
.

The bound is sharp as the bound value can be used to construct a Q-piece using
the bound value as the length of an interior geodesic and by pasting it along half
twists. Notice that in this case there are three distinct closed geodesics with the
length of the bound. �

Now suppose that we have a given value for the shortest closed geodesic α in
the interior of Q with boundary geodesic γ. Suppose that β is the shortest simple
closed geodesic that crosses α once. A sharp bound on β is given in the following
proposition.

Proposition 3.3. Let Q be a surface of signature (1, 1) with γ as a boundary geo-
desic. Let α be the shortest simple closed geodesic on Q. Let β be the shortest simple
closed geodesic that crosses α. Then

cosh
β

2
≤

√

1

2

cosh2 γ
4 + cosh2 α

2 − 1

cosh α
2 − 1

.

This bound is sharp.

Furthermore the above bound on β is optimal among all Q-pieces with same bound-
ary length and shortest closed geodesic α′ such that α′ ≥ α.

Proof. This has been essentially proved during the proof of the previous proposition.
For a given α, the value of the perpendicular c (between α and α) is given by

cosh2 c

2
=

cosh2 γ
4 + cosh2 α

2 − 1

cosh2 α
2 − 1

.

As is the previous proposition, the largest possible β is given by the following
quadrilateral.
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α
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2

Figure 18. Quadrilateral with maximal β

This gives

cosh2 β

2
≤ 1

2

cosh2 γ
4 + cosh2 α

2 − 1

cosh α
2 − 1

.

What has now been proven is that the above bound is optimal for all Q-pieces
with same boundary length and who contain a closed geodesic of length exactly α.
We must now show that the bound strictly decreases in α. For this it suffices to
study the following function.

f(α) =
cosh2 γ

4 + cosh2 α
2 − 1

cosh α
2 − 1

Replacing cosh α
2 with x > 1 gives a new function

g(x) =
cosh2 γ

4 + x2 − 1

x − 1
.

We will show that g has a negative derivative for x > 1 and under the conditions
imposed by proposition 3.2. We obtain

g′(x) =
(x − 1)2 − cosh2 γ

4

(x − 1)2
.

The denominator is positive, and the numerator is, using the bound on α from
proposition 3.2, at most equal to

n(γ) = cosh2 γ

6
+

1

4
− cosh

γ

6
− cosh2 γ

4
.
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Notice that n(0) = −3
4 and that

n′(γ) =
sinh γ

3

3
− sinh γ

2

2
− sinh γ

6

6
< 0.

Thus g has a negative derivative for α > 0. The result follows. �

Corollary 3.4. Let B be a canonical homology basis for S a surface with length of
the systole at least σ. Then

cosh
ℓ(B)

2
≤

√

1

2

cosh2 ℓ′(B)
4 + cosh2 σ

2 − 1

cosh σ
2 − 1

.

Proof. Let γ be the maximal geodesic according to ℓ′ for B and let Qγ be the Q-piece
separated by γ. Then on Qγ the shortest closed geodesic is at least of length σ. The
previous proposition now proves the result. �

We would also like to have a bound on ℓ′(B) for a given value of ℓ(B).

Proposition 3.5. Let B be a homology basis on S. Then

cosh
ℓ′(B)

2
≤ 2 sinh4 ℓ(B)

2
− 1.

This bound is sharp.

Proof. Let α, β ∈ B be a pair such that ℓ(B) = β. This of course implies that α ≤ β.
Let Q be the Q-piece containing α and β. Cut Q along β. Let c be the perpendicular
from β to β on the resulting Y -piece. The length of γ, the boundary geodesic of Q
is given by

cosh
γ

2
= sinh2 β

2
cosh c − cosh2 β

2
.

It is easy to see that c ≤ α, and thus c ≤ β. A surface such that c = β will then
give the largest possible γ. From this:

cosh
ℓ′(B)

2
≤ sinh2 β

2
cosh β − cosh2 β

2
and the result is obtained using hyperbolic trigonometry. �

Notice that an extremal surface for ℓ′ will be extremal for ℓ but the contrary may
not be true. As far as the problem that we are concerned with goes, this means that
a bound on ℓ′ is stronger than a bound on ℓ.

3.2. Homology bases and short separating curves in genus 2. Let S be a
genus 2 surface and let σ be its shortest closed geodesic. If σ is a separating geodesic
then there is a homology basis B on S such that ℓ′(B) = σ. For all surfaces of genus
2 with systole of length greater or equal to σ, such a surface S has a homology
basis of minimal length for ℓ′. Also, ℓ(B) is short in virtue of corollary 3.4. Let σ
be non-separating and let F be the surface of signature (1, 2) obtained by cutting
S along σ. The length of the shortest seams on F , combined with the value of σ,
allows us to calculate the explicit length of the shortest separating geodesic on F ,
which is also the length of a separating geodesic on S. This gives us an upper bound
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on the length of a shortest separating geodesic on S (thus an upper bound on a
minimal B for ℓ′). It suffices to construct a surface which attains this upper bound
to show that the value is sharp. The following theorem relies heavily on the results
of section 2.

Theorem 3.6. Let S be a surface of genus 2 with a systole σ. Then S has a
separating geodesic γ of length

ℓ(γ) ≤ 2 arccosh
2 cosh3 σ

2 + 3 cosh2 σ
2 − cosh σ

2

cosh σ
2 − 1

.

This bound is sharp.

Proof. If σ ≤ 2 arcsinh1 then cut S along σ to obtain a surface F of signature (1, 2)
with boundary geodesics of length σ. The length of the shortest separating geodesic
γ that does not intersect σ can be determined with the length of the shortest seam
c on F . In virtue of Theorem 2.8, we know that c can be bounded by

cosh c ≤ cosh
σ

2

3 cosh σ
2 − 1

(cosh σ
2 − 1)2

.

The length of γ can now be bounded using the maximum value of c.

cosh
γ

2
= sinh2 σ

2
cosh c − cosh2 σ

2

≤ 2 cosh3 σ
2 + 3 cosh2 σ

2 − cosh σ
2

cosh σ
2 − 1

.

Notice that the bound is sharp, and is obtained when F is a maximal surface
(for the length between boundary geodesics on a surface of signature (1, 2)). The
maximal surface S is thus obtained by pasting two identical Y -pieces (σ, σ, σ) along
boundary geodesics with half twists.

If σ > 2 arcsinh1 then either the surface described above is maximal for γ, or we
are in the situation where two systoles of length σ intersect. Suppose we are in the
latter case, meaning that the maximal surface for a given σ is not the one described.
Here we will prove that such a surface has at least one separating geodesic of length
inferior or equal to the bound given by the surface described.

As done previously, if one cuts open the maximal surface along a systole, one ob-
tains a surface F of signature (1, 2) with two boundary geodesics σ1 and σ2 of length
σ. If there is interior geodesic of length σ on F , then cutting along this geodesic
we obtain a surface X of signature (0, 4) with boundary geodesics σ1, . . . , σ4 all of
length σ. The length of a separating geodesic on the initial surface of genus 2 is
given by the length of a geodesic path between σ1 and σ2. According to corollary
2.11, the longest possible path is given by the surface described maximal. Thus if
the maximal surface is not of the type described, then there are no interior geodesics
of length σ on F .



SEPARATING SIMPLE CLOSED GEODESICS AND SHORT HOMOLOGY BASES 31

In that case, we can apply the methods of the previous chapter. We now are
searching for a maximal surface of signature (1, 2) for distance between boundary
geodesics with boundary geodesics of length σ. By applying lemmas 2.3 and 2.4,
either there is an interior systole, in which case we refer to the above discussion, or
there are four minimizing paths between the boundary geodesics. Thus the surface
is obtained by pasting two Y -pieces with half twists (lemmas 2.5 and 2.6). By the
convexity proved in lemma 2.7, the maximal surface F has at least one interior sys-
tole.

What we have proved is that our bound works, and that it is optimal for σ ≤
2 arcsinh1. In genus 2 it is well known that cosh σ

2 ≤ 1 +
√

2 (see [9]). For values of

σ between 2arcsinh1 = 2arccosh
√

2 and 2arccosh(1 +
√

2) a surface of genus 2 may
indeed be constructed by pasting (σ, σ, σ) to an identical Y -piece with half twists.
There are no shorter closed geodesics that appear on S, and this proves that the
bound is optimal for all surfaces of genus 2. �

Let γ be a minimal separating geodesic on a maximal surface. It is interesting to
see how this bound evolves in function of the length of the systole σ of a surface.
Let f = cosh γ

2 . Then for s = cosh σ
2 we have just seen that

f(s) =
2s3 + 3s2 − s

s − 1

with 1 < s ≤ 1 +
√

2. This function is continuous, decreases until it reaches a strict
minimum for s between ]

√
2, 1 +

√
2[ and then increases until s = 1 +

√
2. The s in

which the function reaches its minimum is given by the following equation, obtained
by calculating the derivative of f :

f ′(s) =
4s3 − 3s2 − 6s + 1

(s − 1)2
=

s + 1

s − 1
(4s2 − 7s + 1).

The value s ∈]1, 1 +
√

2[ for which f(s) is minimum is s = 7
8 + 1

8

√
33 which in

turn gives

σ = 2arccosh(
7

8
+

1

8

√
33).

In genus 2, finding a shortest separating geodesic and finding a shortest homology
basis are the same problem, thus the following corollary is immediate.

Corollary 3.7. Let S be a surface of genus 2 with systole σ. Then there is a
canonical homology basis B on S with

ℓ′(B) ≤ 2 arccosh
2 cosh3 σ

2 + 3 cosh2 σ
2 − cosh σ

2

cosh σ
2 − 1

.

This bound is sharp.

In []
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α1

β1

α2

β2

Figure 19. A canonical homology basis in genus 2

3.3. Properties in genus g. Find a maximal surface for a given genus and given
systole length seems to be a very difficult problem. There is no immediate reason to
believe that it is easier than the well known problem of finding surfaces that have
the largest size systole in a given genus. Recall that with the exception of genus 2,
the surface extremal for the systole is not known. The combinatorial difficulties that
arise seem similar in nature to the corresponding problem for canonical homology
bases.

Using the main theorem of [15], and the convexity of geodesic length functions
along earthquake paths, the following property of maximal surfaces can be proved.

Proposition 3.8. Let S be a maximal surface of genus g and of systole σ for
homology bases. Let γ be a simple closed geodesic. Then γ intersects two distinct
geodesics which are either systoles, or maximal separating geodesics for homology
bases.

Proof. Cut S along γ to obtain a surface S′ of signature (g−1, 2). The main theorem
in [15] ensure us that by equally enlarging the lengths of the boundary geodesics
(in this case the two copies of γ) we can strictly increase the length of all interior
geodesics of S′. By pasting along the images of γ under this operation one obtains
a new surface S̃ of genus g. The geodesics on S that would not be increased are
necessarily those that transversally intersect γ. This operation can be performed
such that the effect on geodesic length is continuous. Because S is maximal, γ must
transversally intersect a significant geodesic, in other words either a systole or a
maximal separating geodesic. By twisting the significant geodesic along γ one can
increase its length. It is now possible to re-perform the operation described above.
This proves that γ must intersect two distinct significant geodesics, and the property
is proved. �
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The collar theorem [10] ensures that geodesics intersecting small systoles are long,
and in section 2 it was proved that maximal boundary to boundary distance on
surfaces of signature (1, 2) and (0, 4) are attained when paths are obliged to pass
through systoles. These facts, combined with the properties of maximal surfaces
and with the following propositions, are the basis of the conjecture.

Proposition 3.9. Let γ be a simple closed geodesic. Let γ1, . . . , γn be disjoint simple
closed geodesics such that int(γ, γi) = 1. Then n ≤ 2g−2. Furthermore, there exists
γn+1, . . . , γ2g−2 such that the set γ1, . . . , γ2g−2 have the same property.

Proof. Complete γ1, . . . , γn to obtain a partition. If γ enters a Y -piece Y of the
partition then it must leave Y by a different boundary geodesic. It is thus easy
to see that three geodesics γi, γj and γk cannot form a Y -piece of the partition,
otherwise one of them is intersected at least twice. This bounds the maximum
number of γi’s at 2g − 2. It is easy to see that the bound is sharp. The completion
of the set of γis is easy to see as well. �

Notice that all the above geodesics are non-separating, otherwise the intersection
numbers could never be 1.

There is an equivalent for separating simple closed geodesics.

Proposition 3.10. Let γ be separating simple closed geodesic. Let γ1, . . . , γn be dis-
joint simple closed geodesics such that int(γ, γi) = 2. Then n ≤ 2g−2. Furthermore,
there exists γn+1, . . . , γ2g−2 such that the set γ1, . . . , γ2g−2 have the same property.

Proof. Identical to the proof above. Notice that the γis are all non-separating. �

A simple non-separating closed geodesic, cut open along pieces of signature (1, 2),
crosses thus a maximum of 2g−2 of these pieces. Section 2 informs us that obliging
minimal length paths to pass through systoles seems to be what lengthens them
most. For systoles of length σ ≤ 2 arcsinh1, the above proposition proves that, a
simple closed geodesic intersects at most 2g − 2 systoles. This leads us to the fol-
lowing. Let us call neck lace surface the surface constructed by taking 2g − 2 copies
of the Y -piece (σ, σ, σ) as in figure 20 and pasting along all systoles with half twists.
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Figure 20. The necklace surface and a maximal geodesic for ℓ′

Conjecture The neck lace surface is maximal for canonical homology bases.

This example is not entirely new. In [5] and [6] the same surface is described
without the half twists. It is used as an example to prove that there is a surface S
such that ℓ(B(S)) ≥ (g − 1)(2 + 2 arcsinh 2

σ ), which proves that the upper bound in
[6] is asymptotically optimal.

Appendix 4. Trigonometric formulae

For convenience, we include the following list of well known propositions concern-
ing right-angled hyperbolic polygons. Their proofs can be found in [3] or [8]. Unless
specifically mentioned, all polygons are considered right-angled.

Proposition 4.1. Let P be a pentagon with adjacent sides a and b. Let c be the
only remaining side non-adjacent to either a or b. Then

sinh a sinh b = cosh c.

Proposition 4.2. Let H be a hexagon with a, b and c be non-adjacent sides. Let α
be the remaining edge adjacent to b and c, β the remaining edge adjacent to a and
c and γ the remaining edge adjacent to a and b. Then

cosh c = sinh a sinh b cosh γ − cosh a cosh b.

Proposition 4.3. Let H be a non-convex hexagon with a, b and c be non-adjacent
sides. Let α be the remaining edge adjacent to b and c, β the remaining edge adjacent
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to a and c and γ the remaining edge adjacent to a and b. Let H be such that γ and
c intersect. Then

cosh c = sinh a sinh b cosh γ + cosh a cosh b.

We shall also need a few formulas for polygons that are not entirely right-angled.
First of all, a formula for a triangle with one right angle.

Proposition 4.4. Let T be a triangle with sides a, b, and c and a right angle between
a and b. Then

cosh c = cosh a cosh b.

A trirectangle is a quadrilateral with three right angles.

Proposition 4.5. Let R be a trirectangle with interior angle ϕ being the only non
right angle situated between sides α and β. Let a and b be the remaining sides with
a adjacent to β and b adjacent to α. Then the following formulas hold:

cos ϕ = sinh a sinh b,

sinhα = sinh a cosh β.

The following proposition deals with quadrilaterals with only two right angles.

Proposition 4.6. Let R be a convex quadrilateral with two right interior angles.
Let γ be the side of R between the two right angles. Let c be the side opposite γ and
a and b the remaining sides. Then

cosh c = cosh a cosh b cosh γ − sinh a sinh b.

And in the non-convex case the following proposition holds.

Proposition 4.7. Let R be a non-convex quadrilateral with two right interior angles.
Let γ be the side of R between the two right angles and c be the side that intersects
γ. Let a and b be the remaining sides. Then

cosh c = cosh a cosh b cosh γ + sinh a sinh b.

Finally:

Proposition 4.8. Let P be a pentagon with four right angles. Let ϕ be the (only
non-right) interior angle between two sides, a and b. Let α be the other side adjacent
to b and β the other side adjacent to a. Let c be the remaining edge. Then the
following formulas hold:

cosh c = − cosh a cosh b cos ϕ + sinh a sinh b,

cosh a

cosh α
=

cosh b

cosh β
=

cosh c

cosh ϕ
.

References

[1] H. Akrout. Singularités topologiques des systoles généralisées. Topology, 42(2):291–308, 2003.
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E-mail address: hugo.parlier@math.unige.ch


