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Abstract. On a closed hyperbolic Riemann surface S of genus g > 1, we study
the existence of a universal constant related to simple closed geodesics. For γ,
a simple closed geodesic on S, we give elementary proofs of the following facts:
there is always a simply connected disk of radius rγ > 1

2
ln 3 imbedded in S \ γ,

and conversly, for any surface S, the infimum of the values rγ (for all simple closed
geodesics γ on S) is always equal to 1

2
ln 3. The proofs are based on the relationship

between right-angled hyperbolic polygons and simple closed geodesics.

1. Introduction

The main goal of this article is to give an elementary proof of the following fact:

Theorem 1.1. Let S be a closed Riemann surface of genus g > 1, endowed with a
metric of constant curvature −1. Let γ be a simple closed geodesic on S. The set
S \ γ contains 4g − 4 closed disks of radius 1

2
ln 3. Conversly, if ρ > 1

2
ln 3 is a given

constant, there exists a simple closed geodesic γρ on S such that the set S \ γρ does
not contain any open disks of radius ρ.

For specialists in the area, this can be deduced from well known results concerning
laminations, and in particular maximal laminations, and their relationship to simple
closed geodesics. The goal here is to give a step by step proof. The different steps
taken have an interest in their own right, and the process allows us to get a feel for
some of the fundamental aspects of negatively curved surfaces. Through examples
and a careful study of hyperbolic polygons, one can hopefully get a feel for why this
is true, and subsequently some insight on the nature of laminations.

The vision given is close in nature to other articles concerning the size of embed-
ded disks on hyperbolic Riemann surfaces, namely an article by Yamada [10] and
another by Bavard [1]. In the first article, a sharp lower bound on the maximal injec-
tivity radius of a compact hyperbolic surface is given. This gives an exact value for
the Margulis constant in dimension 2, sometimes called Marden’s universal constant
for Fuschian groups [9]. In the second article, for any given genus g, a sharp upper
bound on the maximal injectivity radius of a surface of genus g is given. However,
in both articles, the sharp bounds are reached by specific surfaces. In contrast, the
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surprising part of the result presented here is the universality of the constant 1
2
ln 3,

as it does not depend on either the genus or on a specific choice of surface.

The remainder of the paper is divided into five sections. After a standard section
dedicated to definitions, notations and known results, the first subject treated is a
detailed study of hyperbolic right-angled polygons. Following this, the existence of
a disk of radius 1

2
ln 3 on the complement of a geodesic is proved. The penultimate

section deals with the optimality of the constant, firstly by constructing specific
examples of surfaces and simple closed geodesics, and secondly by a construction
of a simple closed geodesic on an arbitrary surface. The final section is about the
relationship of the constant with Marden’s universal constant for Fuchsian groups.

2. Preliminaries

Here a surface will generally be a compact Riemann surface equipped with a
metric of constant curvature −1, with or without boundary. Such a surface is always
locally isometric to the hyperbolic plane H. A surface will generally be represented
by S and distance on S (between points, curves or other subsets) by dS(·, ·). If the
surface is closed (without boundary) then its genus will generally be g and otherwise
its signature will be (g, n), where n designates the number of boundary curves. All
boundary curves are supposed to be smooth simple closed geodesics, although much
of what is said about surfaces with boundary also holds for surfaces with cusps. The
Euler characteristic for a surface S of signature (g, n) is χ(S) = 2 − 2g − n. Notice
that χ(S) < 0 in our case. A surface of signature (0, 3) is called a Y -piece or a pair
of pants and will generally be represented by Y or Yk. A surface of signature (0, 4)
is sometimes referred to as an X-piece. The Teichmüller space for closed surfaces
of genus g is denoted by Tg. For this article, Teichmüller space can be thought of
as the space parameterized by Fenchel-Nielsen length and twist parameters (see for
instance [4]).

A curve, unless specially mentioned, will always be non-oriented. A closed curve
will be considered primitive, meaning that it cannot be written as the k-fold iterate
of another closed curve. A non-trivial curve on S is a curve which is not freely ho-
motopic to a point. A closed curve on S is called simple if it has no self-intersections.
Closed curves (geodesic or not) will generally be represented by Greek letters (α,
β, γ and γi etc.) whereas paths (geodesic or not) will generally be represented by
lower case letters (a, b etc). The geometric intersection number between two distinct
curves α and β will be denoted int(α, β). Unless otherwise specified, a geodesic is
a simple closed geodesic curve. The set of all simple closed geodesics on S will be
denoted G(S). A non-separating closed curve is a closed curve γ such that the set
S \ γ is connected. Otherwise a closed curve is called separating. A set of disjoint
simple closed geodesics that decompose the surface into Y -pieces is called a partition
and shall generally be denoted by P. (A partition is often called the set of pants
decomposition geodesics.) The function that associates to a finite path or curve its
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Figure 1. The S
2 and T

2 cases

length will be represented by ℓ(·), although generally a path or a curve’s name and
its length will not be distinguished.

We will readily make use of the following fact. Let S be a surface with a given
partition P and suppose that γ ∈ P. The geodesic γ is either the boundary of one
(case 1) or two (case 2) distinct Y -pieces in P. In case 1, γ is the interior geodesic
of a surface of signature (1, 1). In case 2, γ is the interior geodesic of a surface of
signature (0, 4). Let δ ∈ G(S) such that γ is the only geodesic in P that intersects
δ. Furthermore, δ can be chosen such that int(γ, δ) = 1 in case 1 and int(γ, δ) = 2
in case 2. Let k ∈ Z and let the result of k Dehn twists around δ on γ be denoted
by Dk,δ(γ). Notice that for any k, P ′ = {P \ γ} ∪ Dk,δ(γ) is a partition on S. The
convexity of geodesic length functions along earthquake paths [8] implies that k can
be chosen so that ℓ(Dk,δ(γ)) is arbitrarily large.

Let S be a compact surface. Let γ be a simple closed geodesic on S and x0 ∈ S.

(1) D(x0, r) = {x ∈ S | dS(x0, x) < r}. This should be seen as a distance set
(i.e. is not necessarily an embedded hyperbolic disk).

(2) rS,γ,x = sup{r | D(x, r) is homeomorphic to a disk and D(x, r) ∩ γ = ∅}.
This is the maximal radius for an open disk centered in x that does not
intersect γ.

(3) rS,γ = sup{rS,γ,x | x ∈ S}. For a given geodesic γ, this is the maximal radius
for an open disk on S that does not intersect γ.

(4) rS = inf{rS,γ | γ ∈ G(S)}.
(5) rg = inf{rS | S ∈ Tg}.

As a prelude, consider the sphere S
2and the torus T

2, equipped with their standard
metrics of constant curvature 1 and 0, and what the above values are for these
surfaces. On S

2 the (simple) closed geodesics are great circles. It is easy to see
that rS2 = π/2 and thus r0= π/2. For T

2 the situation is even more radical. Here
rT2 = r1 = 0. This is of course because for a given ǫ > 0, there exists a geodesic γ
on T

2 such that there are no embedded disks of radius ǫ on T
2 that do not intersect

γ.
In the hyperbolic case with S a surface of genus g ≥ 2. J. Birman’s and C. Series’

result on the non-density of simple closed geodesics [3] implies that for a given S
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with g ≥ 2, rS > 0, but this does not give any information on rg. Using these
notations, the main result of the paper gives explicit values to both rS and rg.

3. Properties of right-angled polygons

The decomposition of Y -pieces into two isometric right-angled hyperbolic hexagons
encourages a detailed study of hyperbolic polygons. Unless specified, an n-gon will
always be considered to be right-angled and hyperbolic. We will readily use the
following well known propositions (for proofs see [2], [4], or [7]:

Proposition 3.1. Let P be a pentagon with adjacent edges a and b. Let c be the
only remaining edge non-adjacent to either a or b. Then

sinh a sinh b = cosh c.

Proposition 3.2. Let H be a hexagon with a, b and c be non-adjacent edges. Let c̃
be the remaining edge adjacent to a and b. Then

cosh c = sinh a sinh b cosh c̃ − cosh a cosh b.

From proposition 3.1 the following is easily deducted.

Lemma 3.3. On any pentagon P there exists a pair of adjacent edges a, b with
sinh a > 1, sinh b > 1.

The idea is now to place a disk tangent to two adjacent edges of lengths a, b with
sinh a > 1 and sinh b > 1.

(
√

2 − 1)2i

(
√

2 − 1)2

(
√

2 − 1)ei π
4

Figure 2. The hyperbolic triangle of vertices 0, 1 and i

Let T be the generalized triangle of vertices 0, 1, i in the unit disk model of H.
The three edges of the triangle are the segment [0, 1[, the segment [0, i[ and the
segment ]i, 1[ as in figure 2. The disk tangent to all three segments is well defined

and the tangent points are (
√

2− 1)2, i(
√

2− 1)2 and (
√

2− 1)ei π
4 . One can deduce
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the Euclidean radius of the disk as (
√

2−1)2, and the hyperbolic radius 1
2
ln(9+4

√
2

7
)

which we shall denote ρp.

Proposition 3.4. Let P be a pentagon and
◦
P its interior.

◦
P contains a closed disk

of radius ρp. Conversely, for ρ > ρp there exists a pentagon Q such that an open

disk of radius ρ is never contained in
◦
Q.

b

a

d

c

e
∆

f

Figure 3. A hyperbolic pentagon

Proof. By lemma 3.3, P always has two adjacent edges a, b such that sinh a > 1
and sinh b > 1. Place P such that the intersection of a and b is on the origin, and
such that a is on the positive real axis, and b is on the positive imaginary axis. The
remaining edges shall be denoted c, d and e such as in figure 3. Place a disk ∆
centered on the x = y axis tangent to a and b of radius ρp. The disk does not touch
the edges c and e because both a, b > arcsinh1. Call f the hyperbolic line which
passes through i and 1. By comparing edge c with f it is easy to see that c is further
away from the origin than f . Because the edge of the disk touches only a and b one
can easily slide the center along the x = y axis to obtain a closed disk contained in
◦
P . To show the sharpness of the constant ρp we shall construct a similar example
with a disk of radius ρ > ρp never contained. Let ρ − ρp = ǫ. Let p be the point

on the x = y axis at a distance of ǫ/4 further from 0 than (
√

2 − 1)ei π
4 such as on

figure 4.
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l

l

γ

p

Figure 4. The l-pentagon

The geodesic axis x = y admits a unique geodesic γ perpendicular in p. There is
a unique pentagon with edges on both the real and imaginary axes and on γ. This
pentagon does not contain an open disk of radius ρ in its interior. ¤

Remark 3.5. The example constructed in the proof will be called the l-pentagon. It
has two adjacent edges with hyperbolic length l-arbitrarily long and equal, and thus a
third edge which is defined by proposition 3.1. The two remaining edges have lengths
that decrease towards 0 as l increases. These edges will be referred to as the short
edges. This pentagon has one degree of freedom l > arcsinh1 being the equal length
of the first two adjacent edges.

The following proposition shows that the example of l-pentagons is not isolated.

Proposition 3.6. Let P be a pentagon with edges labelled as in figure 3. For ǫ > 0,
there exists xǫ such that for a, b > xǫ, we have d, e < ǫ.

Proof. The values a, b and c verify

sinh a sinh b = cosh c.

Also d, c and a verify
sinh c sinh d = cosh a.

Notice that for θ ∈ R, sinh θ ≥ cosh θ − 1. Thus:

sinh d =
cosh a

sinh c
≤ cosh a

cosh c − 1
=

cosh a

sinh a sinh b − 1
.

For a given ǫ, a and b can thus be chosen sufficiently large so that sinh d is less than
sinh ǫ. This gives us a condition a, b > xd. The same procedure applied to e gives a
condition a, b > xe. We can now choose xǫ = max{xd, xe}. ¤

Corollary 3.7. For ǫ > 0 there exists xǫ so that the following is true. All pentagons
(with edges labeled as in figure 3) with a, b > xǫ contain no disks of radius ρp + ǫ in
their interior.
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All n-gons with n ≥ 5 can be cut along perpendicular geodesic lines to certain
edges to obtain a pasting of n− 4 pentagons. As a consequence n− 4 disjoint closed
disks of radius ρp are always contained in the interior of an n-gon. This constant
remains sharp for the n-gon, and this is proven with the following example: take
n − 4 isometric l-pentagons and paste them along the short edges (figure 5).

Figure 5. n − 4 l-pentagons pasted along short edges

The result obtained is an n-gon. Let ρ > ρp be a constant. l can be increased
so that none of the n − 4 pentagons contain an open disk of radius ρ. The pasting
having been done on the short edges, it is not possible to put a disk centered on the
common border between two pentagons. Thus there exists an n-gon which does not
contain any disks of radius in its interior. This proves the following:

Proposition 3.8. All n-gons, n ≥ 5, contain n − 4 disjoint closed disks of radius
ρp. Conversly, for ρ > ρp, there exists an n-gon which does not contain a disk of
radius ρ in its interior.

4. The disk of radius 1
2
ln 3

This section leads to the first main step towards answering the initial question. It
will be shown that on a closed Riemann surface S of genus g ≥ 2, for a given simple
closed geodesic γ, there is always a disk of radius ρs = 1

2
ln 3 left untouched by γ.

A given simple closed geodesic γ can always be completed into a partition that
decomposes S into Y -pieces. A Y -piece can always be decomposed into two isometric
hexagons, and then further into four pentagons, each pentagon isometric to at least
one other. Proposition 3.4 proves that there is always a closed disk of radius ρp on
S that leaves γ untouched. The symmetry of a Y -piece allows for even larger disks.
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b̃

b

a

Figure 6. The disk of radius ρs

The constant ρs = 1
2
ln 3 is obtained on a hexagon as in figure 6. The hexagon is

obtained by gluing two pentagons along edges of equal length. The pasting is along
the real axis on the figure 6. Of course, ρs is the radius of the maximally embedded
open disk in an ideal hyperbolic triangle.

Lemma 4.1. In order to insert a closed disk of radius ρs (centered on the real axis)
into the interior of the hexagon, the following conditions are sufficient:

(1) a > ln 3,

(2) b, b̃ > ln 1+
√

5

2
.

Proof. The first condition is obvious, and the second condition is the result of a
straightforward calculation. ¤

In fact, the conditions of the above lemma are necessary as well, if one is picky
about where the center of the disk should be.

As mentionned before, we will regularly make use of properties of right-angled
polygons, and among other things, consecutive sides of pentagons verify the equality
of proposition 3.1. This implies the following (for any right-angled polygon although
we will use it for pentagons and hexagons only).

Lemma 4.2. If r and s are consecutive edges of a right-angled polygon, then
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r ≤ ln 3 =⇒ s >
1

2
ln 3

(

> ln
1 +

√
5

2

)

,

r ≤ 1

2
ln 3 =⇒ s > ln 3.

There are other sufficient conditions for the embedding of a disk of radius ρs which
we shall also use. These make use of geodesic paths which we shall call heights, which
are the three paths which separate a hexagon into two right-angled pentagons. These
three paths join opposite edges of a hexagon. For example, path a in figure 6 is a
height. These paths share properties with the usual notion of heights of a triangle,
such as the fact that they intersect in a single point.

Lemma 4.3. Let H be a hexagon with two consecutive edges a and b that verify
a, b > ln 3 and suppose that the two heights ha and hb that intersect a and b also
verify ha, hb > ln 3. Then H has an embedded closed disk of radius ρs.

Proof. Consider a disk of radius ρs, centered on the bisector of a and b, tangent to
both a and b. If this disk touches any of the remaining edges then at least one of
the lengths a, b, ha or hb is of length less or equal to ln 3. ¤

Lemma 4.4. Let H be a hexagon with its heights hk, k ∈ {1, 2, 3} that verify
hk > ln 3. Then H has an embedded closed disk of radius ρs.

Proof. By the previous lemma, if H has two consecutive edges of length superior to
ln 3, then H contains such a disk. Denote by a, b and c three non-adjacent edges of
H, and by ã, b̃ and c̃ the three edges diametrically opposite. Thus we can suppose
that a < ln 3. One of the two arcs of a seperated hy a height is of length less than
ln 3
2

which implies that one the edges adjacent to a has length strictly greater than

ln 3 (by lemma 4.2). Let us suppose that this edge is b̃. The other edge adjacent to

b̃ is c. Now if c > ln 3 the previous lemma guarentees the existence of the embedded
disk. If however c ≤ ln 3, consider the two arcs of b̃, say b̃1 and b̃2. By lemma 4.2,
both arcs b̃1 and b̃2 are of length strictly greater than ln 3

2
. By lemma 4.1, there is

thus a disk on the height leaving from b̃. ¤

As seen in the previous section, not all hexagons have embedded disks of radius
ρs, so this condition on heights is not always true. However, the following is.

Lemma 4.5. Let H be a hexagon with a height h1 < ln 3. Then the two remaining
heights h2 and h3 verify h2, h3 > ln 3.

Proof. Notice that each height seperates the hexagon into pentagons. Suppose that
two heights, say h1 and h2, both verify h1, h2 < ln 3. Consider the two pentagons
P1 and P2 that are separated by h1. One arc of h2, say h21, is found on P1 and the
other one h22 is found on P2. One of them, say h21, has length less than ln 3

2
. This
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implies that one of the edges of P1 adjacent to h1 must be of length less than ln 3
2

,
which is impossible by lemma 4.2. ¤

We are now well equipped to prove the following.

Proposition 4.6. Let Y be a Y -piece and α, β, γ its three geodesic boundary curves.
There are always two closed disks of radius ρs on Y \ (α ∪ β ∪ γ). For ρ > ρs there
exists a Y -piece that does not contain an open disk of radius ρ in its interior.

Proof. Consider the decomposition of Y into two isometric hexagons H and H̃ ob-
tained by cutting along simple geodesic perpendicular paths between the boundary
curves. Denote by a (resp. b, c) the perpendicular path between β and γ (resp.
between α and γ, between α and β).

α β

hc

γ

hbb ha a

Figure 7. Y and certain paths

If the heights of these hexagons verify the conditions of lemma 4.4, then both H
and H̃ contain an embedded disk of radius ρs, and the result is verified. Thus we
must suppose that a height of H, say the height hc between c and γ, has length
hc ≤ ln 3. It follows from lemma 4.2 that c > ln 3. From lemma 4.5, it follows that
the two remaining heights of H, say ha and hb, verify ha, hb > ln3. (The notations

ha and hb are as in figure 7. The three corresponding heights for H̃ will be denoted
h̃a etc.)
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h̃c

α2

γ21

β2

γ22

hc
α1

b

γ11

β1

a

γ12

Figure 8. A pair of pants viewed by a topologist

Denote the paths γij as in figure 8. Because of the symmetry of the Y -piece,

γ11 = γ21 and γ12 = γ22. Again, because hc ≤ ln 3, lemma 4.2 implies that γij > ln 3
2

for all i, j ∈ {1, 2}.

Now suppose a, b > ln 3. Lemma 4.1 now implies that there are two disjoint closed
disks on Y, one centered on path a and the other on path b.

Suppose that a > ln 3 and b ≤ ln 3. By cutting Y along paths hb ∪ h̃b and b one
obtains two (non-isometric in general) hexagons. Consider the notations of figure 8.
The paths α1 and α2 verify α1, α2 > ln 3

2
. By lemma 4.1, the hexagon containing c

contains a closed disk of radius ρs centered on c because c > ln 3, and α1, α2 > ln 3
2

.
Similarly, the hexagon containing a contains a closed disk of radius ρs centered on
a because γ1, γ2 > ln 3

2
.

The remaining case to be seen is when both a and b verify a, b ≤ ln 3. In this case,
cut along a and b in order to obtain an octogon. On this octogon consider a simple
geodesic perpendicular path between one of the copies of a and one of the copies
of b as in figure 9. By cutting along this path one obtains two (non-isometric in
general) hexagons. Now by applying lemma 4.2 to the heights of these hexagons, it
is not too difficult to see that all the heights h verify h > ln 3. By once again apply-
ing 4.3, both of these hexagons contain the required disks, and the final case is closed.
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a

a b

b

Figure 9. When a and b are both short

To show the sharpness of the constant ρs on the Y -piece, an example must be con-
structed that does not allow any disk of radius ρ > ρs. The example is constructed
by pasting two hexagons identical to those portrayed in figure 10.

Figure 10. A hexagon used to obtain a Y -piece containing the
smallest possible disk

To construct a hexagon of this type one must take two l-pentagons and paste them
as is 10. The Y -piece is obtained by gluing this hexagon to its mirror image along
the edges A, B, and C. The boundary edges α, β and γ are of lengths (respectively)
4l, 2arccosh(sinh2 l) and 2arccosh(sinh2 l). For ρ > ρs there exists a constant L such
that for l > L, no disk is contained in the Y -piece. We will call these l-pants. The
lemma is now proved. ¤

Figure 11. An l-pants
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The example in the previous proof, as for the l-pentagon, can be generalized. This
is the object of the following proposition.

Proposition 4.7. For ǫ > 0 there exists a value xǫ such that for any α, β > xǫ there
exists another value xǫ,α,β such that for any γ > xǫ,α,β, a Y -piece with boundary
geodesics of lengths α, β, γ contains no disks of radius ρs + ǫ.

Note that the value xǫ,α,β does depend on the choice of α and β.

Proof. The proof is essentially constructive. Consider the following symmetric ideal
pentagon P (with 4 right angles and the remaining angle 0) as in the following figure.

x
2

x
2

Figure 12. An symmetric ideal pentagon

xǫ can be chosen so that for all x > xǫ there are no disks of radius ρs +ǫ contained
in the interior of P . Now consider the Y -piece obtained with lengths α, β > xǫ. This
Y -piece can be represented as an octogon with lengths as in figure 13. Notice that,
due to the symmetry of Y -pieces, α and β are separated by lγ in two segments of
equal length.
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α β

γ

γ

hγ

lγ

Figure 13. A Y -piece cut along two common perpendiculars

Now a value xǫ,α,β can be chosen large enough so that for all γ > xǫ,α,β the two
hexagons separated by hγ are as close as necessary to the situation represented on
figure 12. This completes the proof. ¤

There is an immediate corollary to proposition 4.6.

Corollary 4.8. For S with genus g ≥ 2, rS ≥ 1
2
ln 3.

Proposition 4.6 is also the central part of the proof of the following theorem.

Theorem 4.9. Let S be a closed Riemann surface of genus g ≥ 2. Let γ1, . . . , γ3g−3

be disjoint simple closed geodesics on S. There exist at least 4g − 4 disjoint closed
disks of radius 1

2
ln 3 on S such that there is no intersection between the disks and

any of the closed geodesics. Conversly, for a given ρ > 1
2
ln 3 and a genus g ≥ 2 it

is possible to find a closed Riemann surface of genus g with a partition such that a
disk of radius ρ always intersects the partition.

Proof. S can be decomposed into 2g − 2 Y -pieces. By the previous lemma on each
Y -piece there exists at least one disk of radius ρs and this proves the first part of
the theorem. The construction of a closed Riemann surface of genus g which does
not admit any open disks of radius ρ for ρ > ρs can be done with long l-pants, as in
the proof of the previous lemma. By taking 2g − 2 isometric l-pants it is possible to
construct a surface of genus g as in figure 14. The 3g−3 geodesics are the boundary
geodesics of the Y -pieces. ¤

5. The explicit values of rS and rg

We have shown that our bound for the radius of a disk left untouched by 3g − 3
non intersecting geodesics is sharp, but what can be said if we look at the bound of
one simple closed geodesic? Furthermore the sharpness has been proven within the
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Figure 14. A surface obtained by pasting l-pants

category of closed surfaces of genus g, but the sharpness is not proven for a given
individual surface.

The next step is to prove, with an example, that rg = 1
2
ln 3. The idea is to

construct a surface S and a single geodesic γ that allows only small disks on S \ γ.
The example for genus 2 is constructed as follows.

α β

p q′

α̃β̃ p′q

Figure 15. Genus 2

Take eight copies of an l-pentagon (with l large) and paste them together as
indicated in figure 15. What is obtained is an X-piece. Paste together the oriented
edges α and α̃ such that p is pasted to p′. Do the same with β and β̃ such that q is
pasted to q′. γ is the geodesic indicated in figure 16 by a bold curve, following the
pasting scheme of figure 15. For the same reasons as for all the previous examples,
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for ρ > ρs it is possible to find a surface of this type with no disks of radius ρ having
no intersection with γ.

α β

α̃β̃

Figure 16. The winning geodesic for genus 2

In the same spirit we can construct an example for arbitrary genus g. Take
g − 1 copies of the previously constructed X-piece. Then paste them as is figure
17. All arrows indicate a pasting with half twists including the pasting of the four
boundary geodesics. The geodesic γ is as indicated in figure 18 and the surface fills
our requirements.

Figure 17. Genus g

Figure 18. The winning geodesic for genus g
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This example proves the sharpness of the constant for one closed geodesic within
the category of surfaces.

Proposition 5.1. For g ≥ 2, ρg = 1
2
ln 3.

The final step is to prove, for any surface S, that rS = 1
2
ln 3. This is done by

proving the existence of a simple closed geodesic γ on any surface S so that disks on
S \ γ have maximal radii as close as wanted to ρs. The proof holds in two lemmas.
The first shows that for a given number of disjoint closed simple geodesics, it is
possible to construct a simple closed geodesic that imitates all of them, i.e., for an
ǫ > 0, it is possible to find a new geodesic γ with d(γ, p) < ǫ for all p on the union
of the initial geodesics. We have previously seen that we can construct a genus g
surface with a partition with each Y -piece having a maximal radius arbitrarily close
to 1

2
ln 3. The second lemma proves that such surfaces are not a generality, i.e., a

partition of that type exists on all surfaces.

Lemma 5.2. Let γ1, . . . , γn be simple closed non-intersecting geodesics on S. For
ǫ > 0 there exists a simple closed geodesic γ such that for all p ∈ γ1 ∪ . . . ∪ γn,
d(p, γ) < ǫ.

Proof. First complete the set of γi’s into a partition P = {γ1, . . . , γ3g−3} (if nec-
essary). Let γ be a simple closed geodesic such that int(γ, γi) 6= 0 for all i ∈
1, . . . , 3g − 3. It is a quick topological exercise to see that such a curve always ex-
ists, regardless of the nature of the partition. Let Xγi

be the X-piece around γi

who’s boundary curves are elements of P, when such an X-piece exists. (The other
case to consider is when γi is found inside a one holed torus where the boudary curve
is an element of P. The proof in this second case is truly identical, and will be left
to the dedicated reader.) γ ∩ Xγi

is the reunion of at least 2 disjoint geodesic arcs.
At least one of these paths crosses γi.

γi

Figure 19. Xγi

Let c be one of the 2 paths. Performing positive Dehn twists around γi will
eventually increase the length of Dk,γi

(γ). In particular the length of the paths
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ck, the image of c by k Dehn twists, will increase as well. (ck denotes a path in
Dk,γi

(γ) ∩ Xγi
that crosses γi). Let dk = maxx∈γi

dXγi
(x,Dk,γi

(γ)). Let qk be an
intersection point between ck and γi. In the following figure, multiple copies of Xγi

,
each represented by 4 hexagons, are portrayed, so as to see how ck evolves with an
increasing k. Notice that the following procedure works for any geodesic path from
“start” (the boundary curve through which c enters Xγi

) to “finish” (the boundary
curve through which c leaves) as portrayed on the figure. The top hexagons are
all isometric, as are the bottom ones. θk is the angle between ck and γi. h0 is the
distance from the “entry point” of ck on Xγi

and γi and h1 is the distance from the
“exit point” of ck on Xγi

and γi.

h0 θk qk

h1

θk

Figure 20. Xγi
seen 3 times

Observe the right-angled triangle with vertex qk and edge h0. (Observing the
right-angled triangle with h1 instead works as well). The value for h0 is always
bounded, but the distance between qk and h0 grows infinitely. This shows that θk

tends to 0 as k grows. It is then easy to see that dk ≥ maxx∈γi
dS(ck, x) also tends

to 0 as k grows. Choose ki so that for all k > ki, dS(ck, γi) < ǫ for any geodesic path
ck from start to finish.

The process can then be repeated by performing Dehn twists on all the other γi’s.
Choose kǫ = maxi∈{1,...,3g−3} ki. Supposing we started with γ1 and finished with
γ3g−3, the result obtained is the following simple closed geodesic:

γǫ = Dkǫ,γ3g−3
◦ Dkǫ,γ3g−4

. . . ◦ Dkǫ,γ1
(γ).

Such Dehn twists do not change the nature of the original geodesic (number of inter-
section points with each γi etc.) and the obtained geodesic meets the requirement
of the lemma. ¤

There is an immediate and interesting corollary to this lemma.

Corollary 5.3. Let S be a closed surface of genus g. For any ǫ > 0 there ex-
ists a simple closed geodesic δǫ such that for any simple closed geodesic γ we have
dS(γ, δǫ) < ǫ.

Proof. It is easy to see that the geodesics of a partition P intersect all simple closed
geodesics of the surface. For ǫ > 0, the lemma proves the existence of a simple
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closed geodesic δǫ that is of distance inferior to ǫ to all points of the geodesics of the
partition. For a given γ let p be an intersection point with the geodesics of P. Thus
δǫ is of distance inferior to ǫ to p, and we can conclude that dS(δǫ, γ) < ǫ. ¤

Remark 5.4. If S is a surface of signature (g, n), then the previous corollary is
not true. This is because a boundary geodesic α is not intersected by another simple
closed geodesic, and thus all other simple closed geodesics are of distance superior
to arcsinh(1/ sinh α

2
). However, with the same arguments, the following is true. For

given ǫ > 0 and (g, n), there exists Sǫ of signature (g, n) and δǫ a simple closed
geodesic on Sǫ with the property of the lemma.

This next lemma shows that it is possible to find 3g−3 non intersecting geodesics
such that S contains disks which do not intersect these geodesics with maximal
radius as close as possible to 1

2
ln 3.

Lemma 5.5. For a given S and ǫ > 0 it is possible to find a partition of S with each
Y -piece in the decomposition containing disks of maximal radius less than 1

2
ln 3+ ǫ.

Proof. The proof of this lemma imitates proposition 4.7. Let P be a partition of S
and let Y ∈ P. In the first section, it was shown that a boundary element of Y can
be replaced by a new boundary geodesic arbitrarily long. Using proposition 4.7, Y
can be replaced by a Y -piece Y ′ which does not contain any disks of radius ρs + ǫ.
Applying this process to each Y -piece in P completes the proof. ¤

The previous two lemmas and theorem 4.9 yield the final result.

Theorem 5.6. Let S be a closed Riemann surface of genus g > 1, endowed with a
metric of constant curvature −1. Let γ be a simple closed geodesic on S. The set
S \ γ contains 4g − 4 closed disks of radius 1

2
ln 3. Conversly, if ρ > 1

2
ln 3 is a given

constant, there exists a simple closed geodesic γρ on S such that the set S \ γρ does
not contain any open disks of radius ρ. This implies rS = rg = 1

2
ln 3.

Remark 5.7. As mentioned in the introduction, this result can be proved using well
known results concerning laminations, see for example [5] or [6]. A lamination is
a disjoint union of complete simple geodesics (not necessarily closed) and is thus a
generalization of a disjoint union of simple closed geodesics. The first part of the
theorem can be deduced from the result that a lamination can be completed into a
maximal lamination, i.e., a lamination whose complement is a set of ideal hyperbolic
triangles. The second part could be proved by using iterations of a simple closed
geodesic by a pseudo-Anosov map, but once again, the intent of the author is to give
an elementary proof of these facts without the use of lamination machinery.

6. Marden’s universal constant

Compact surfaces with constant negative curvature seem to come with a cer-
tain number of natural universal constants. In [9], A. Marden showed a result for
Fuchsian groups that is equivalent to the following.
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Theorem 6.1. There exists r > 0 with the following property. Let S be a hyperbolic
Riemann surface without boundary. There exists a point x ∈ S such that D(x, r) is
simply connected.

In [10], A. Yamada proved that r ≥ ln 2+
√

7√
3

with equality occurring when S is

the thrice punctured sphere (which proves that Yamada’s lower bound is sharp).

Interestingly, ln 2+
√

7√
3

= arcsinh( 2√
3
) and 1

2
ln 3 = arccosh( 2√

3
). The link is stronger

than this apparent coincidence.
First of all, a thrice punctured sphere can be constructed by pasting two ideal

hyperbolic triangles along all three edges. The three punctures are the points at
infinity. The value 1

2
ln 3 was also obtained using this triangle as the maximal radius

of an inscribed disk. Theorem 5.6 seen in light of theorem 6.1 is:

Theorem 6.2. Let S be a hyperbolic Riemann surface of signature (g, n). There
exists a point x ∈ S such that D(x, 1

2
ln 3) is simply connected. The value 1

2
ln 3 is

sharp.

Notice that in contrast to theorem 5.6, the value 1
2
ln 3 is sharp for the set of

surfaces with boundary but not for any individual surface. Surfaces with boundary
play an important role in a variety of subjects, including the study of Klein surfaces
(orientable or non-orientable hyperbolic surfaces). In other words, a Klein surface
is either a hyperbolic Riemann surface, or is the quotient of a closed hyperbolic
Riemann surface by an orientation reversing involution (whose fixed point set is
a set of disjoint simple closed geodesics). In terms of Klein surfaces, theorem 5.6
implies the following corollary, where again the term “sharp” refers to sharp for the
set of Klein surfaces.

Corollary 6.3. Let S be a hyperbolic Klein surface. There exists a point x ∈ S
such that D(x, 1

2
ln 3) is simply connected. The value 1

2
ln 3 is sharp.
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