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Abstract. A closed hyperbolic surface of genus g ≥ 2 can be decomposed into pairs of

pants along shortest closed geodesics and if these curves are sufficiently short (and with

lengths uniformly bounded away from 0), then the geometry of the surface is essentially

determined by the combinatorics of the pants decomposition. These combinatorics are

determined by a trivalent graph, so we call such surfaces trivalent.

In this paper, in a first attempt to understand the “shape” of the subset Xg of moduli space

consisting of surfaces whose systoles fill, we compare it metrically, asymptotically in g,

with the set Yg of trivalent surfaces. As our main result, we find that the set Xg ∩ Yg is

metrically “sparse” in Xg (where we equipMg with either the Thurston or the Teichmüller

metric).

1. INTRODUCTION

Although there exists a rich theory describing the geometry of the moduli spaceMg of a

closed orientable surface of genus g ≥ 2, surprisingly little is understood about qualities

that might be described as aspects of its “shape” when equipped with a natural metric.

Such properties are especially meaningful for various subsets ofMg, such as its so-called

ε-thick partMε
g consisting of those surfaces with injectivity radius bounded from below by

some fixed ε > 0.

Rafi and Tao [66] have offered a starting point for these investigations, proving that

diam(Mε
g) � log(g)

whenMg is equipped with either the Thurston or the Teichmüller metric. (Here �means

equal up to multiplicative constants that do not depend on g.) Their strategy is to metrically

approximateMε
g by the subset Yg consisting of trivalent surfaces: such surfaces are surfaces

with a pants decomposition with all curves of lengths bounded above and below by positive

constants independent of g.
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A further motivation for our study comes from the well-known and difficult problem of

constructing a spine for moduli space, i.e., a deformation retract inMg of minimal dimen-

sion. Equivalently, one would like to find a mapping class group equivariant deformation

retract of minimal dimension in Teichmüller space Tg. In a short preprint [77], Thurston

proposed as a candidate spine the subset inMg consisting of those hyperbolic surfaces

whose systoles fill the surface. (A systole of a hyperbolic surface is a non-trivial geodesic of

minimal length.) Thurston provided a sketch of a proof that this set is a deformation retract,

which unfortunately appears difficult to complete. In particular the contractibility and the

connectivity of his candidate remain open. It is moreover not clear how to determine the

dimension of this set; for more on this, see [11]. We will refer to the set in moduli space of

those hyperbolic surfaces whose systoles fill as the Thurston well-rounded retract, or simply

the Thurston set, denoted by Xg.

In this paper, we make a first attempt at understanding the “shape” of the set Xg by means

of comparing it to the set Yg of trivalent surfaces whose shape is becoming well-understood.

We are specifically interested in the extent to which the subsets Xg and Yg ofMg (or the

parts that lie in the thick partMε
g ofMg) imitate each other metrically, asymptotically in g,

with either the Thurston (or Lipschitz) metric or the Teichmüller metric onMg. We first

note that Rafi and Tao’s result gives an obvious upper bound on the diameter of Xg since it

is a compact subset ofMε
g for sufficiently small ε. A lower bound, matching asymptotically

this upper bound, is implicit in examples that arise naturally from our results here. Our

first main result is the following.

Theorem 1.1. There exists a sequence of surfaces Sgk of genus gk → ∞ with a filling set of systoles
and with Bers constant > 2

√
gk.

Our examples, as are some of those of Rafi and Tao, are based on the so-called “hairy torus”

examples due to Buser [44]. For the lower bounds on their diameter estimates, Rafi and Tao

also use the different shapes one can produce with a trivalent graph, imitating these shapes

with trivalent surfaces. Similarly, we are able to do this in Xg. Specifically we obtain the

following, where X`
g is the subset of Xg where the systole is equal to `.

Theorem 1.2. There exist absolute constants A, B, ` > 0 such that for any finite trivalent graph G
there exist g ≥ 2 and S ∈ X`

g such that S and G are (A, B)-quasi-isometric.

From either of these theorems (using the well known relationship between the Thurston

and Teichmüller metrics [55, 88, 99], it is easy to deduce the following:

lim sup
g→∞

dH(Xg, Yg) � log(g),
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where dH(·, ·) is the Hausdorff distance on Mε
g induced by either the Teichmüller or

Thurston metrics. It is an artifact of our constructions that we obtain lim sup rather than

a lower bound of order log(g), and one should not read too much into it. Constructing

a surface with a filling set of systoles is somewhat delicate as any small deformation

potentially kills all systoles (but one). It seems likely that a more delicate construction than

the one give below would provide examples that appear in every genus.

However, it is significant that in Theorem 1.21.2 we do not have strict control over the genus of

the surface obtained from an arbitrary trivalent graph. In fact, our next main result proves

that, at least within the set Yg, the surfaces in Xg are in some sense sparse.

Theorem 1.3. There exists an absolute constant C > 0 such that a random surface in Yg has
distance in Yg at least C log(g) from Xg.

In particular, this would be in contradiction with Theorem 1.21.2 had the control on genus

been too strict.

Note that here the distance we consider on Yg is the path metric obtained by computing

path lengths in Yg with either the Thurston or Teichmüller metrics (and thus not the

restriction of the distance functions to Yg). A more detailed discussion of this can be

found in Section 44 where we also make the randomness in the statement precise. Loosely

speaking by “random” we mean any reasonable notion of random coming from the natural

counting measure associated to the trivalent graphs used to construct the surfaces of Yg.

The techniques used to proved this theorem seem to have independent interest, involving a

number of lemmas about pants decompositions and graph counting.

2. A SURFACE IN THE THURSTON SET WITH LARGE BERS CONSTANT

Recall that a pants decomposition of a closed hyperbolic surface of genus g ≥ 2 corresponds to

a maximal collection of disjoint simple closed geodesics, or pants curves, on the surface. Any

connected component of the complement of the curves is a three-holed sphere, or pair of
pants. It is a theorem of Bers, quantified by Buser (see [44] and references therein), that every

surface has a pants decomposition of length bounded by a function which only depends

on the topology of the surface. For us, the Bers constant of the surface is the smallest L > 0

for which there is a pants decomposition all of whose curves have length at most L. By the

theorems cited above, it is known that the Bers constant of any genus g surface is at most

21(g− 1). On the other hand, there exist surfaces where any pants decomposition has a

curve of length at least
√

6g− 2.

In this section, we find surfaces in the Thurston set all of whose pants decompositions have
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a curve of length at least the square root of their genus (for arbitrarily high genus) but with

their systoles bounded by an absolute constant. It is perhaps somewhat surprising that a

surface has simultaneously a filling set of short curves and only long pants decompositions

but in fact Buser’s hairy torus examples [44] have similar properties. Those surfaces have

long pants decompositions with injectivity radius uniformly bounded from above and our

family of surfaces is directly inspired by these hairy tori.

Theorem 1.11.1. There exists a sequence of surfaces Sgk of genus gk → ∞ with a filling set of systoles
and with Bers constant > 2

√
gk.

Before proceeding with the proof, we make a couple of remarks. The first is that, although

our proof of Theorem 1.11.1 provides a slightly better constant in the lower bound, for

simplicity we leave this as “2” since it is really only the order of growth we are concerned

with. Second, any Lipschitz map from a trivalent surface (where the lengths of the curves

of some pants decomposition lie in the interval [a, b], with a and b independent of g) to

Sgk must then have Lipschitz constant comparable to at least
√

gk, because some pants

curve on the trivalent surface must get stretched to a curve of at least that length. Thus

Theorem 1.11.1 implies a lower bound on the Hausdorff distance between Xg and Yg, in either

the Teichmüller or the Thurston metric onMg. In particular:

lim sup
g→∞

dH(Xg, Yg) � log(g).

Proof. We will construct a surface of genus 1 with 2g− 2 cone points of angle π, and then

view it as the quotient of a genus g surface by an orientation preserving involution with

2g− 2 fixed points. We will then show that this double covering surface has the properties

we require.

The basic building block for our surface is the unique hyperbolic quadrilateral with all four

angles equal to π/4 and an order four cyclic isometry. For future reference we refer to this

quadrilateral as the square. It is itself obtained by gluing together four copies of a symmetric

Lambert quadrilateral whose only angle not equal to π
2 is π

4 . If we denote by t the length of

the two sides of equal length opposite to the angle π
4 , then t satisfies

sinh2(t) = cos
(π

4

)
and thus

t = arcsinh (1/2
1
4 ) .

What we need in what follows is that the shortest distance between two opposite sides of

the square is 2t.
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Figure 1: The “square”

Now for every pair of integers m, n, we construct a torus with mn singular points of angle

π as follows: We arrange mn copies of the square in a m× n rectangular grid. We then

paste opposite sides of the rectangle in the obvious way to obtain a torus T.

Note that the singular points of the torus thus obtained are meeting points of exactly four

squares, and so have angle π. Furthermore there is a natural action of Zm ×Zn on T, and

this action is transitive on the squares.

Our goal is to construct large genus surfaces, and so we have in mind that m, n should be

large numbers. If mn is even, there is a closed hyperbolic surface S of genus g = mn+2
2 and

an orientation preserving involution σ of S with 2g− 2 fixed points such that the quotient

of S by σ is the torus T. We must show that such a surface S has a filling set of systoles, and

that for a suitable choice of m and n, any pants decomposition has a “long” curve.

A first observation is that simple geodesic paths on T between pairs of singular points on

T (that do not pass through any other singular points than those at their endpoints) lift

to simple closed geodesics on S. This is because on S, the involution σ acts as rotation by

angle π around any fixed point of σ. As such, each such path lifts to two distinct copies of

the path on T between the two fixed points; these copies of the lifted path meet at an angle

of π at both endpoints and so they form a simple closed geodesic.

Among all pairs of singular points on T, there are some pairs that are distinguished by

being the singular points that lie at the ends of a side of a single square in T. We refer to

these as basic pairs of singular points. The paths between basic pairs of singular points are

the shortest paths between distinct singular points on T. (To see this one can observe that

maximal radius disjoint balls around the singular points meet on the centers of the sides of

the square.)
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Figure 2: The schematics for building the torus from the quadrilaterals

In particular, we can use this to show that a shortest path between a basic pair of singular

points will lift to a systole of S. To see this, take a simple closed geodesic γ on S and

consider its image under the quotient of S by σ. There are two cases to consider.

If γ goes through a fixed point of σ, then it will be invariant under the action of σ. Then γ

contains a second fixed point, necessarily the point diametrically opposite on γ to the first

fixed point. Thus γ will descend to a simple path on T between distinct singular points.

If γ is not invariant under the action of σ then it must descend to a non-trivial geodesic of

the same length on T, possibly non-simple. We can conclude that for large enough m, n, the

shortest closed geodesics on T are exactly those that follow a side of a square between two

singular points and then return.

We now prove that the systoles of S fill. Their quotients under σ clearly fill T as the

complementary region is a collection of quadrilaterals. This is actually sufficient. To see

this suppose that they did not fill S. Then there would be a non-trivial curve on S not

intersected by its systoles and thus a non-trivial curve in the quotient not intersected by the

systoles; this is impossible.

We now focus our attention to pants decompositions. The crucial observation is the

following:

Every pants decomposition on S must include a closed curve that descends to a non-trivial curve on
T.

Note that we are viewing T here as a topological torus, as opposed to an orbifold. By a

non-trivial curve, we mean a representative of a non-trivial element in the fundamental

group of T.

Proof of the observation: The image under the involution σ of each curve from a pants
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decomposition on S is a connected, not necessarily simple, curve on T. The image of the

full pants decomposition under σ must fill T. In particular, if T is cut along these curves,

the resulting surface has genus 0. This means that the result of cutting T along at least

one of these image curves must be genus 0. This curve is therefore necessarily non-trivial,

which proves the observation.

We now establish a lower bound for the length of such a curve in T. If we view T as a

rectangle with a standard gluing, any non-trivial curve on T must either go “east-west” or

“north-south” (or both). As such it must have length at least 2t min{m, n}. The same holds

true of course for the preimage of such a curve under the involution.

Setting m = n, we have n =
√

2g− 2, and the theorem follows.

3. TRIVALENT SURFACES WITH FILLING SETS OF SYSTOLES

In this section, we show that any trivalent graph with the combinatorial metric (in which

each edge has length one) coarsely resembles a hyperbolic surface with a filling set of

systoles. The strategy is to replace each vertex of G with a copy of a torus Y with three

boundary components, and to glue together these copies in a way prescribed by the edges

of G. We work with these higher complexity building blocks Y, rather than pants, to give

us room to fill the final surface with systoles. In order to ensure that our constructed set

of curves actually are systoles, we require that our graph G have girth 6 to begin with. Of

course not all trivalent graphs have this property, but as we are only interested in graphs

up to (uniform) quasi-isometry, we can use the following.

Lemma 3.1. There exist absolute constants a, b > 0 such that any trivalent graph G is (a, b)-quasi-
isometric to a trivalent graph of girth at least 6.

Proof. Suppose that G is a trivalent graph of girth less than 6. At any cycle of length

less than 6, we replace one edge by a segment subdivided into nine segments. We label,

in linear order, the 8 interior vertices with the integers 1, . . . , 8. Let H be the octagonal

graph whose eight vertices are cyclically labeled also by 1, . . . , 8. We attach a copy of H
at each of these newly created length nine segments of G by attaching each of its eight

labeled vertices to one of the labeled vertices of the segment of G, according to the pairings:

(1, 1), (2, 4), (3, 7), (4, 2), (5, 5), (6, 8), (7, 3), and (8, 6). This produces a graph whose girth is

at least 6.

As these alterations to G consist of local insertions of one of a finite possible number of

finite graphs, the resulting graph is quasi-isometric to G by constants which do not depend

on the graph.
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Figure 3: A torus with three boundary components (right) built out of 12 copies of a right-angled pentagon
(left).

We recall the statement we would like to prove.

Theorem 1.21.2. There exist absolute constants A, B, ` > 0 such that for any finite trivalent graph G
there exist g ≥ 2 and S ∈ X`

g such that S and G are (A, B)-quasi-isometric.

Proof. Using the previous lemma, we can assume that G has girth at least 6.

Our building block is a surface Y constructed from 12 copies of a right-angled pentagon

with side lengths, cyclically ordered, s/2, s/6, s/4, b/4, c. Specifying this relation between

side-lengths gives us the following relations between s and b:

sinh(s/2) sinh(s/6) = cosh(b/4)

sinh(s/4) sinh(b/4) = cosh(s/2)

This system of equations uniquely determines values for b and s, namely that

s ≈ 4.39 b ≈ 7.77

For us, the main significance is that b > s. A similar system of equations determines that c
is s/12. This value of c is what determines our choice to assume that G have girth at least 6,

as we shall see below.

The 12 pentagons are arranged so that Y is a genus one surface with three boundary

components, each of length b (see Figure 33). Note that there is a pants decomposition of Y
into three pants, each having two boundary components of length s and one of length b.

There is an order three fixed point free isometry of Y which cyclically permutes these pants.

Since b > s, the lengths of the boundary curves of Y are greater than s. Whenever we refer

to a pair of pants in Y, we are referring to the pants in this particular decomposition. We

refer to the copies of Y used to make up the surface as Y-pieces.
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Figure 4: A section of the graph (left) and the corresponding gluing of Y-pieces (right).

Figure 5: Putative systoles and arcs of systoles on a Y-piece, in boldface.

For each vertex v, we label the outward directions of the edges from v by v1, v2, v3. For the

corresponding copy Yv of the surface Y, we likewise label the three boundary components

by v1, v2, v3. Now we attach the copies of Y (referred to hereafter as Y-pieces), one for each

label, as prescribed by the graph: if vertices v, w of the graph are adjacent along directions

vi and wj, then the corresponding Y-pieces Yv, Yw are glued together without twist along

the boundary curves having the same labels. Specifically, by without twist we mean as in

Figure 44.

In Figure 55 we indicate a collection S of geodesics which we claim to consist of systoles

on S. By construction, the curves in S all have length s. That S fills S is clear by the

construction: the complement of these curves consists of hyperbolic polygons. We now

check systematically that every other simple closed curve on S must have length at least s.

A curve whose projection to G contains a nontrivial cycle must have length at least s; this is

ensured by the fact that the girth of G is at least 6, together with the fact that the shortest

distance between two boundary components of a Y-piece is 2c = s/6.
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We are left to check those curves whose projections to G contain no cycles. In this case, the

projection is either a single vertex or a path, which is a subgraph of G homeomorphic to a

closed interval. If the projection of the curve on S to G is a path, then its endpoints lie in

distinct Y-pieces.

We start by describing some particular geodesic arcs in the Y-pieces. We say that a simple

arc in a Y-piece is of type O if it lies in a single pair of pants, and if its endpoints lie in a

single boundary component of the pants in the interior of the Y-piece. An arc is of type P if

intersects exactly once each pair of pants in the Y-piece, with its endpoints contained in a

single boundary component of the Y-piece. An arc is of type Q if it lies in a single pair of

pants and its endpoints lie in the corresponding boundary of the Y-piece. Finally, an arc is

of typeR if it connects two distinct boundary components of the Y-piece. Representative

examples of the different types of arcs are illustrated in Figure 66.

We note that there are other possible arcs; for instance, there exists an arc in the Y-piece

with both endpoints in the same component of the boundary of the Y-piece but which

intersects two different pairs of pants in the Y-piece. However, such an arc contains an

arc of type O as a subarc. We have chosen the arcs of types O, P , Q andR because every

curve on S that projects to a path in G contains a sufficient number of arcs of these types for

us to estimate its length.

Q
O

P

R

Figure 6: Arcs on a Y-piece, labelled by their type.

We can bound from below the length of any simple closed curve γ on S whose projection to

the graph is a path by bounding the length of any arc of type O, P ,Q, orR.

An arc α of type O: Suppose that the ends of α lie on a curve γ in S . Each component

of γ− α, together with α, forms a simple closed curve. One such curve is homotopic

to one of the curves of length b, the other homotopic to another curve in S , which
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necessarily has length s. We obtain thus the inequality:

2`(α) + s ≥ b + s > 2s

so that the length of α satisfies `(α) > s.

An arc α of type P : Note that the shortest path connecting the boundary components

of length s of a pair of pants has length s/3. The arc α has two such subarcs, and so

we have

`(α) > s/3 + s/3 = 2s/3

An arc α of type Q: That `(α) ≥ s/2 follows immediately from the construction.

An arc α of typeR: Such an arc must have length at least s/6. Note here that because

the girth of the graph G is at least 6, any curve containing an arc of typeR must have

length at least s.

If γ is not properly contained in a Y-piece, then it contains at least two arcs each whose

lengths are at least that of any arc from types O, P ,Q, orR. Thus γ in this case has length

at least s.

The remaining case is that of a simple closed curve γ properly contained in one of the

Y-pieces. If γ intersects each pair of pants along arcs which connect distinct boundary

components of the pants, then the length of γ is bounded below by s. Otherwise γ intersects

pants along two disjoint simple arcs whose length is at least that of an arc of type O. Then

again, the length of γ is at least s.

We have thus established that any essential curve on S has length at least s, and thus that

the set of curves S consists of systoles.

We close this section by remarking that we can loosen the requirement that the valence

of G be exactly 3. Rather, we can stipulate that the valences of the vertices be uniformly

bounded. A graph with bounded vertex valence is quasi-isometric to a trivalent graph,

with quasi-isometry constants depending only on the bounds on the valences.

4. Xg IS SPARSE IN Yg

Recall that we define the set Yg = Y[a,b]
g of trivalent surfaces with bounded length pants

decomposition as

Y[a,b]
g = {surfaces with a pants decomposition {γk} with `(γk) ∈ [a, b]}
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In the previous section, we found that any trivalent graph (and thus any surface in Yg) can

be imitated, up to quasi-isometry with absolute constants, by a surface in the Thurston set

Xg′ where g and g′ are comparable (but are not necessarily equal). In this section we show

something somewhat tangent to this result: namely that Yg ∩ Xg is in some sense sparse

inside of Yg. Specifically we investigate how well distributed points of Xg are in Yg as the

genus g increases.

In order to endow Yg with a geometry we begin with the following observation.

There exist constants 0 < a < 2 arcsinh(1) < b such that Yg = Y[a,b]
g is a path-connected subset of

Mg.

The existence of such constants comes from the fact that the pants graph is connected

and that elementary moves can be implemented for well chosen constants. As they are

not terribly important in what follows we do not dwell on optimizing them. A simple

computation, for instance, shows that a = 1
10 and b = 10 suffice.

As a path-connected subspace, Yg can be equipped with the path metric coming from the

induced metric we are considering on Teichmüller space. We focus our interest on two

metrics on this space: the Teichmüller metric and the Thurston metric. What follows holds

for either choice, so let us suppose that we have chosen one of the two on Teichmüller space

and denote the induced distance on Yg by dYg . Note that if we knew Yg were sufficiently

convex with respect to either metric, this path metric dYg would be close to the restricted

metrics on Teichmüller space. However, little is known about the convexity of this set.

The metric structure we consider on Yg admits a nice combinatorial description, in terms

of the quotientMDP(Σg) of the diagonal pants graph of a closed orientable surface Σg of

genus g ≥ 2 by the mapping class group. Rafi and Tao [66] refer to this set as the set of

trivalent graphs endowed with the metric of simultaneous Whitehead moves. It can be

viewed as the graph of isomorphism types of trivalent graphs of fixed size where two

trivalent graphs share an edge if they can be related by elementary moves that can be

realized simultaneously. We give a precise and alternative way of seeing it below.

We show the following relationship betweenMDP(Σg) and Yg.

Theorem 4.1. There exist absolute constants A, B such that for any genus g ≥ 2, there exists an
(A, B) quasi-isometry betweenMDP(Σg) and Yg.

The fact that one can bound distances in Yg by distances in MDP(Σg) is an essential

ingredient in the work of Rafi and Tao mentioned above. We describe the spaceMDP(Σg)

more precisely. The usual pants graph P(Σg) is the graph whose vertices correspond to

12



Figure 7: The two types of elementary moves between pants decompositions

isotopy classes of pants decompositions of Σg; two vertices span an edge if they are related

by a so-called elementary move (see Figure 77).

An elementary move is an exchange of a curve of a pants decomposition with another lying

on the same complexity 1 subsurface and which intersects the original curve minimally.

(The complexity of a surface with boundary is the number of interior curves in a pants

decomposition so a complexity 1 subsurface is either a four holed sphere or a one holed

torus.)

The diagonal pants graph DP(Σg) is obtained from P(Σg) by adding edges whenever two

pants decompositions are related by elementary moves that take place on disjoint complex-

ity 1 subsurfaces. The spaceMDP(Σg) is the quotient of DP(Σg) by the natural action of

the (full) mapping class group. The result is a finite graph whose vertices are the topological

types of pants decompositions (as opposed to isotopy classes), where two vertices span an

edge if they are related by a set of elementary moves that can be simultaneously realized.

All these spaces are naturally metric spaces when one assigns length 1 to each edge. The

space DP(Σg) is defined as above in [22].

With this in hand, we now relate the set Yg to Xg using the induced distance dYg .

Theorem 1.31.3. There exists an absolute constant C > 0 such that a random surface in Yg has
distance in Yg at least C log(g) from Xg.

For the proof of Theorem 1.31.3, we construct a discrete model that will imitate the geometry

of Yg. In particular every point in Yg is a fixed distance away from this discrete set and

the discrete set is well distributed in Yg, i.e., it forms a net. This set as we shall see is a

copy of the set of trivalent graphs with 2g− 2 vertices, or alternativelyMDP(Σg), and so

in particular it admits a counting measure. Although there are alternative ways of defining

the notion of randomness, the “random” in the above statement can be taken to be exactly

the one coming from this measure.
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Let us now define the discrete set. To each topological type of pants decomposition we

associate a surface in Yg equipped with such a pants decomposition. We begin by choosing

a constant ε0. Following a choice of Fenchel-Nielsen coordinates associated to the pants

decomposition, we set all pants curve lengths to be ε0 and all twist parameters to be 0. If ε0

is small enough, these pants curves are necessarily systoles. A convenient value for ε0 is

2 arcsinh(1) (or smaller). Indeed, any curve that crosses a curve of length ε0 for such a value

of ε0 is necessarily longer by the collar lemma. As such, a surface can have only one such

pants decomposition and the pants curves are all systoles. Thus such values of ε0 determine

distinct points in moduli space for distinct topological types of pants decomposition.

We select in this way a natural discrete subset Y 0
g of Yg consisting of points in one-to-one

correspondence with the vertices of MDP(Σg). A key step in our proof of the above

theorem will establish that the set of points of Y 0
g forms a metric net for Yg.

4.1. The diagonal pants graph and trivalent surfaces

In this section we seek to better understand the geometry of Yg using the diagonal pants

graph. Our main result is Theorem 4.14.1. We recall that by Yg we mean Y[a,b]
g , where 0 < a <

ε0 = 2 arcsinh(1) < b are constants such that Y[a,b]
g is path-connected. The constants that

arise in what follows will depend on this initial choice of a and b, but the essential point is

that once a and b are chosen, all subsequent constants are fixed, independent of genus. In

all that follows, we are thinking of Yg as a metric space equipped with the induced path

metric dYg .

We begin with the following lemma.

Lemma 4.2. There exists an absolute constant R > 0 such that any point of Yg lies in a ball of
radius R around a point in Y 0

g .

Proof. We construct a path of uniformly bounded length entirely contained in Yg between

any point in Yg and an appropriately chosen point in Y 0
g . We use the following fact which

follows from Brooks’ theorem in graph coloring.

For every n ≥ 2 there exists a constant kn such that the vertices of any trivalent graph can be colored
by kn colors in such a way that any two vertices of the same color are at least distance n apart.

From this we can deduce the following.

Observation: A pants decomposition P can be partitioned into at most k2 sets Γi, i = 1, . . . , k2,
such that any two curves in the same Γi lie on distinct pairs of pants.

For a chosen point in Yg, consider a pants decomposition P with curve lengths `k ∈ [a, b],
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k = 1, . . . , 3g− 3, and apply the above observation. For each curve γ ∈ Γi, the union of all

pairs of pants it belongs to is a subsurface (either a four holed sphere or a one holed torus).

We shall now deform this subsurface in its moduli space while keeping the lengths of each

of the curves in its boundary fixed. Specifically, if the Fenchel-Nielsen coordinates with

respect to the pants decomposition P of the curve γ are (`k, tk), we use an efficient path in

Fenchel-Nielsen coordinates that terminates at (ε0, 0). Here, by an efficient path, we mean a

path of minimal length that remains in the ε-thick part of moduli space.

We apply this procedure simultaneously to all curves in Γi (while keeping the lengths and

twist parameters of the curves that are not in Γi fixed). We then proceed to the following

set Γi+1 and perform the same operation. Starting the procedure with Γ1 and terminating

with Γk2 , we see that the concatenation is the desired path ending at a point at Y 0
g .

Observe that there is an upper bound L on the length of the paths in the moduli spaces of

the complexity 1 subsurfaces that we described above. This follows from a compactness

argument. Specifically, because boundary curves have lengths that vary in [a, b] for each

i, 1 ≤ i ≤ k2, there is a compact set of such moduli spaces. Furthermore, in each of these

moduli spaces, there is a compact set of such paths (the initial point must have length and

twist in given intervals). By compactness, this gives the upper bound L (which depends

only on a and b) on each of the individual paths. Thus the total length of the path is

bounded by R := k2L.

Consider surfaces y1, y2 ∈ Y 0
g that, via the canonical correspondence with vertices in

MDP(Σg), share an edge inMDP(Σg). (In the sequel, we will simply say that y1 and y2

share an edge.) Observe that inMDP(Σg), curves that are related via an elementary move

must lie in a four holed sphere and not in a one holed torus, as there is only one type of

topological non-trivial simple closed curve in the latter.

The surfaces y1 and y2 are geometrically close in the following sense. Consider a curve γ of

length ε0 on y1 that is not of the same length on y2. This curve lies in a four holed sphere

with boundary curves of length ε0 on both y1 and y2. It also intersects a curve γ′ of length

ε0 on y2. Up to action of the mapping class group, we can take γ to be a curve of minimal

length on y2 among all curves with these same topological properties. It is easy to see that

this minimal length only depends on ε0; it is computable but of no particular interest, other

than being independent of genus.

With that observation in hand, the same proof for Lemma 4.24.2 above shows us that the

following holds.

Lemma 4.3. There exists an absolute constant R > 0 such that for all g ≥ 2 and all pair of surfaces
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y1 and y2 in Y 0
g that share an edge, dYg(y1, y2) < R.

This establishes that distances inMDP(Σg) bound distances in Yg. For the converse, we

present the following lemma. We prove it here in greater generality than is required, as

we feel it may be of independent interest. We use i(α, β) to denote the intersection number
between the curves α and β. For a collection Q of curves, we define i(α, Q) to be the sum of

the i(α, q) over q ∈ Q.

Lemma 4.4. Given K > 0 there exists a constant CK such that for any topological type of surface
Σ, the following holds. Let P, Q be pants decompositions of Σ for which

i(α, Q) ≤ K and i(β, P) ≤ K

for all α ∈ P and for all β ∈ Q. Then

dDP(Σ)(P, Q) ≤ CK.

Proof. We begin with a rough description of the proof: close to a curve α in P, we swap the

curves of Q which intersect α with “nearby” curves that do not. We can do this process

simultaneously on curves of P that are far enough apart. The resulting pants decomposition

deviates from Q by some bounded distance D(K) dependent only on K. We repeat this

process along such subsets of curves in P that intersect curves from Q until we reach P
itself; through this process we can find the bound CK.

Formally, the construction is as follows:

For α ∈ P \ Q, we denote by Σα the smallest subsurface of Σ for which, if β ∈ Q and

i(α, β) 6= 0, then β ⊂ Σα. Observe that ∂Σα ⊂ Q and that the curves of Q that intersect α

form a pants decomposition of Σα. It follows that the complexity of Σα is bounded by K.

Now consider an arc a of a curve of P that essentially intersects Σα. Denote by π(a) the

subsurface projection of a to Σα: it consists of either one or two curves that, together with

the boundary of Σα, bound a pair of pants. Notice that i(π(a), α) = 0.

It is possible that no such arc exists: this means that all boundary curves of Σα are also

curves of P. In that event we take a curve a ∈ P that forms a pair of pants with boundary

curves of Σα and set it to be π(a).

We apply the same process to the subsurface obtained from Σα by removing the pair of

pants bounded by ∂Σα and π(a). Iterating this procedure gives a sequence of pants whose

boundary curves, together with α, form a pants decomposition of Σα. For future reference
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α

a

π(a)

Figure 8: An example of Σα, π(a) and finally Qα

we denote Σk
α be the subsurface obtained by removing the first k pants in this sequence. For

instance Σ0
α = Σα.

As there are at most K pants in such a decomposition, this process ends in at most K steps

by a pants decomposition Qα of Σα.

We now examine intersection numbers throughout this process (and we won’t be very

scrupulous with our bounds as our only goal is to show that the bound only depends on

K). Because the curve containing our initial arc or curve a intersects Q at most K times, we

have

i(π(a), Q) ≤ 2K.

Now suppose that we have an arc a′ of a curve in P which intersects Σ1
α essentially. Then

we have

i(π(a′), Q) ≤ 2K + 4K

The 2K term bounds intersection coming from the intersection between a′ and Q. Above

we bounded the intersection between π(a) and Q by 2K and these intersections contribute

at most twice to the intersection of π(a′) with curves of Q (as this projection could wrap

around π(a)). This is the reason for the term 2(2K) = 4K. Continuing in this way, we find

that for any curve γ ∈ Qα

i(γ, Q) ≤
K−1

∑
i=1

2iK

We now compare Qα to the restriction of Q to Σα. We claim that the two pants decompo-
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sitions have a bounded distance D(K) in DP(Σα) which depends only on K. This follows

from a finiteness argument as follows. Using the above estimate and the fact that the

complexity of Σα is bounded by K, the total intersection numbers between Q and Qα are

bounded by a function f (K) of K which can be taken to be

f (K) =
K−1

∑
i=1

2iK2.

For k ≤ K, there are only a finite number of topological types of surfaces of complexity

k. On each of these types, there are only a finite number of topological types of pants

decompositions. For a given pants decomposition, there are only a finite number of isotopy

classes of pants decompositions that intersect it at most f (K) times, up to Dehn twists

around its curves; this can be seen with a simple constructive argument.

Now we turn this local construction into a global construction and for this we begin by

using the observation from the proof of Lemma 4.24.2. Specifically, we partition Q into m ≤ kK

multicurves Γi, i = 1, . . . , m, such that any two distinct curves in a given Γi are distance at

least K apart on the associated trivalent graph. Note that for distinct α, α′ ∈ Γi, the surfaces

Σα and Σα′ are disjoint. We begin with Γ1 and apply the local construction above to each

α ∈ Γ1. The result is a pants decomposition Q1 which contains Γ1. As we can make local

moves simultaneously, the above discussion for the local construction tells us that there

exists a function D(K) depending only on K so that

dDP(Σ)(Q, Q1) ≤ D(K).

We now apply the same process to Q1, this time with the multicurve Γ2. Note that at this

stage of the process, the curves of Q1 might have larger intersection number with P than

those of Q, but as explained above, the function f (K) bounds these intersection numbers.

Also notice that curves belonging to Q1 ∩ P are stable during the construction. We now

obtain a new pants decomposition Q2 at distance at most D( f (K)) from Q1 and we can

again repeat the process. At step i, we obtain a pants decomposition Qi whose curves

intersect P at most f i(K) times and at a distance at most D( f i(K)) from Qi−1. At step m,

we obtain Qm = P, and by the above estimates

dDP(Σ)(P, Q) ≤ D(K) + D( f (K)) + · · ·+ D( f m(K)) =: CK

This proves the lemma.

As a consequence of this lemma, observe that we have a well-defined projection from Yg

toMDP(Σg) as follows. For any point y ∈ Yg we choose a point y′ in Y 0
g distance at most
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R from y (measured using dYg ). This y′ - or more precisely the pants decomposition of Σg

corresponding to a a vertex ofMDP(Σg) obtained via the canonical map from Y 0
g - is the

projection of y. The existence of such a y′ follows from Lemma 4.24.2. There may be more than

one such to choose from, but any two are within dYg and Teichmüller distance (or Thurston

distance) R2 from each other.

Now consider two such y1 and y2 in Y 0
g at distance at most R2 from one another: we claim

that their distance inMDP(Σg) is small. Indeed, observe that any short curve γ (of length

ε0) of y1 has length at most ε0eR2
on y2, otherwise the two surfaces would be at least eR2

lipschitz apart, a contradiction. Now by the collar lemma, the curve γ intersects the short

pants decomposition of y2 at most some function I(R) of R times. By the above lemma we

know that dMDP(Σg)(y1, y2) ≤ CI(R).

Therefore, all choices of y′ are the same up to a universally bounded additive error. This

allows us to define a map:

Π : Yg →MDP(Σg).

We will see that this map Π is in fact a quasi-isometry between Yg and its image. Assuming

for the moment that Π is indeed a quasi-isometry, then as Π(Yg) is uniformly dense in

MDP(Σg) by the previous lemma, we have proven Theorem 4.14.1. The fact that Π is a

quasi-isometry follows from Lemma 4.34.3 and the following lemma.

Lemma 4.5. There exists an absolute constant C > 0 such that for any g ≥ 2 and all pants
decompositions Px, Py of Σg such that Px = Π(x) and Py = Π(y) the following holds:

dMDP(Σg)(Px, Py) ≤ CdYg(x, y) + C.

Proof. Let us consider a path c in Yg between x and y of minimum length `(c) and a covering

of c by a minimal number m of balls, B1, . . . , Bm, of radius R, where R is as in Lemma 4.24.2.

Note that

m ≤ b`(c)/2Rc+ 1.

We can suppose that x ∈ B1, y ∈ Bm. For each of the remaining Bk, we choose a point

pk ∈ Bk ∩ Y 0
g and project it to the vertex ofMDP(Σg) via the canonical map Π. Again, via

the same argument as in the discussion preceding this lemma:

dMDP(Σg)(Pk, Pk+1) ≤ CI(2R).
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As such

dMDP(Σg)(Px, Py) ≤ m CI(2R)

≤ CI(2R)(b`(c)/2Rc+ 1)

≤ C dYg(x, y) + C.

This lemma completes the proof of Theorem 4.14.1: from Yg toMDP(Σg) the quasi-isometry

is given by Π and from MDP(Σg) to Yg we map pants decompositions to Y 0
g via the

canonical map. The latter map is quasi-surjective by Lemma 4.24.2. Finally observe that it is

the constants from the above lemma that provide A, B in Theorem 4.14.1.

4.2. Counting points in Y 0
g at bounded distance from Xg

Having now established a quasi-isometry between Yg andMDP(Σg), we will apply it to a

counting argument to establish Theorem 1.31.3.

Notation 4.6. For functions A(x), B(x) we will write A(x) ≈ B(x) if they are equal up to

an exponential factor in x. By this, we mean that there are constants 0 < c1 < c2 so that

(c1)
x A(x) ≤ B(x) ≤ (c2)x A(x).

Similarly, we shall use A(x) . B(x) if the inequality holds up to an exponential factor.

The number of vertices in MDP(Σg) and thus in Y 0
g is equal to the number of non-

isomorphic connected trivalent graphs with 2g− 2 vertices. Quite a bit is known about the

number of these graphs, but what we require is the following result of Bollobás:

The number of vertices in Y 0
g is ≈ g2g.

The result of Bollobás [33] is actually stronger but this is sufficient for our purposes. Our

general strategy will be to establish that for any fixed a, b > 0 there are considerably fewer

points in

Π(Yg
[a,b] ∩ Xg)

namely gνg with ν < 2. Of course this result is only interesting if Yg
[a,b] and Xg intersect -

but as we have seen above, for well chosen constants a, b, there are many different shapes

of surfaces in Xg which lie in Yg
[a,b].

Note that an equivalent result using Y 0
g will also prove to be true: for any R > 0 there are

at most gν′g points (with ν′ < 2) in

Y 0
g ∩ BR(Xg).
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The result will then follow from the quasi-isometry established in the previous section and

an estimate on the growth of balls inMDP(Σg).

We begin with the following lemma.

Lemma 4.7. For any ` > 0 there exist constants L > 0 and h > 0 such that for any x ∈ Xg ∩ Yg

with systole `, the trivalent graph Π(x) ∈ MDP(Σg) contains at least hg disjoint cycles of length
at most L.

Proof. We consider a projection of curves on the surface x to paths on the corresponding

trivalent graph Π(x) ∈ MDP(Σg). For each x, the short curves of x will refer to those that

belong to the pants decomposition of Π(x). To any simple closed curve on x, we associate

the collection of edges corresponding to the short curves it crosses. Note that the curve

might project to a trivial path, by which we mean a subgraph of Π(x) without cycles, as do

for instance the short curves of x.

If the curve projects to a trivial path, this path is necessarily a tree (possibly reduced to a

single vertex or a single edge) and because this tree comes from the projection of a closed

curve, each edge that appears in this tree must appear an even number of times (that is, the

path must go “back and forth” through each edge it goes through). For this reason, two

intersecting curves that both project to trivial paths must intersect at least twice. As such,

among any pair of curves that intersect exactly once, at least one projects to a path in the

graph containing a non-trivial cycle.

Now consider a homeomorphism ϕ with minimal Lipschitz constant between x and the

surface y ∈ Y 0
g corresponding to the trivalent graph Π(x). This Lipschitz constant is at

most eR2
(with R from Lemma 4.24.2). We begin by observing that the image under ϕ of a

systole γ of x is a curve of length at most eR2
` on y. Now consider the image under ϕ of the

full set of systoles of x on y. As these curves on x fill, their images under ϕ on y also fill,

and hence the projections of these curves from y to Π(x) cover every edge.

As the length of each of the pants curves on x is fixed, the collar lemma ensures that the

projection of a systole to Π(x) cannot contain more than a certain fixed number L of edges.

Now as the systoles fill, every systole intersects another systole (exactly once). As observed

above, one of them projects to a non-trivial cycle and as such the L-neighborhood of every

vertex v in Π(x) contains a non-trivial cycle of length at most L.

We now establish the lemma by taking a set VL of vertices of the graph all of distance at least

2L + 1 from each other and by considering cycles of length at most L in the L neighborhood
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of each. The cycles are all disjoint, and there are at least

total number of vertices
number of vertices of distance at most L from a vertex in VL

≥
⌊

2g− 2
3 2L−1

⌋
which is bounded below by hg for some suitable choice of h. This establishes the lemma.

We now count trivalent graphs with the property described above.

Lemma 4.8. For constants h, L, there exists a constant ν = ν(h, L) < 2 such that for sufficiently
large g, there are at most gνg isomorphism types of trivalent graphs with 2g− 2 vertices containing
at least hg disjoint cycles of length at most L.

Proof. The proof is in three steps. We begin by reducing the short cycles to loops by

performing a bounded number of simultaneous Whitehead moves on the graph. We then

remove the hg loops to obtain a trivalent graph with fewer vertices. Finally we count how

many trivalent graphs one can obtain by “reversing” the above process.

We begin by choosing a set of hg disjoint cycles of length at most L. On each such cycle

we choose a maximum number of disjoint edges (at most L
2 ). This gives us a collection of

disjoint edges of the graph on which we can perform elementary moves simultaneously.

Figure 9: Reducing cycles.

For each loop γ with `(γ) > 1 we choose the moves carefully so as to reduce the length of

the loop by a factor of roughly 1
2 as in Figure 99. The resulting loop γ′ has length precisely

`(γ′) = b1
2
`(γ)c+ 1.
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Once a cycle has been transformed into a loop, we leave it alone. After at most

log2(L) + O(log2(L)),

steps all hg cycles have been transformed into loops.

Now we consider the trivalent graph obtained by removing the loops as follows: each loop

is attached to a vertex which in turn is attached to an edge. We remove the loop and the

attached edge and finally we delete the resulting valency 2 vertices (see Figure 1010). The

result is a trivalent graph with

2g− 2− 2hg = 2(1− h)g− 2

vertices. The number of such graphs is at most ≈ g2(1−h)g, as functions of g.

Figure 10: Removing cycles.

This gives a map from graphs with short cycles to trivalent graphs with fewer vertices. By

bounding how many different graphs one obtains from a single graph with 2(1− h)g− 2

vertices by reversing the process, we will be able to deduce a bound on how many graphs

we began with.

Given a graph with 2(1− h)g− 2 vertices, we need to “add” vertices back on to it. This

consists of adding a vertex to an edge and adding an edge and a loop to the new vertex. A

rough bound is given as follows: we may add a loop to an edge or not, and because we

have 3(1− h)g− 3 edges, there are at most 23(1−h)g−3 possible graphs we can obtain from

our initial graph.

Now the above algorithm shows that a trivalent graph with the short cycles is inMDP(Σg)

at most distance

log2(L) + O(log2(L))

away from one of the graphs with hg loops. We can now apply Lemma 4.94.9 (whose proof

will follow) to show that there are at most

3(g−1) log2(L)+O(log2(L))
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points at distance at most log2(L) + O(log2(L)) from a given point. We now conclude that

the total number of graphs with the desired properties is at most

≈ g2(1−h)g23(1−h)g−33(g−1) log2(L)+O(log2(L)) ≈ g2(1−h)g.

As such by choosing 2 > ν > 2(1− h) we have that this number is bounded by

gνg

for sufficiently large g.

Our last step is to count balls of radius r inMDP(Σg).

Lemma 4.9. A ball of radius r inMDP(Σg) contains at most (3g−1)r vertices.

Proof. We fix a vertex inMDP(Σg) and we begin by counting possible elementary moves

that result in producing different pants decompositions and then we bound the possible

number of pants decompositions that can result from these moves. An elementary move

corresponds to a move across an edge inMDP(Σg) only if it occurs on a four holed sphere.

There are at most g− 1 disjoint four holed spheres on a surface and up to homeomorphism

an elementary move on a curve in a four holed sphere has three possible resulting curves

(including leaving the curve invariant). We deduce that there are at most 3g−1 different pants

decompositions up to homeomorphism that can result from a collection of simultaneous

elementary moves. By definition, this is a bound on the number of points inMDP(Σg) at

distance 1. At distance r, we obtain at most (3g−1)r.

We can now prove Theorem 1.31.3. Via Theorem 4.14.1 and Lemma 4.74.7, it suffices to show that

there is a point at least distance C log(g) inMDP from all elements inMDP corresponding

to graphs with collections of disjoint short cycles. Now via Lemma 4.84.8, we know the number

of such graphs is at most gνg with ν < 2. Thus via Lemma 4.94.9, as long as

gνg (3g−1)r < Number of trivalent graphs with 2g− 2 vertices

then there are points ofMDP that are distance r from any point in “Y 0
g ∩ Xg”. By taking

‘log’s we have

r3g−1 . g(2−ν)g,

as functions of g. As ν < 2, from this we obtain the existence of points of distance at least

r > C log(g).

This establishes Theorem 1.31.3.

24



REFERENCES

[1] J. W. Anderson, H. Parlier, and A. Pettet, Small filling sets of curves on a surface, Topology

Appl. 158 (2011), 84-92.

[2] J. Aramayona, C. Lecuire, H. Parlier, and K. Shackleton, Convexity of strata in diagonal
pants graphs of surfaces, Publ. Mat., 57 (2013), 219-237.

[3] B. Bollobás, The asymptotic number of unlabelled regular graphs, J. London Math. Soc. (2)

26 (1982), no. 2, 201–206.

[4] P. Buser, Geometry and spectra of compact Riemann surfaces, vol. 106 of Progress in
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