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Abstract. We investigate a type of distance between triangulations on finite type surfaces

where one moves between triangulations by performing simultaneous flips. We consider

triangulations up to homeomorphism and our main results are upper bounds on distance

between triangulations that only depend on the topology of the surface.

1. INTRODUCTION

The general theme of defining and measuring distances between triangulations on surfaces

plays a role in the study of geometric topology, the geometric group theory perspective of

mapping class groups and in combinatorial geometry.

A usual measure of distance is to consider flip distance where one measures distance by

considering the number of flip moves necessary to go from one triangulation to another.

Associated to this measure are flip graphs where vertices are triangulations and there

is an edge between vertices if the corresponding triangulations differ by a flip. These

graphs appear in a number of contexts, most famously perhaps when the underlying

surface is a polygon and in this case the flip graph is the 1-skeleton of a polytope (the

associahedron) [99, 1010]; these graphs are finite and their diameters are now completely

known [77, 88]. In general, provided the surface has enough topology, flip graphs aren’t

finite and are combinatorial models for homeomorphism groups acting on surfaces. A

natural finite graph associated to a surface is its modular flip graph where one considers

triangulations up to homeomorphism. This graph (when defined properly and up to a few

exceptions) is exactly the quotient of the flip graph by its graph automorphisms ([66] and

[55]).

In this article we consider a natural variant by measuring distance between triangulations

by considering the minimal number of simultaneous flip moves necessary between them.

So in this case, provided flips are made on disjoint quadrilaterals, they can be performed
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simultaneously. Simultaneous flip distance has been studied in the case of plane triangula-

tions [11] (note there is slight difference in the definition of a triangulation) but also finds

its roots in related problems in Teichmüller theory. A related problem in surface theory is

to measure distance between surfaces - and when these surfaces are hyperbolic and have

the same topology, these distances and the related metric spaces give rise to the geometric

study of Teichmüller and moduli spaces. In these spaces, several of the important metrics

(namely the Teichmüller metric and the Thurston metric) are `∞ metrics. The simultaneous

flip metric can be thought of as a combinatorial analogue to these metrics.

Our main goal is to study the diameters of modular flip graphs of finite type orientable

surfaces endowed with this distance. In particular we are interested in how these diameters

grow in function of the number of punctures and the genus of the underlying surface.

There are two possible types of punctured depending on whether we label the punctures or

not. This is equivalent to asking whether we consider homeomorphisms on surfaces that

permute the punctures. Our methods allow us to show the following.

Theorem 1.1. There exists a constant U > 0 such that the following holds. Let Σg,n be a surface of
genus g with n labelled marked points. Then any two triangulations of Σg,n are related by at most

U (log(g + n))2

simultaneous flip moves.

In other terms, the above quantity is an upper bound on the diameter diam(MF s(Σg,n)) of

the modular flip graph. We prove the above result in different contexts and with different

explicit constants in front of the leading term; although the constants are explicit, we insist

on the fact that it is really the order of growth that we’ve focussed on.

We point out that we don’t know whether the growth rate is optimal; the best lower bounds

we know are on the order of log(κ) in terms of either genus or labelled marked points. It

does not seem a priori obvious how to fill the gap nor even what to conjecture might be the

right rate of growth (see Section 66). However in the case of unlabelled marked points, we

show that the growth is at most log(n) in terms of the number of punctures. As in the case

of triangulations of planar configurations of points, it is easy to see that one cannot hope

for better (see Section 66).

Organization.

In the next section we introduce the objects we’ll be working with and prove two lemmas

we’ll use throughout the paper. In Section 33 we prove the main theorem for punctured

spheres and in Section 44 for genus g surfaces with a single puncture. These results allow
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us to deduce the general upper bound in Section 55. In the final section we discuss lower

bounds and further questions.
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2. PRELIMINARIES

In our setup Σ is a topological orientable connected finite type surface with a finite set of

marked points on it. Its boundary can consist of marked points and possibly boundary

curves, with the additional condition that each boundary curve has at least one marked

point on it. Marked points can be labelled or unlabelled. Sometimes we will call punctures
the marked points that do not lie on a boundary curve. We will be interested in the

combinatorics of arcs and triangulations of Σ. The arcs we consider are isotopy classes of

simple arcs based at the marked points of Σ. A multiarc is a union of distinct isotopy classes

of arcs disjoint except for possibly in their endpoints. A triangulation of Σ is a maximal

multiarc on Σ (note that this definition is not standard everywhere). The triangulations

we consider here are allowed to contain loops, multiple edges; in particular triangles may

share more than a single vertex or a boundary arc.

We denote by κ(Σ) the number of arcs in (any) triangulation of Σ. The Euler characteristic

tells us that κ(Σ) = 6g + 3b + 3s + p − 6 where g is the genus of Σ, s is the number of

punctures, b is the number of boundary curves and p is the number of marked points on

the boundary curves.

The modular flip graphMF (Σ) is a graph whose vertices are triangulations of Σ with vertices

in the set of marked points of Σ up to homeomorphism. The homeomorphisms we consider

here preserve the set of marked points; in particular they fix the set of the labelled marked

points pointwise and they are allowed to permute the unlabelled marked points. Two

vertices ofMF (Σ) are joined by an edge if the two underlying triangulations differ by

exactly one arc; equivalently two triangulations are joined by an edge if they differ by a flip,

i.e. the operation of replacing one diagonal with the other one in a square.

An arc that can be flipped is called flippable and all arcs are flippable except those contained
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Figure 1: A flip

in a punctured monogon (see Figure 22)

Figure 2: The central arc is not flippable

The modular flip graphMF (Σ) can also be described as the quotient of the flip graph of Σ

modulo the action of the mapping class group (see [44, 66]).

In this paper we will be interested in the modular simultaneous flip graphMF s(Σ). This is

also a graph whose vertices are the triangulations of Σ up to homeomorphisms. Here two

vertices are joined by an edge if the two underlying triangulations differ by a finite number

of flips which are supported on disjoint quadrilaterals on Σ, i.e. a finite number of flips that

can be performed simultaneously on Σ.

The following result, due to Bose, Czyzowicz, Gao, Morin and Wood, is Theorem 4.4 in [11].

It is both a prototype for what we’ll be exploring and a tool that we shall exploit.

Theorem 2.1. There exists a constant K > 0 such that the following is true. Let Pn be a polygon
with n vertices and T, T′ two triangulations of Pn. Then it is possible to relate T to T′ in at most
K log(n) simultaneous flips.

The constant K is computable and in [11] it is shown that K can be taken less than 44. In

the sequel we won’t be particularly concerned in optimizing constants as its the order of

growth that we’re really concerned with. However they all will be computable and we’ll

indicate exact upper bounds that follow from our methods.
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An obvious consequence of the theorem stated above is the following. Given T a triangu-

lation of P, let Tv be the unique triangulation of Pn with maximal degree in v. Then the

simultaneous flip distance between T and Tv is at most K log(n). A result of this type is

true in any context as stated in the following lemma.

Lemma 2.2. Let v be a puncture on a surface Σ and T a triangulation of Σ. Then there exists
a sequence of at most H log(κ(Σ)) simultaneous flips such that the degree of v is maximal. The
constant H can be taken equal to 100.

Proof. When Σ is a polygon this is a consequence of the previous theorem (with a better

constant). We can thus suppose that Σ has some topology.

We begin by cutting Σ along a multiarc made of 2g + n− 1 arcs of T such that the resulting

surface is a connected polygon with 4g + 2n− 2 sides.

We now choose a copy of v0 and apply Lemma 2.12.1 to increase the degree until it’s maximal

within the polygon. This step requires at most K log(4g + 2n− 2) flips.

We now return to the full surface - note that every triangle now has v0 as a vertex. With one

simultaneous flip move we can ensure that every triangle has v0 as two of its vertices. To

do this consider a triangle with only one copy of v0 as a vertex: exactly one of its three arcs

does not have v0 as an endpoint. This arc is flippable, otherwise it surrounds a monogon

as in Figure 22 and thus there is a triangle without v0 as any of its vertices. As such the

triangles with the property of having an arc without v0 as an endpoint come in pairs and

form quadrilaterals together. These arcs can all be flipped simultaneously.

Now it is not difficult to see that with a final simultaneous flip move we can ensure that

all triangles have only v0 as vertices or are what we’ll call petals based in v0. A petal is a

triangle like in Figure 22 and its base is the exterior vertex. We thus have reached a desired

triangulation as the degree is maximal in v0.

We can now quantify the procedure: the number of simultaneous flip moves is bounded

above by

K log(4g + 2n− 2) + 2

Finally note that when κ(Σ) ≥ 2 we have

K log(4g + 2n− 2) + 2 ≤ 100 log(κ(Σ))

and this completes the proof. �

We recall that the intersection number i(a, b) between two arcs a and b is defined to be the

minimum number of intersection points between two arcs in the classes of a and b. The

5



intersection number of two multiarcs A, B is defined as

i(A, B) = ∑
b∈B

∑
a∈A

i(a, b).

Lemma 2.3. Let a be an arc and T a triangulation of Σ such that i(a, b) ≤ 1 for all b ∈ T. Then
T can be moved in at most L log(i(a, T) + 1) simultaneous flips to a triangulation containing a,
where L can be taken equal to 100.

Proof. Assume i(a, T) ≥ 1. Consider the set of all triangles of T through which a passes.

They can be assembled into a polygon P and because a only intersects a triangle once, a is a

diagonal of this polygon. The polygon has complexity κ = i(a, T) by construction so has

i(a, T) + 3 vertices. Consider any triangulation Ta of P containing a: we now apply Lemma

2.12.1 to pass from T to Ta in at most K log(i(a, T) + 3) < 100 log(i(a, T) + 1) moves. �

3. PUNCTURED SPHERES

In this section we focus our attention on finding upper bounds on simultaneous distance

between triangulations of punctured spheres and disks with a single marked point on the

boundary.

We begin by proving the following theorem for Ω′n, a punctured disk with n marked points

inside and a single marked point on the boundary.

Theorem 3.1. There exists A > 0 such that diam(MF s(Ω′n)) < A(log(n + 1))2. The constant
A can be taken equal to 1000.

Proof. Consider T, T′ ∈ MF s(Ω′n) and denote v0 the boundary vertex of Ω′n.

We begin by flipping both T and T′ until the degree of v0 is maximal. By Lemma 2.22.2 this

step requires at most H log(κ(Ω′n)) = H log(3n− 2) moves for each triangulations.

The result is a triangulation in which every puncture has an arc joining it to v0 which in

turn is surrounded by an arc. As previously, we call the unique triangle containing a given

puncture a petal and the complement of the union of the petals is an n + 1-gon with n + 1

copies of v0 as its vertices.

For each of our two triangulations we’ll now perform the same procedure. We begin by

looking at the polygon - one of the edges corresponds to the boundary arc of Ω′n, say a. We

give the vertices of the polygon a cyclic order with p0 being on the left of a, and pn on the

right.
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Figure 3: The shaded area is triangulated (so arcs have both endpoints in v0)

By Lemma 2.12.1 any two triangulations of the polygon are at distance roughly log(n) apart

and we’ll use that to obtain a special type of triangulation. More precisely we move until

the degree of pn is maximal. By Lemma 2.12.1 this step takes at most K log(n + 1) flips.

Figure 4: The shaded areas are triangulated in the same fashion around each petal.

We now return to the petals. Figure 44 represents the result of the previous step around a

petal. The goal is split the vertices into two groups, both surrounded by an arc: one with all

vertices v1 to vb n
2 c and one group with the other ones. This can be done in two steps:

The first step takes two moves: flip (simultaneously) all arcs surrounding the petals con-

taining vertices v1 to vb n
2 c and then flip all arcs between v0 and vk for k = 1, . . . , b n

2 c. The

result around an individual petal is illustrated in Figure 55.

We then flip symmetrically as in Figure 66.

The result is again a triangulation with petals but this time the petals with vertices v1 to

vb n
2 c are grouped together with respect to the left-right order.

The second step is to move in the polygon on complement of the petals to create a triangu-

lation which contains two special arcs b, c: one that surrounds the petals containing v1 to

vb n
2 c and the other that surrounds the remaining petals. Note that a, b, c are the arcs of a

triangle. What the rest of the triangulation looks like is irrelevant. By Lemma 2.12.1 this step
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Figure 5: Breaking the petal...

Figure 6: ...and building it else where.

takes at most K log(n + 1) flips.

Now we move (simultaneously) inside each arc b and c which surround resp. b n
2 c vertices

and n − b n
2 c vertices. Denote by Ωb, Ωc the two subsurfaces bounded by b and c. By

induction on n, the number of flips inside each of the two subsurfaces is at most

A log2(bn
2
c+ 1).

The distance between T and T′ is at most

d(T, T′) ≤ A log2(bn
2
c+ 1) + 2(2K log(n + 1) + H log(3n− 2)) + 4

≤ A log2(n + 1).

A direct computation proves that when A is large enough (for example A = 1000) the last

inequality holds for every n ≥ 1. �

From the theorem above it is easy to obtain the same type of result for a punctured sphere.

Theorem 3.2. Let Ωn be a sphere with n labelled punctures. Then there exists B > 0 such that
diam(MF s(Ωn)) < B(log(n))2, where B can be taken to be equal to 1100.
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Proof. For n ≤ 3 the result is immediate since Ωn has at most 6 triangulations. We will now

assume n ≥ 4.

We could prove the theorem analogously to the previous theorem but for simplicity we’ll

use the previous result directly.

Let’s denote v0, . . . , vn−1 the punctures of Ωn. Given two triangulations T, T′ we begin by

flipping them to increase the valency of v0 until it is maximal. By Lemma 2.22.2 this step takes

at most 2H log(κ(Ωn)) = 2H log(3n− 2) moves. As a result we obtain two triangulations,

say T̃, T̃′, with all vertices with an unflippable arc joining it to v0. Consider the petal

surrounding vn−1 - the complementary region to it is a triangulation of a disk with a single

marked vertex (namely v0) on its boundary and with n− 2 interior vertices. Theorem 3.13.1

tells us that T̃ and T̃′ are at most A log2(n− 1) apart. We thus have

d(T, T′) ≤ d(T, T̃) + d(T′, T̃′) + d(T̃, T̃′)

≤ 2H log(3n− 2) + A log2(n− 1)

≤ 200 log(3n− 2) + 1000 log2(n− 1)

≤ B log2(n)

A direct computation proves that when B is large enough (for example any B ≥ 1100 works)

the last inequality holds for every n ≥ 4. �

Remark 3.3. The case where the punctures of Ω′n are unlabeled is easier. Consider T, S in

MF s(Ω′n) and denote v0 the boundary vertex of Ω′n. We begin by flipping to increase the

valence of v0 until it is maximal. By Lemma 2.22.2 this step requires at most H log(κ(Ω′n)) =

H log(3n− 2). Now up to homeomorphism the two triangulations differ only in a n+ 1-gon

(the shaded area of figure 33). By Lemma 2.12.1 the triangulations T and S differ by at most

2H log(3n− 2) + K log(n + 1) < 400 log(n)

simultaneous flips. We have thus proved the following:

Theorem 3.4. Let Ω′n be a disk with n unlabelled punctures. There exists B > 0 such that
diam(MF s(Ω′n)) < A log(n), where A can be taken equal to 400.

Remark 3.5. The above proof applies word-by-word for unlabeled punctured spheres Ωn.

We thus have the following:

Theorem 3.6. Let Ωn be a sphere with n unlabelled punctures. There exists B > 0 such that
diam(MF s(Ωn)) < B log(n), where B can be taken equal to 400.
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4. SURFACES WITH GENUS

In this section we prove our upper bounds in terms of genus.

For technical reasons we begin by proving a theorem for surfaces of genus g with a single

boundary component with a marked point on it.

Theorem 4.1. Let Γ′g be a surface of genus g with a single boundary component with a marked
point on it. Then

diam(MF s(Γ′g)) < C (log(g + 1))2

where C can be taken equal to 3000.

We use a technique introduced in Disarlo-Parlier [44] and before proceeding to the proof, we

state two lemmas we will need. Proofs can be found in Disarlo-Parlier [44] (Lemmas 4.4 and

4.5).

Lemma 4.2. Let T be a triangulation of Λ, a genus g ≥ 1 surface with a single boundary curve
and k marked points all on the boundary. Then there exists a ∈ T such that Λ \ a is connected and
of genus g− 1.

Lemma 4.3. Let T be a triangulation of Λ, a genus g ≥ 0 surface with two boundary curves, both
with marked points, and all marked points on the boundary. Then there exists a ∈ T such that Λ \ a
has only one boundary component.

We can now proceed to the proof of the theorem.

Proof. The result can be checked directly for g = 1. We need to check that the diameter is at

most 2000 log(2) > 5. Indeed, a one-holed torus has at most 5 possible triangulations so

the result is true.

Now suppose that g ≥ 2.

Denote by v the boundary vertex of Γ′g. Given triangulations S, T of Γ′g, flip both until the

valence of v is maximal and denote by Sv, Tv the triangulations obtained. By Lemma 2.22.2

each step takes at most H log(κ(Γ′g)) flips. Now we proceed as in the proof of Theorem

4.3 in Disarlo-Parlier [44]. We successively apply the previous lemmas to find a collection

of 2b g
2 c arcs along which we can cut so that the resulting surface has genus g− b g

2 c and

a single boundary component with 1 + 4b g
2 c arcs. (Note that so far we haven’t applied a

single flip to either Sv or Tv.)

Our aim is now to introduce two special arcs that are essentially parallel to the single

boundary of the surface we’ve obtained by cutting along the arcs (see Figure 77).
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Figure 7: The shaded region is of genus g− b g
2 c

We describe the process we’ll apply to both triangulations Sv, Tv. If we consider the arc a
which is boundary arc of Γ′g, note that the arcs b, c we want to introduce form a triangle

with a and both cut off (of Γ′g) resp. a surface Γ′1 of genus b g
2 c, resp. a surface Γ′2 of genus

g− b g
2 c. They also have the nice property of intersecting any arc of the triangulation (either

Sv or Tv) at most once. In addition this means they intersect the full triangulation at most

κ(Γ′g) times. We can now appeal to Lemma 2.32.3 from the preliminaries which tells us that

we can introduce each of them in at most L log(κ(Γ′g) + 1) = L log(6g− 1) moves. Denote

by S′, T′ the new triangulations obtained, they both contain the arcs b, c. Denote by S′k, T′k
the restrictions of S′, reps. T′ to Γ′k for k = 1, 2. Now flip S′k, T′k inside Γ′k for k = 1, 2. Once

the triangulations coincide on both Γ′1 and Γ′2, they will coincide on Γ′g.

By induction on g, the following holds:

d(S′1, T′1) ≤ C log2(b g
2
c+ 1) ≤ C log2(

g
2
+ 1)

d(S′2, T′2) ≤ C log2(g− b g
2
c+ 1) ≤ C log2(

g + 1
2

+ 1)

Putting all together:

d(S, T) ≤ d(S, S′) + d(T, T′) + max{d(S′1, T′1), d(S′2, T′2)}

≤ 2(L log(6g− 1) + H log(6g− 2)) + C log2(
g + 1

2
+ 1)

≤ C log2(g + 1)

A direct computation proves that the last inequality holds for every g ≥ 2 when C is large

enough (for instance C = 3000). �

We can use the previous theorem to show the analogous result for a genus g surface with a

single puncture.
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Theorem 4.4. Let Γg be a surface of genus g with a single marked point. Then

diam(MF s(Γg)) < C (log(g + 1))2

The constant C can be taken to be equal to 3000.

Proof. We argue as in the previous theorem by considering for any triangulation a collection

of 2b g
2 c arcs that when cut along give a surface of genus g− b g

2 c with a single boundary

component with 4b g
2 c arcs. As in the above proof, we can introduce an arc that separates

the surface in two subsurfaces of genus b g
2 c and g − b g

2 c. Then we apply the previous

theorem to both to obtain the result. �

5. HYBRID SURFACES

In this section we prove our most general upper bound which works for surfaces with

punctures and genus.

Theorem 5.1. Let Σg,n be a surface of genus g with n labelled marked points. Then

diam(MF s(Σg,n)) < D (log(g + n))2

The constant D can be taken equal to 4500.

Proof. Consider a triangulation of Σ := Σg,n and a spanning tree of its 1-skeleton. Note

that a spanning tree contains exactly n− 1 arcs. Consider a marked vertex v0 and the loop

a based in v0 obtained by leaving from v0 and following the spanning tree along an arc

(leaving the spanning tree to the left say) and going around the entire tree before returning

to v0.

The arc a is separating and leaves the genus to one side and the punctures to other (except

for the point v0 which lies on the arc itself). We claim that it can be introduced in the

triangulation in at most (H + L) log(κ(Σ)) moves.

To do so one can proceed as follows. Cutting along the arcs of the spanning tree we find

a surface Σβ of genus g and a single polygonal boundary component β with all marked

points now on the boundary. A marked point of degree d in the spanning tree appears on

the boundary component β exactly d times and β is a polygon of 2n− 2 arcs (twice the

number of arcs of the spanning tree).

Note that the arc a also lives on Σβ and is a loop parallel to β with its basepoint a copy of

v0. We now flip the restriction of the triangulation to increase the valence of the basepoint

12



a

v0

Figure 8: A spanning tree of the vertices and the arc a

of a until it is maximal. By Lemma 2.22.2 this step requires at most H log(κ(Σ)− (n− 1)) <

H log(κ(Σ)) simultaneous flips. The arc a now intersects any arc in the triangulation at

most once and thus by Lemma 2.32.3 can be introduced in at most L log(κ(Σ)) moves.

This can be done to any triangulation so now considering two triangulations T and S, we

perform the above process on both. The new triangulations obtained, say S′ and T′, possibly

differ in “the genus part” Γ′g or the “puncture part” Ω′n−1 but by applying Theorems 3.13.1,

4.14.1 from before, we can conclude that they lie at distance at most

d(S, T) ≤ d(S, S′) + d(T, T′) + d(S′, T′)

≤ 2(H + L) log(κ(Σ)) + max{diam(MF s(Γ′g)), diam(MF s(Ω′n−1))}

≤ 2(H + L) log(6g + 3n− 6) + C log2(g + n)

≤ D log2(g + n).

A direct computation proves that the last inequality holds for every g, n such that g + n ≥ 2

provided that D is large enough (for example, D = 4500). �

Remark 5.2. We can apply the same proof as above to the case of a surface with unlabelled

marked points. One has to be careful because in the above estimates, we are trying to

capture the cases where both the genus and number of points are increasing, possibly at

different rates. Our previous upper bounds for spheres with unlabelled marked points

grows log(n); in combination with the above proof this implies that for fixed genus, one

can again obtain an upper bound on the order of log(n) with an additive constant that

depends on the genus. Again, all constants can be made explicit but for simplicity we won’t

discuss this in detail.
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6. LOWER BOUNDS AND FURTHER QUESTIONS

For surfaces with genus and labelled marked points, our upper bounds grow roughly like

(log(κ))2 in κ the complexity of the surface. It is not clear where this order of growth is

optimal.

An immediate lower bound can be deduced from known bounds on the diameters of

the usual flip graphs. In those cases lower (and upper) bounds are known to grow like

g log(g) + n log(n) (see Theorem 1.4 and Corollary 4.19 of [44]). As at most a linear number

of flips in terms of the complexity can be performed simultaneously, this implies a lower

bound on the order of log(κ). The counting argument used to provide this bound is

pretty simple, especially compared to our upper bounds, and it does not seem particularly

adapted for simultaneous flips. In terms of unlabelled marked points, the same order of

growth holds for these lower bounds. It would seem surprising that there is no difference

in order of growth between labelled and unlabelled marked points. All of these points

seem to indicate that perhaps a better lower bound might be achievable.

On the other hand, there are some indications that an upper bound on the order of log(κ)

might be possible. A seemingly related problem to estimating distances in the flip graph

is the problem of estimating distances between 3-regular graphs using Whitehead moves.

These graphs are dual to a triangulation and a flip on a triangulation corresponds to

a Whitehead move. Triangulations are really different though; first of all they really

correspond to ribbon graphs and not 3-regular graphs. Secondly only certain Whitehead

moves on a 3-regular graph can be emulated by flips. In particular, it’s not possible to

deduce results about flip distances from estimates on Whitehead moves or vice-versa. But

although the relationship is not direct, there have been a number of recent results that seem

to indicate similar behaviors. The κ log(κ) behavior discussed previously for modular flip

graphs is also present for Whitehead moves on graphs (see for instance [22, 33]). Simultaneous

flip moves are thus related to simultaneous Whitehead moves and Rafi and Tao have shown

that the growth for graphs behaves like log(κ). This seems to indicate that perhaps our

upper bounds might be improvable. A further indication that this order of growth might

be correct are the results in [11] that were among the tools needed for our upper bounds.

In short, we now know that the rough behavior in terms of either the genus or number

of labelled marked points is bounded below and above by a function of type log(κ)α for

α ∈ [1, 2] and determining the exact behavior might be an interesting problem.

14



REFERENCES

[1] Prosenjit Bose, Jurek Czyzowicz, Zhicheng Gao, Pat Morin, and David R. Wood,

Simultaneous diagonal flips in plane triangulations, J. Graph Theory 54 (2007), no. 4,

307–330.

[2] William Cavendish, Growth of the diameter of the pants graph modulo the mapping class
group, Preprint (2011).

[3] William Cavendish and Hugo Parlier, Growth of the Weil-Petersson diameter of moduli
space, Duke Math. J. 161 (2012), no. 1, 139–171.

[4] V. Disarlo and H. Parlier, The geometry of flip graphs and mapping class groups, ArXiv

e-prints (2014).

[5] Valentina Disarlo, Combinatorial rigidity of arc complexes, ArXiv e-prints (2015).

[6] M. Korkmaz and A. Papadopoulos, On the ideal triangulation graph of a punctured surface,

Ann. Inst. Fourier 62 (2012), no. 4, 1367–1382.

[7] Lionel Pournin, The diameter of associahedra., Adv. Math. 259 (2014), 13–42.

[8] Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston, Rotation distance, triangu-
lations, and hyperbolic geometry, J. Amer. Math. Soc. 1 (1988), no. 3, 647–681.

[9] James Dillon Stasheff, Homotopy associativity of H-spaces. I, II, Trans. Amer. Math. Soc.

108 (1963), 293–312.
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