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Abstract. A result of Bangert states that the stable norm associated to any Riemannian
metric on the 2-torus T 2 is strictly convex. We demonstrate that the space of stable norms
associated to metrics on T 2 forms a proper dense subset of the space of strictly convex norms
on R2. In particular, given a strictly convex norm ‖ · ‖∞ on R2 we construct a sequence
〈‖ · ‖j〉∞j=1 of stable norms that converge to ‖ · ‖∞ in the topology of compact convergence

and have the property that for each r > 0 there is an N ≡ N(r) such that ‖ · ‖j agrees with

‖ · ‖∞ on Z2 ∩ {(a, b) : a2 + b2 ≤ r} for all j ≥ N . Using this result, we are able to derive
results on multiplicities which arise in the minimum length spectrum of 2-tori and in the
simple length spectrum of hyperbolic tori.

1. Introduction

Given a closed n-dimensional manifold M with first Betti-number b = b1(M), we let
H1(M ;Z)R denote the collection of integral classes in the b-dimensional real vector space
H1(M ;R). ThenH1(M ;Z)R is a co-compact lattice inH1(M ;R). Letting T ' Zm1×· · ·×Zmq
denote the torsion subgroup of H1(M ;Z) ' Zb×T , we see that H1(M ;Z)R can be identified
with H1(M ;Z)/T via the surjective homomorphism φ : H1(M ;Z)→ H1(M ;Z)R given by

b∑
i=1

zihi + t 7→ (
b∑
i=1

zihi)⊗Z 1,

where {h1, . . . , hb} is some Z-basis for H1(M ;Z), the zi’s are integers and t ∈ T . Now, let
Ψ : π1(M) → H1(M ;Z) denote the Hurewicz homomorphism [L], then the regular covering
pAbel : MAbel → M of M corresponding to ker(Ψ) = [π1(M), π1(M)] is the universal abelian
covering of M . It is universal in the sense that it covers any other normal covering for which
the deck transformations form an abelian group. The universal torsion-free abelian cover
ptor : Mtor → M corresponds to the normal subgroup Ψ−1(T ) � π1(M): it covers all other
normal coverings for which the group of deck transformations is torsion-free and abelian.
Under the above identifications we see that the group of deck transformations of Mtor →M
is given by the lattice H1(M ;Z)R. If M has positive first Betti number, then to each metric
g we may associate a geometrically significant norm ‖ · ‖s on H1(M ;R) in the following
manner.

For each h ∈ H1(M ;Z)R ' Zb ≤ H1(M ;R) let

f(h) = inf{Lg(σ) : σ is a smooth loop representing the class h},
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where Lg is the length functional associated to the Riemannian metric g on M . Then for
each n ∈ N we let fn : 1

n
H1(M ;Z)R → R≥0 be given by

fn(h) =
1

n
f(nh).

It can be seen that the fn’s converge uniformly on comapct sets to a norm ‖·‖s on H1(M ;R)
that is known as the stable norm of g [B1]. In particular, if {vn}n∈N is a sequence in
H1(M ;Z)R such that limn→∞

vn
n

= v ∈ H1(M ;R), then

‖v‖s = lim
n→∞

f(vn)

n
.

An integral class v ∈ H1(M ;Z)R is said to be stable if there is an n ∈ N such that ‖v‖s =

fn(v) = f(nv)
n
.

Intuitively, the stable norm ‖ · ‖s describes the geometry of the universal torsion-free
abelian cover (Mtor, gtor) in a manner where the fundamental domain of the H1(M ;Z)R-
action appears to be arbitrarily small. Indeed, for each n ∈ N, fn is a (pseudo-)norm on the
discrete group H1(M ;Z)R which illustrates the geometry of the fundamental domain of the
H1(M ;Z)R-action on (Mtor, gtor) when scaled by a factor of 1

n
. And one can check that the

sequence 〈(H1(M ;Z)R, fn)〉∞n=1 of normed linear spaces converge to (H1(M ;R), ‖ · ‖s) in the
Gromov-Hausdorff sense.

Now, let p : (N, h)→ (M, g) be a Riemannian covering. We will say that a non-constant
geodesic γ : R → (M, g) is p-minimal (or minimal with respect to p) if for some and,
hence, every lift γ̃ : R → N of γ, the geodesic γ̃ is distance minimizing between any two
of its points. That is, γ is p-minimal if for any t1 ≤ t2 we have dN(γ̃(t1), γ̃(t2)) = Lg(γ̃ �
[t1, t2]). In the event that p is the universal Riemannian covering we will refer to p-minimal
geodesics as minimal, and when γ is minimal with respect to the universal abelian cover
pabel : (MAbel, h) → (M, g) we will say that γ is an abelian minimal geodesic. In the case
where π1(M) is abelian—e.g., M is a torus—these two definitions coincide.

An interesting application of the stable norm ‖ · ‖s is that characteristics of its unit ball
B ⊂ H1(T 2;Z) can be used to deduce the existence (and properties) of minimal abelian
geodesics. For instance, we have the following result due to Bangert.

Theorem 1.1 ([B1] Theorem 4.4 & 4.8). Let (M, g) be a Riemannian manifold and let
B ⊆ H1(M ;R) be the unit ball corresponding to its stable norm. For every supporting
hyperplane H of B there is an abelian minimal geodesic γ : R→ (M, g). As a consequence,
(M, g) has at least k ≡ dimH1(M ;R) geometrically distinct abelian minimal geodesics.

In light of the relationship between the existence of minimal geodesics and the unit ball of
the stable norm, it is an interesting question to determine which norms on H1(M ;R) arise
as the stable norm associated to a Riemannian metric on M . In the case of the two-torus
Bangert has made the following observation.

Theorem 1.2 ([B1] p. 267, [B2] Sec. 5). The collection of stable norms on T 2, denoted
Nstab(T 2), is a proper subset of the collection of strictly convex norms on R2, denoted by
N+(R2).

Indeed, for any metric g on a 2-torus we have that f(kh) = |k|f(h) for any k ∈ Z and
h ∈ H1(M ;Z)R. Therefore, ‖h‖s = f(h) on H1(M ;Z)R. Now, suppose h1, h2 ∈ H1(M ;Z)R
are rationally independent and are represented by shortest geodesics γ1 and γ2 respectively.
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Then γ1 and γ2 must intersect transversally at γ1(0) = γ2(0), for instance, and we conclude
that γ1 ∗ γ2 is not smooth. Therefore, since the non-smooth curve γ1 ∗ γ2 represents the
integral homology class h1 + h2 we obtain the following strict inequality

‖h1 + h2‖s < Lg(γ1 ∗ γ2) = Lg(γ1) + Lg(γ2) = ‖h1‖s + ‖h2‖s.

It then follows that ‖ · ‖s is strictly convex norm on H1(T 2,R) ' R2. To see that Nstab(T 2)
is a proper subset of N+(R2), we recall that Bangert observed that on T 2 the stable norm
is differentiable at irrational points [B2, Sec. 5]. That is, the unit ball of a stable norm
associated to a Riemannian metric on T 2 has a unique supporting line at points (x, y) where
y/x is irrational. But, one can readily see that there are many strictly convex norms which
are not differentiable at such points. For instance, one need only take a strictly convex norm
for which the unit ball is a tear drop whose singularity is placed at (x, y) with y/x irrational.
And we conclude that Nstab(T 2) is a proper subset of N+(R2).

In this article we will be concerned with stable norms of Riemannian 2-tori; henceforth
referred to as toral stable norms. We show that the toral stable norms form a dense proper
subset in the collection of all strictly convex norms on H1(T 2;R) ' R2. Specifically, we
demonstrate the following.

Theorem 1.3. Let ‖ · ‖∞ be a strictly convex norm on H1(T 2;R) and let 〈hj ≡ (aj, bj)〉∞j=1

be a sequence consisting of all of the integral homology classes H1(M ;Z)R ' Z2 where
‖(aj, bj)‖∞ ≤ ‖(aj+1, bj+1)‖∞ for each j. Then there exists a sequence 〈‖ · ‖j〉∞j=1 of toral
stable norms such that

(i) for each k ∈ N we have ‖(aj, bj)‖k = ‖(aj, bj)‖∞ for 1 ≤ j ≤ k, while ‖(aj, bj)‖k ≥
‖(ak, bk)‖∞ for all j ≥ k + 1;

(ii) limj→∞ ‖ · ‖j = ‖ · ‖∞ in the topology of compact convergence.

Hence, any strictly convex norm on R2 can be approximated uniformly on compact sets by
a stable norm that agrees with it on an arbitrarily large set of lines through the origin with
rational slope. We now show that this result can be interpreted in terms of the minimum
marked length spectrum of a torus.

First, we recall that the length spectrum of a Riemannian manifold (M, g) is the collection
of lengths of all smoothly closed geodesics in (M, g), where we adopt the convention that
the multiplicity of a length ` is counted according to the number of free homotopy classes
containing a geodesic of that length. Now, given a loop σ on a manifold M its unoriented
free homotopy class is the collection of closed geodesics that are freely homotopic to σ or its
inverse σ. We will denote the collection of the unoriented free homotopy classes by F(M)
and let π : π1(M) → F(M) denote the natural projection. We then define the minimum
length spectrum to be the (possibly finite) sequence `1 = 0 < `1 ≤ `2 ≤ · · · consisting of the
lengths of closed geodesics that are shortest in their unoriented free homotopy class, where
a length ` is repeated according to the number of unoriented free homotopy classes whose
shortest geodesic is of length `. If we wish to keep track of the unoriented free homotopy
classes we then consider the map mg : F(M) → R which assigns to each unoriented free
homotopy class the length of its shortest closed geodesic. We will refer to mg or the collection
{(mg(α), α) : α ∈ F(M)} as the minimum marked length spectrum of (M, g) (see [DGS, Def.
2.8]).

It is natural to ask which pairs (`, α) consisting of a nonnegative number ` and an un-
oriented free homotopy class α can occur as part of the mimium marked length spectrum
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associated to some metric g on M . This question was addressed in dimension three and
higher by the third author, along with De Smit and Gornet, in [DGS] where the following
was shown.

Theorem 1.4 ([DGS] Theorem 2.9). Suppose that M is a closed connected manifold of
dimension at least three. Let α = (α1, α2, . . . , αk) be a sequence of distinct elements of
F(M) where α1 is trivial. Then for every sequence 0 = `1 < `2 ≤ · · · ≤ `k of real numbers
the following are equivalent:

(i) The sequence `1, . . . , `k is α-admissible; that is, for i, j = 2, . . . , k `i ≤ |n|`j, whenever
αi = αnj for some n ∈ Z and for i = 2, . . . , k `i ≥ 1

|n|`k whenever αni 6∈ {α1, . . . , αk} for

some n 6= 0 ∈ Z.
(ii) There is a Riemannian metric g on M such that the minimum marked length spectrum

mg : F(M)→ R≥0 satisfies mg(αi) = `i for all i and mg(α) ≥ `k for all α ∈ F(M)−
{α1, . . . , αk}.

In particular, there is a metric g on M such that the systole is achieved in the unoriented
free homotopy class α2.

The proof of Theorem 1.4 depends on the fact that a finite collection of distinct unoriented
free homotopy classes can be represented by pairwise disjoint simple closed curves. The fact
that this does not hold in dimension two appears to make approaching this question for
surfaces—the actual motivation behind this article—a more delicate matter. However, we
note that among surfaces the torus enjoys some special properties. First, all free homotopy
classes can be represented by a simple closed curve or an iterate of such a curve. Conse-
quently, with respect to any metric, the shortest closed geodesic in a free homotopy class
will be a simple closed curve if the class is primitive, or an iterate of a simple closed curve in
the case of a non-primitive class. Secondly, it follows from the fact that T 2 is an aspherical
surface that for any choice of smooth Riemannian metric g and choice of non-trivial free
homotopy class [β], a closed geodesic of minimal length in [β] will have a minimal number
of self-intersections [FHS]. In Section 2, these properties will be marshaled to prove Theo-
rem 1.3(i) which in conjunction with Bangert’s Theorem 1.2 gives the following statement
concerning the minimum marked length spectrum of a 2-torus.

Theorem 1.5. Let T 2 be a 2-torus and π1(T 2) ' Z2 ≤ R2 its fundamental group. Now, let
α = (α1, . . . , αk) be a sequence of distinct unoriented free homotopy classes of T 2, where αi
is represented by ±(ai, bi) ∈ Z2 and α1 = (0, 0) is trivial. Also, let `1 = 0 < `2 ≤ · · · ≤ `k be
a finite sequence. Then the following are equivalent:

(i) There is a strictly convex norm ‖ · ‖ on R2 such that ‖(ai, bi)‖ = `i and ‖(a, b)‖ ≥ `k
for any (a, b) 6= ±(a1, b1), . . . ,±(ak, bk).

(ii) There is a metric g on T 2 such that the minimum marked length spectrum mg :
F(T 2) → R≥0 satisfies mg(αi) = `i for all i = 1, . . . , k and mg(α) ≥ `k for all
α ∈ F(T 2)− {α1, . . . , αk}.

In Section 4 we consider the multiplicities in the minimum length spectrum of a 2-torus.
By using results concerning the minimum number of lattice points in the interior of an n-gon
and Theorem 1.3(i) we obtain the following estimate on the “location” of a length with a
specified multiplicity.

Theorem 1.6. Suppose (T 2, g) is a torus for which the minimum length spectrum 〈`j〉∞j=1

has a length of multiplicity m. That is, for some n ∈ N we have 0 = `1 ≤ `n < `n+1 = · · · =
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`n+m < `n+m+1. Then n = m−1
g ([0, `)) = f(m) ≡ isymm

0 (2m)+1

2
≥ O(m3), where isymm

0 (2m)
is the minimum number of integer points in the interior of a convex integer 2m-gon that is
centrally symmetric with respect to (0, 0). Furthermore, this inequality is sharp. That is, for
each m ∈ N there is a smooth metric g on T 2 and ` > 0 such that ` has multiplicity m in
the minimum length spectrum and m−1

g ([0, `)) = f(m).

Our study of the multiplicities of the minimum length spectrum of a torus is motivated in
part by the study of hyperbolic surfaces; especially, hyperbolic punctured tori. The length
spectrum of a hyperbolic surface always contains lengths of arbitrarily high multiplicity
[Ran], and any closed geodesic is of minimal length on a hyperbolic surface. Unlike the
case of smooth tori, hyperbolic surfaces contain non-simple closed geodesics which are thus
minimal in their homotopy class, and it is among these geodesics that high multiplicities
are known to appear. To date, multiplicities have not been observed among the simple
closed geodesics and it is a conjecture of Schmutz Schaller that among primitive simple
closed geodesics on a once-punctured torus the multiplicity of a given length is bounded by
6. This conjecture is a specific case of a more general conjecture, due to Rivin, asserting
that multiplicity in the simple length spectrum—the collection of lengths of simple closed
geodesics—is always bounded by a constant that only depends on the underlying topology
(see [Sch, p. 209]).

Presently, not much is known about the validity of the conjectures of Schmutz Schaller
and Rivin. However, Theorem 1.6 gives new examples demonstrating that these conjectures
do not hold for arbitrary surfaces; in particular, tori (cf. [MP, p. 1884-5]). We note that
Theorem 1.6 can be used to relate the multiplicity of the length ` to its position in the simple
length spectrum of a one-holed or once-punctured torus.

Corollary 1.7. If there are m simple closed geodesics of the same length ` on a once-
punctured (or one-holed) torus, then there are at least f(m) distinct simple closed geodesics
of length strictly less than `.

Unlike the conjectures of Schmutz Schaller and Rivin, the geodesics considered in Corol-
lary 1.7 include geodesics representing non-primitive classes and the function f(m) counts
the trivial homology/homotopy class. Of course if Rivin’s conjecture is correct, then Corol-
lary 1.7 might only be of interest for small values of m.

2. Constructing the Stable Norms: the Proofs of Theorems 1.3(i) and 1.5

In this section we will prove Theorems 1.3(i) and 1.5. The basic idea behind the proof of
Theorem 1.3(i) is to isolate geodesics γ1, γ2, . . . , γk on a flat torus (T 2, g0), with a systole of
at least `k, representing the k homology classes h1, h2, . . . , hk ∈ H1(T 2,Z) in the statement
of the Theorem and then dig deep “canyons” with narrow “corridors” of the appropriate
length along these geodesics in order to obtain a new metric gk for which the conclusions of
the theorem are obtained. Theorem 1.5 will then follow as an application of Theorem 1.3(i)
and Bangert’s result that the stable norm of a metric on a 2-torus is strictly convex.

2.1. The proof of Theorem 1.3(i). Let ‖ · ‖∞ denote a fixed strictly convex norm on
H1(T 2,R) ' R2 and let 〈hi = (ai, bi)〉∞i=1 denote a fixed enumeration of the integral homol-
ogy classes H1(T 2,Z) ' Z2 with the property that ‖hi‖∞ ≤ ‖hi+1‖∞ for each i ∈ N. In this
section we wish to show that for each k ∈ N we may find a toral stable norm ‖ · ‖k such that
‖hi‖k = ‖hi‖∞ for 1 ≤ i ≤ k, while ‖hj‖k ≥ ‖hk‖∞ for each j ≥ k + 1. We begin by fixing
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some notation and assumptions that will hold throughout this section.

Notation, Assumptions & Remarks 2.1.

1. For any Riemannian metric g on T 2 we let Lg denote the length functional on the loop
space and we let dg be the distance function in the induced metric space structure.

2. For any loop σ : S1 → T 2 we will let Im(σ) denote the image of σ and we wil let hσ ≡
(aσ, bσ) ∈ H1(T 2;Z) ' Z2 denote its homology class.

3. For each i ∈ N we will let `i = ‖hi‖∞.

4. We will say that a homology class h ∈ H1(T 2;Z) is primitive if whenever h = nh̃, for

some n ∈ N and h̃ ∈ H1(T 2;Z), we have n = 1 and h̃ = h.
5. Since for any norm ‖ · ‖ on a real vector space V we have ‖rv‖ = |r|‖v‖, where r ∈ R

and v ∈ V, we may assume without loss of generality that each hi = (ai, bi) ∈ H1(T 2;Z)
is a primitive homology class and that for i 6= j we have hi 6= ±hj.

6. When convenient we will identify a homology class h ∈ H1(T 2;Z) with the free homotopy
class Ψ−1(h) given by the Hurewicz isomorphism Ψ : π1(T 2, po)→ H1(T 2;Z), where p0 is
some fixed point in T 2.

7. We will let g0 denote a fixed flat metric on T 2 with systole satisfying Syst(T 2, g0) ≥ `k
and set B ≡ Syst(T 2, g0).

8. For each i ∈ N we will let γi be the unique geodesic in (T 2, g0) passing through p0 and
representing the primitive homology class hi. We note that since h1 = (0, 0) represents
the trivial class, the geodesics γ1 is trivial.

9. Theorem 1.3(i) is then equivalent to showing that for each k ∈ N there is a metric gk such
that
(a) Lgk(γi) = `i,
(b) for any loop σ in (T 2, gk), representing one of the (primitive) homology classes
{hi}i∈N, we have

Lgk(σ) ≥
{
`i hσ = hi for some i = 1, . . . , k
`k otherwise

10. By a cycle c in a graph G we will mean a sequence of vertices 〈vi〉qi=0 such that v0 = vq
and for each i = 0, 1, . . . , q − 1 there is an edge ei joining vi and vi+1. The edge length of
such a cycle is said to be q.

11. It is clear that if (G, d) is a metric graph, then for any loop σ : S1 → G there is a cycle
c that is freely homotopic to σ in G such that L(σ) ≥ L(c). A cycle c will be said to be
minimal if it is the shortest cycle in its free homotopy class. Clearly a minimal cycle will
have minimal edge length among all other cycles in its free homotopy class.

Fix k ∈ N and let h1 = (a1, b1), . . . , hk = (ak, bk) ∈ H1(T 2;Z) be the first k homology
classes in our ordering. Since T 2 is a torus we see that for each 2 ≤ i 6= j ≤ k the geodesics
γi and γj intersect transversally in finitely many points. Consider the curves γ1, γ2, . . . , γk
simultaneously and let {p0, p1, . . . , pt} be the collection of intersection points. Then for each
i = 2, . . . , k these points partition γi into mi segments γi1, . . . , γimi , and since g0 is a flat

metric on T 2 one can deduce that the quantity qij ≡
Lg0 (γij)

Lg0 (γi)
is a positive rational number,

for each i = 2, . . . , k and 1 ≤ j ≤ mi. The union of the images of the geodesics γ1, γ2, . . . , γk,
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which we will denote by G, forms a directed graph in T 2, where the points {p0, p1, . . . , pt}
are the vertices and the segments γij are the oriented edges. Now suppose T is a regular
neighborhood of G with smooth boundary in T 2 (see Figure 1). Then T can be decomposed
into t+1 disjoint “hubs” {∆0,∆1, . . . ,∆t} containing the vertices {p0, p1, . . . , pt} and disjoint
(rectangular) “corridors” Rij containing Im(γij)−∪ts=0∆s (see Figure 2). We now show that
we can find a regular neighborhood T of G and a flat metric ρ1 defined on T such that
Theorem 1.3(i)—in the guise of 2.1(9) above—is true if we restrict our attention to loops
contained in (T , ρ1). Specifically, we have the following lemma.

Figure 1. Regular Neighborhood of G

Figure 2. Decomposition into “hubs” & “corridors”

Lemma 2.2. With the notation as above, there is a regular neighborhood T of G with smooth
boundary and a flat metric ρ1 on T with the following properties:

(1) Lρ1(γi) = `i for i = 1, 2, . . . , k;
(2) if σ is a loop in T representing the (primitive) homology class (aσ, bσ) ∈ H1(T 2,Z) ' Z2,

then

Lρ1(σ) ≥
{
`i (aσ, bσ) = ±(ai, bi) for some i = 1, . . . , k
`k otherwise

Proof of Lemma 2.2. The proof of this lemma has three main steps:

(A) We take an arbitrary regular neighborhood T ′ of G with a particular choice of “hubs”
{∆0,∆1, . . . ,∆t} and corresponding rectangular “corridors” {Rij : i = 2, . . . , k, j =
1, . . . ,mi}. Then we adjust the length of the corridors to obtain a flat metric ρ1 on T ′
for which condition (1) is satisfied and Lρ1(γij) = qij`i, where we recal that the qij’s are
rational.
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(B) We use the strict convexity of the norm ‖ · ‖∞ and the fact that Lρ1(γij) = qij`i for
qij ∈ Q to show that for any minimal cycle c in the length space (G, ρ1) that is not a
reparametrization of γ1, γ2, . . . , γk the following strict inequality holds:

Lρ1(c) > ‖(ac, bc)‖∞.

Then, since ‖(ai, bi)‖∞ ≤ ‖(ai+1, bi+1)‖∞ for each i, we see that the lemma is true on
the length space (G, ρ1).

(C) We use the inequality from the previous step to obtain a constant Θ > 0 with the
property that if T ⊂ T ′ is a regular neighborhood of G with “hubs” {∆0,∆1, . . . ,∆t}
satisfying

diam ∆s ≤ max
x∈∂∆s

2 · d(ps, x) ≤ Θ,

where the distance is computed with respect to ρ1, then the lemma holds on (T , ρ1).

Step A: Choose an arbitrary regular neighborhood T ′ of G in T 2 and a collection of “hubs”
{∆′0,∆′1, . . . ,∆′t}, with a corresponding collection of rectangular “corridors” {R′ij : 2 ≤ i ≤
k, 1 ≤ j ≤ mi}, having the property that

Lg0(Im(γij) ∩ ∪ts=0∆s) <
1

2
qij`i,(2.3)

for each 2 ≤ i ≤ k, 1 ≤ j ≤ mi. That is, each edge γij in our graph G has less than
1
2
qij`i of its length contained in the “hubs”. Then by lengthening or shortening each Rij

in the “γij-direction” we obtain a new flat metric ρ1 on T ′ with respect to which we have
Lρ1(γij) = qij`i for 2 ≤ i ≤ k 1 ≤ j ≤ mi, and (recalling that γ1 is trivial) we see that
Lρ1(γi) = `i, for i = 1, 2, . . . , k. Hence, condition (1) of the Lemma is obtained on (T ′, ρ1).
We note that the fact that Lρ1(γij) = qij`i for each i = 2, . . . , k and j = 1, . . . ,mi will be
exploited in Step B.

We now want to demonastrate that by picking a thin regular neighborhood T ⊂ T ′ of
G where the “hubs” can be chosen of suffciently small diameter we can also obtain condi-
tion (2). Towards this end we first show that the lemma is true on our metric graph (G, ρ1).

Step B: Let c be a minimal cycle in (G, ρ1) representing the homology class (ac, bc) ∈
H1(T 2,Z). Now, for each i = 2, . . . , k and j = 1, . . . ,mi we let n+

ij(c) (resp. n−ij(c)) denote
the number of times c traverses the edge γij in the positive direction (respectively, negative
direction). Then with respect to the metric ρ1 the length of the curve c is given by

Lρ1(c) =
k∑
i=2

mi∑
j=1

(n+
ij(c) + n−ij(c))Lρ1(γij)

=
∑
i,j

(n+
ij(c) + n−ij(c))qij`i

=
∑
i,j

(n+
ij(c) + n−ij(c))qij‖(ai, bi)‖∞.
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Since each qij is rational, we may fix N ∈ N so that Nqij is an integer for each i = 2, . . . , k
and j = 1, . . . ,mi. Then cN represents the homology class N(ac, bc) and has length

Lρ1(c
N) =

k∑
i=2

mi∑
j=1

N(n+
ij(c) + n−ij(c))qij‖(ai, bi)‖∞.

That is, each edge γij contributes N(n+
ij(c) + n−ij(c))qij‖(ai, bi)‖∞ towards the length of cN .

Now, for each i = 2, . . . , k, let Ni =
∑mi

j=1N(n+
ij(c)− n−ij(c))qij. Then δi ≡ γNii is a curve in

G representing the homology class Ni(ai, bi) ∈ H1(T 2;Z). It then follows from the definition
of the n+

ij(c)’s and n−ij(c)’s that the curves cN and δ = δ2 ∗ · · · ∗ δk in G have the same

algebraic intersection number with a basis for H1(T 2;Z). Therefore, since a homology class
in H1(T 2;Z) is determined by its algebraic intersection numbers with a basis for H1(T 2;Z),
we conclude that cN and δ are homologous, and we obtain the following expression for
N(ac, bc):

N(ac, bc) = hcN

= hδ

=
k∑
i=2

Ni(ai, bi)

=
k∑
i=2

mi∑
j=1

N(n+
ij(c)− n−ij(c))qij(ai, bi).

The strict convexity of the norm ‖ · ‖∞ allows us to obtain the following:

N‖(ac, bc)‖∞ = ‖N(ac, bc)‖∞

= ‖
k∑
i=2

mi∑
j=1

N(n+
ij(c)− n−ij(c))qij(ai, bi)‖∞

<
k∑
i=2

mi∑
j=1

N |(n+
ij(c)− n−ij(c))|qij‖(ai, bi)‖∞

≤
k∑
i=2

mi∑
j=1

N(n+
ij(c) + n−ij(c))qij‖(ai, bi)‖∞

= NLρ1(c).

Dividing through by N in the inequality above we obtain

Lρ1(c) > ‖(ac, bc)‖∞.(2.4)

As it will be useful in the sequel, we pause to define the notions of hub length and corridor

length for a loop σ : S1 → (T̃ , ρ̃) in an arbitrary flat regular neighborhood of G. Let (T̃ , ρ̃)

be such a regular neighborhood with a corresponding choice of hubs {∆̃0, ∆̃1, . . . , ∆̃s} and

rectangular corridors {R̃ij : i = 2, . . . , k, j = 1, 2, . . . ,mi}. Then the corridor length of σ is

defined to be: Lhub
ρ̃ (σ) ≡ Lρ̃(Im(σ)∩∪ts=0∆̃s). Similarly, the corridor length of σ is defined to
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be: Lcor
ρ̃ (σ) = Lρ̃(Im(σ)∩∪i,jR̃ij). Due to the flatness of the metric ρ̃ and that the corridors

are actually rectangles, it is clear that for any curve σ in (T̃ , ρ̃) freely homotopic in T̃ to a
minimal cycle cσ in G that we have:

Lcor
ρ̃ (σ) ≥ Lcor

ρ̃ (cσ).(2.5)

Step C: We are now in a position to explain how to pick our regular neighborhood T ⊂ T ′.
We begin by defining a particular collection of cycles in our graph G.

Let C denote the collection of minimal cycles c in the length space (G, ρ1) with the following
properties:

(1) c is not freely homotopic to the cycles γ1, γ2, . . . , γk in T ′. (We note that this does not
preclude (ac, bc) = (ai, bi) for some i = 1, 2, . . . , k.);

(2) c consists of at most b `k
ζ
c edges, where ζ ≡ 1

2
min{qi1`i, . . . , qimi`i : i = 1, . . . , k} and bxc

denotes the greatest integer less than x > 0. (We note that it follows from Equation 2.3
and the manner in which the metric ρ1 was constructed that the length of each rectangle
Rij in the “γij-direction” is greater than ζ.)

It will prove to be useful to notice that the upper bound on edge length of elements of C
implies that C is a finite collection. It now follows from Equation 2.4 that the quantity

ε̃ ≡ min
c∈C

(Lρ1(c)− ‖(ac, bc)‖∞)(2.6)

is positive.
Now let σ be a curve in the tubular neighborhood (T ′, ρ1) that is freely homotopic in T ′

to the minimal cycle cσ ∈ C of edge length q ≤ b `k
ζ
c. The edges of cσ determine q corridors

R1, . . . , Rq through which it passes (counted with multiplicity). Then σ must pass through
these q corridors. In fact, since we are ultimately interested in obtaining a lower bound on
the length of σ, we may assume without loss of generality that σ enter and leaves precisely
these q corridors (counting multiplicities) and no other corridors. As noted earlier, since
(T ′, ρ1) is flat we see that Lcor

ρ1
(σ) ≥ Lcor

ρ1
(cσ). Hence, the only way that σ can be shorter

than cσ is to “make up the difference” inside the “hubs”; that is, we need the quantity
Lhub
ρ1

(cσ)− Lhub
ρ1

(σ) to be sufficiently large. But, since Lhub
ρ1

(cσ) is bounded from above by

q · max
s=0,1,...,t

max
x∈∂∆′

s

2 · d(ps, x),

(where we recall that ps is the “center” of the hub ∆s) we have the following crude universal
upper bound on the amount any such σ can save in the hubs compared with its corresponding
minimal cycle cσ:

Lhub
ρ1

(cσ)− Lhub
ρ1

(σ) ≤ b`k
ζ
c · max

s=0,1,...,t
max
x∈∂∆′

s

2 · d(ps, x)

Now, suppose we pick a tubular neighborhood T of G contained in T ′ that is thin enough
so that we may choose hubs ∆0,∆1, . . . ,∆t satisfying

b`k
ζ
c · max

s=0,1,...,t
max
x∈∂∆s

2 · d(ps, x) <
ε̃

2
< ε̃.
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Then for any σ in (T , ρ1) freely homotopic in T to cσ ∈ C we have

Lρ1(σ) = Lcor
ρ1

(σ) + Lhub
ρ1

(σ)

≥ Lcor
ρ1

(cσ) + Lhub
ρ1

(σ)

= Lcor
ρ1

(cσ) + Lhub
ρ1

(σ) + Lhub
ρ1

(cσ)− Lhub
ρ1

(cσ)

= Lρ1(cσ) + Lhub
ρ1

(σ)− Lhub
ρ1

(cσ)

> Lρ1(cσ)− ε̃
≥ ‖(acσ , bcσ)‖∞ (by Equation 2.6)

= ‖(aσ, bσ)‖∞.

In particular, if (aσ, bσ) 6= (ai, bi) for some i = 1, . . . , k, then

Lρ1(σ) > ‖(aσ, bσ)‖∞ ≥ `k.

Now let σ be a loop in (T , ρ1) that is freely homotopic in T to a minimal cycle cσ 6∈ C.
Then cσ can be taken to be γi for some i = 2, . . . , k or cσ has q edges where q ≥ b `k

2
c+ 1. In

the former case, since we are once again interested in a lower bound on the length of σ we
can assume without loss of generality that σ is contained in a (flat) tubular neighborhood
Ti ⊂ T of cσ ≡ γi. But, then it follows that since ρ1 is flat that we have

Lρ1(σ) ≥ Lρ1(γi) = `i = ‖(ai, bi)‖.

In the latter case, we see that σ must pass through at least q corridors. Then since each
corridor is of length at least ζ we see

Lρ1(σ) ≥ ζq ≥ ζ · (b`k
ζ
c+ 1) > `k.

In summary, consider the flat regular neighborhood (T ′, ρ1) of G constructed in Step A
and choose a regular neighborhood T ⊂ T ′ of G with “hubs” {∆0,∆1, . . . ,∆s} satisfying

diam ∆s ≤ max
x∈∂∆s

2 · d(ps, x) ≤ Θ ≡ ε̃

2b `k
ζ
c
,

for each s = 0, 1, . . . , t, as in Step C. If σ is a loop in (T , ρ1), then

• Lρ1(σ) ≥ `k, if (aσ, bσ) 6= ±(a1, b1), . . . ,±(ak, bk);
• Lρ1(σ) ≥ `i, if (aσ, bσ) = ±(ai, bi) for some i = 1, 2, . . . , k;
• Lρ1(γi) = `i for each i = 1, 2, . . . , k.

�

Now let T0 ⊂ T1 ⊂ · · · ⊂ T4 = T be a collection of properly nested tubular neighborhoods
of the graph G with smooth boundaries such that

(1) T = T4 admits a metric ρ1 as in the lemma;
(2) for each i = 1, . . . , 4 and p, q ∈ ∂Ti we have d(p, ∂T0) = d(q, ∂T0) where the distance is

taken with respect to the metric ρ1
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and let Γi = d(∂Ti, ∂T0) for each i = 1, . . . , 4. Now define the smooth function r : T 2 → R
via

r(x) =

{
0 for x ∈ T0

dρ1(x, ∂T0) oterhwise

Now let κ > 0 be such that with respect to κρ1 the distance between ∂T2 and ∂T1 is at least
B.

Lemma 2.7 (cf. Lemma 5.3 of [DGS]). With the notation and assumptions above there is
a Riemannian metric g on T 2 with the following properties:

(1) g � g0 on T 2 − T1;
(2) g = g0 on T 2 − T3;
(3) g � κρ1 on T2 − T1;
(4) g = ρ1 on T0;
(5) g � ρ1 on T2;

where for any metrics ρ and ρ̃ we write ρ � ρ̃ if for all vectors v we have ρ(v, v) ≥ ρ̃(v, v).

Proof of Lemma 2.7. The proof is exactly the same as in [DGS, Lemma 5.3], but we include
it for completeness. First, consider the metric ρ2 = g0 + κρ1 on T = T4. This metric clearly
satisfies ρ2 � g0 on T . Now let f1 : [0,Γ4]→ [0, 1] be a smooth function such that f1(t) = 1
for 0 ≤ t ≤ Γ2 and f1(t) = 0 for Γ3 ≤ t ≤ Γ4. We now define a metric ĝ on T 2 as follows:

ĝ =

{
(f1 ◦ r)ρ2 + (1− (f1 ◦ r))g0 on T
g0 on M − T3

Then on T 2 we have ĝ � g0 and on T3 we have ĝ = ρ2 � κρ1 � ρ1. Now let f2 : [0,Γ4]→ [0, 1]
be a smooth function such that f2(0) = 1 and f2(t) = 0 for Γ1 ≤ t ≤ Γ4 and set

g =

{
(f2 ◦ r)ρ1 + (1− (f2 ◦ r))ĝ on T
ĝ on T 2 − T1

Then g satisfies properties (1)-(5). �

We now show that any metric g on T 2 as in Lemma 2.7 has the desired properties. Indeed,
let g be such a metric and let σ be a homotopically non-trivial curve in T 2. Then there are
three cases.

Case A: Im(σ) ⊂ T2 − T1.

Then by Lemma 2.7(1) g � g0 on T 2 − T1, so we see

Lg(σ) ≥ Lg0(σ) ≥ Syst(T 2, g0) = B ≥ `k.

Case B: Im(σ) ∩ T1 6= ∅ and Im(σ) ∩ (T 2 − T2) 6= ∅.
Then, by Lemma 2.7(3) and the way in which κ was chosen, we see

Lg(σ) ≥ dg(∂T2, ∂T1) ≥ B ≥ `k.

Case C: Im(σ) ⊂ T2.

If (aσ, bσ) 6= (a1, b1), . . . , (ak, bk), then using Lemma 2.7(5) and Lemma 2.2 we see

Lg(σ) ≥ Lρ1(σ) ≥ `k.

If (aσ, bσ) = (ai, bi) for some i = 1, . . . , k then using (5) and (4) of Lemma 2.7 we see

Lg(σ) ≥ Lρ1(σ) ≥ `i.
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We complete the proof of Theorem 1.3(i) by noting that Lemma 2.7(4) and Lemma 2.2
imply that for each i = 1, . . . , k Lg(γi) = Lρ1(γi) = `i.

2.2. The proof of Theorem 1.5. Let Ψ : π1(T 2, p0)→ H1(T 2;Z) denote the Hurewicz iso-
morphism and notice that for any h ∈ H1(T 2;Z) = H1(T 2;Z)R we have ‖h‖s = mg(π(Ψ−1(h))),
where π : π1(T 2) → F(T 2) is the natural projection of the fundamental group of T 2 onto
the collection of its unoriented free homotopy classes (see p. 3). It is then apparent that
the statement “(ii) implies (i)” is actually a reformulation of Bangert’s observation that the
stable norm of a 2-torus is strictly convex and the statement “(i) implies (ii)” is equivalent
to Theorem 1.3(i). This completes the proof.

3. Convergence of the Stable Norms: the Proof of Theorem 1.3(ii)

In this section we demonstrate that the sequence 〈‖ · ‖j〉j∈N of toral stable norms con-
structed in the previous section converge in the topology of compact convergence to the
fixed strictly convex norm ‖ · ‖∞.

Let g be a metric on T 2 and as in the introduction for each h ∈ H1(T 2;Z)R let

f(h) = inf{Lg(σ) : σ is a smooth curve representing the class h}.
Then we have:

(1) f(h1 + h2) ≤ f(h1) + f(h2) for any h1, h2 ∈ H1(T 2;Z)R,
(2) f(kh) = |k|f(h) for any h ∈ H1(T 2;Z)R and k ∈ Z; in particular, f(−h) = f(h).

From this we can conclude that for each h1, h2 ∈ H1(T 2;Z)R we have |f(h1) − f(h2)| ≤
f(h1 − h2) = f(h2 − h1). It then follows that the associated stable norm ‖ · ‖s will have the
property that

|‖x‖s − ‖y‖s| ≤ ‖x− y‖s
for each x, y ∈ H1(T 2;R) ' R2. Now we recall the following basic fact about norms on finite
dimensional vector spaces.

Lemma 3.1 (cf. Theorem 7.7 [D]). Let φ, ψ : Rn → R be norms, then there are constants
0 < A ≤ B such that

Aψ(x) ≤ φ(x) ≤ Bψ(x).

In fact, A and B can be taken to be

A =
inf{φ(x) : |x| = 1}
(
∑n

i=1 ψ(ei)2)
1/2

and

B =
(
∑n

i=1 φ(ei)
2)

1/2

inf{ψ(x) : |x| = 1}
,

where {e1, . . . , en} is the standard basis for Rn and | · | denotes the standard Euclidean norm
with respect to this basis.

Proof. Since φ is a norm we see that for any x, y ∈ Rn

φ(x) = φ(x− y + y) ≤ φ(x− y) + φ(y).

It then follows from the fact that φ(−v) = φ(v) that

|φ(x)− φ(y)| ≤ φ(x− y).
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Now, let {e1, . . . , en} be the standard basis for Rn and let x =
∑n

i=1 xiei and y =
∑n

i=1 yiei
be vectors in Rn. Then

|φ(x)− φ(y)| ≤ φ(x− y)

= φ(
n∑
i=1

(xi − yi)ei)

≤
n∑
i=1

|xi − yi|φ(ei)

≤ |x− y||
n∑
i=1

φ(ei)ei| (by the Cauchy-Schwarz Inequality)

where | · | denotes the usual Euclidean norm. Hence, φ is continuous and taking y to be zero
in the equation above we obtain

φ(x) = |φ(x)| ≤ |x|(
n∑
i=1

φ(ei)
2),

for each x ∈ Rn. It is then clear that

|x| inf{φ(v) : |v| = 1} ≤ φ(x) ≤ |x|
n∑
i=1

φ(ei)
2,(3.2)

for any x ∈ Rn. Similarly, we see that Ψ is continuous and that for each x ∈ Rn

|x| inf{ψ(v) : |v| = 1} ≤ ψ(x) ≤ |x|
n∑
i=1

ψ(ei)
2.(3.3)

Since ψ is continuous, we see that inf{ψ(v) : |v| = 1} is positive. Therefore, we may combine
Equations 3.2 and 3.3 to establish the claim. �

Hence, we see that for any x, y ∈ R2 and stable norm ‖ · ‖s on the 2-torus we have

|‖x‖s − ‖y‖s| ≤ ‖x− y‖s

≤ (
∑2

i=1 ‖ei‖2
s)

1/2

inf{|v| :
∑2

i=1 v
2
i = 1}

|x− y|

= (
2∑
i=1

‖ei‖2
s)

1/2|x− y|

where throughout | · | denotes the standard Euclidean norm on R and R2.

We now turn our attention to the sequence of stable norms 〈‖ · ‖j〉∞j=1 converging to the

stable norm ‖ · ‖∞ given by Theorem 1.3(a). The ‖ · ‖k’s were constructed so that for each
k ∈ N we have ‖(aj, bj)‖k = ‖(aj, bj)‖∞ for any 1 ≤ j ≤ k and ‖(aj, bj)‖k ≥ ‖(ak, bk)‖∞
for all j ≥ k + 1. Now fix N large enough so that (1, 0) and (0, 1) are among the vectors
{(aj, bj) : 1 ≤ j ≤ N}. Then we see that for each j ≥ N we have ‖(1, 0)‖j ≡ ‖(1, 0)‖∞ and
‖(0, 1)‖j ≡ ‖(0, 1)‖∞, and it follows from Lemma 3.1 that the constant B = (‖(1, 0)‖2

∞ +
‖(0, 1)‖2

∞)1/2 satisfies
|‖x‖j − ‖y‖j| ≤ B|x− y|
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for each j ≥ N . That is, for j ≥ N the stable norms ‖ · ‖j are Lipschitz continuous with
the same Lipschitz constant B. We now recall the following fact about Lipschitz continuous
functions on Rn.

Lemma 3.4. Let 〈fj〉∞j=1 be a sequence of functions on Rn for which there exists a constant
C ≥ 0 such that for each n

|fn(x)− fn(y)| ≤ C|x− y| for all x, y ∈ Rn.

(That is, 〈fn〉∞n=1 is a sequence of Lipschitz continuous functions with the same Lipschitz
constant C.) If the sequence 〈fn〉∞n=1 converges pointwise to f : Rn → R, then f = limn→∞ fn
in the topology of compact convergence.

Proof. We will show that the fj’s form a uniformly Cauchy sequence on any compact subset
K of Rn. That is, given ε > 0 and compact subset K ⊂ Rn, there is an N ∈ N such that
|fn(y)− fm(y)| < ε for all n,m ≥ N and y ∈ K. This implies that fj → f uniformly on K.

Fix ε > 0. Then since 〈fj〉∞j=1 is a sequence of Lipschitz continous functions with the
same Lipschitz constant C we see that for any j ∈ N we have |fj(x) − fj(y)| < ε

3
, when

|x − y| < δ ≡ ε
3C

. Now, since the fj’s converge pointwise to f we see that for any x ∈ Rn

there is an Nx ∈ N such that |fn(x)− fm(x)| < ε
3

for all n,m ≥ Nx. It then follows that for
any y ∈ B(x, δ) we have for each n,m ≥ Nx

|fn(y)− fm(y)| ≤ |fn(x)− fn(x)|+ |fn(x)− fm(x)|+ |fm(x)− fm(y)|

≤ ε

3
+
ε

3
+
ε

3
= ε.

Now let K be compact subset of Rn, then there are x1, . . . , xq ∈ K such that K ⊂
∪qi=1B(xi, δ). Taking N = max{Nx1 , . . . Nxq} it follows that for any y ∈ K and n,m ≥ N we
have |fn(y)− fm(y)| < ε. �

Now, by design, the sequence 〈‖ · ‖j〉∞j=1 converges pointwise to ‖ · ‖∞ on the rational

points in R2, but by continuity and denseness we see that they converge pointwise on all of
R2 to ‖ · ‖∞. Since for all j ≥ N , the stable norm ‖ · ‖j is Lipschitz continuous with Lipschitz

constant B = (‖e1‖2
∞ + ‖e2‖2

∞)1/2, it follows from the previous lemma that limj→∞ ‖ · ‖j =

‖ · ‖∞ in the topology of compact convergence. This completes our argument.

4. Multiplicities in the minimum marked length spectrum of tori

In this section we will prove Theorem 1.6 which tells us that if ` is a length of multiplicity
m in the minimum length spectrum of (T 2, g), then n ≡ #m−1

g ([0, `)) is bounded from
below by a function f(m). That is, if we wish to find a length of multiplicity m in the
minimum length spectrum, then we must look beyond the f(m)-th term of the sequence.
Before proving this theorem it will be useful to recall some facts concerning integer n-gons
in R2.

An integer n-gon is an n-gon in R2 whose vertices lie in the lattice Z2. Given an integer
n-gon P , Pick’s theorem tells us that the area of the region bounded by P , denoted by A(P ),
can be computed as follows

A(P ) = i(P ) +
b(P )

2
− 1,
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where i(P ) denotes the number of lattice points in the interior of the region bounded by P
and b(P ) equals the number of lattice points on the boundary P . Now for each k we let P+

k

denote the collection of convex integer k-gons and set

A(k) ≡ min{A(P ) : P ∈ P+
k }.

Bounds for the function A(k) have been studied for some time. In fact, Andrews was the
first to observe that A(k) grows roughly like k3 [A]. Some recent improvements and related
results that will be useful in our argument are summarized below. But, first we give a
definition.

Definition 4.1. A (bounded) region R ⊂ R2 is said to be centrally symmetric with respect
to p0 ∈ R2, if for any x1 ∈ R there is a point x2 ∈ R such that p0 is the midpoint of the line
segment joining x1 and x2.

Proposition 4.2. The function A(k) enjoys the following properties:

(1) (Rabinowitz, [Rab]) 1
8π2 <

A(k)
k3

< 1
54

+O(1);

(2) (Bárány-Tokushige, [BT, Theorem 1]) limk→∞
A(k)
k3

exists;

(3) (Bárány-Tokushige, [BT, Claim 1]) for every k even, there is a k-gon P̂k that is centrally

symmetric with respect to some (x, y) ∈ 1
2
Z2 and such that A(k) = A(P̂k).

Now for each k ∈ N we let

i(k) ≡ min{i : there exists a k-gon with exactly i interior points}.
Then since any integer k-gon contains an inscribed k-gon with exactly k lattice points on it,
Pick’s theorem tells us that

i(k) = A(k) +
2− k

2
,

and we conclude that the problem of finding among convex k-gons the least number of
interior points is the same as finding the k-gon of smallest area. The following is than an
immediate consequence of Proposition 4.2.

Proposition 4.3. The function i(k) enjoys the following properties:

(1) 1
8π2 + o(k) < i(k)

k3
< 1

54
+O(k);

(2) limk→∞
i(k)
k3

exists;

(3) for every k even, there is an k-gon P̂k that is centrally symmetric about the origin (0, 0)

and such that i(k) = i(P̂k).

With these preliminaries out of the way we may now prove Theorem 1.6.

Proof of Theorem 1.6. Consider a torus (T 2, g) which has a length ` of multiplicity m in
its minimum length spectrum, and let ±(a1, b1), . . . ,±(am, bm) ∈ Z2 represent the (not nec-
essarily primitive) unoriented free homotopy classes in m−1

g (`), and set n ≡ #m−1
g ([0, `)).

Then the points ±(a1, b1), . . . ,±(am, bm) determine an integer 2m-gon that is centrally sym-
metric about (0, 0) with exactly 2n− 1 interior points. Now, for each k ∈ N we consider the
following odd integer

isymm
0 (2k) ≡ {i(Q) : Q ∈ P̂2k is centrally symmetric with respect to (0, 0)}.

Then we see that

n ≥ f(m) ≡ isymm
0 (2m) + 1

2
.
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Since isymm
0 (2m) ≥ i(2m) = O(m3), this establishes the first part of the claim.

To see that this inequality is sharp pick m ∈ N and let Q̂2m be a 2m-gon with vertices
{±(a1, b1), . . . ,±(am, bm)} that is centrally symmetric with respect to (0, 0) and such that

i(Q̂2m) = isymm
0 (2m). Since every centrally symmetric 2m-gon with center (0, 0) contains an

inscribed centrally symmetric 2m-gon with center (0, 0) and whose only intersection with

Z2 occurs at the 2m-vertices, we see that the boundary of Q̂2m contains exactly the 2m
vertices. Now let c be the boundary of a strictly convex region B ⊂ R2 that is centrally
symmetric with respect to (0, 0) and such that the intersection of c with Z2 is precisely the

collection of vertices of Q̂2m. (There are many ways to find such a curve. One way is by

replacing each of the segments in Q̂2m by convex polynomial arcs such that the resulting
tangent vectors at the beginning and the end of the arcs remain outside the resulting shape.
The centrally symmetric condition is easily met by doing this simultaneously on opposite
edges with symmetric arcs.)

Now let ‖ · ‖c be the unique strictly convex norm on R2 such that c is precisely the set of
points in R2 with ‖(x, y)‖c = ` > 0. Then by Theorem 1.3 there is a Riemannian metric g
on T 2 whose stable norm agrees with ‖ · ‖c on the set of (a, b) ∈ Z2 such that ‖(a, b)‖c ≤ `
and has norm strictly larger than ` for all other lattice points. It follows that the metric g is
such that ` has multiplicity m = #m−1

g (`) in the minimum length spectrum and the number
of unoriented free homotopy classes for which the shortest geodesic is of length less than `

is precisely #m−1
g ([0, `)) = f(m) ≡ isymm

0 (2m)+1

2
. �

Proof of Corollary 1.7. The idea here is to take a hyperbolic once punctured or one holed
torus, construct a comparable compact smooth closed torus from it, and apply Theorem
1.6. More precisely, for a one-holed torus with geodesic boundary, by glueing in a euclidean
hemisphere of the same boundary length, one obtains a closed torus. For a once-punctured
torus, one can mimic this construction by first removing a small horocyclic neighborhood
of the cusp, of say length 1, and then glueing a euclidean hemisphere of equator length 1.
Minimum length geodesics on this torus do not enter the added euclidean hemisphere. To
see this, consider an arc of a curve that does cross a hemisphere. The arc has length at least
the length of the shortest equator path between the two endpoints of the arc. The new curve
obtained by replacing the arc by the equator path is either shorter or of equal length but is
no longer smooth and thus cannot be of minimum length. We can conclude that a minimum
length geodesic is entirely contained in the hyperbolic part of the torus. As minimum
length curves are always simple closed geodesics, the result on minimum length curves on
a smooth torus now naturally correspond to simple closed geodesics on the hyperbolic tori.
Now Theorem 1.6 asserts that if there are m distinct homotopy classes associated to equal
minimum length geodesics, then there are at least f(m) homotopy classes with shorter length
representatives and this proves the corollary. �

Remark 4.4. We note that in [MR], McShane and Rivin used the stable norm on the
homology of a punctured torus to study the asymptotic growth of the number of simple closed
geodesics of length less than ` on a hyperbolic torus.
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