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Abstract. We investigate the terms arising in an identity for hyperbolic surfaces proved by

Luo and Tan, namely showing that they vary monotonically in terms of lengths and that

they verify certain convexity properties. Using these properties, we deduce two results.

As a first application, we show how to deduce a theorem of Thurston which states, in

particular for closed hyperbolic surfaces, that if a simple length spectrum ”dominates”

another, then in fact the two surfaces are isometric. As a second application, we show how

to find upper bounds on the number of pairs of pants of bounded length that only depend

on the boundary length and the topology of the surface.

1. Introduction

In the last few decades, identities have played an integral part of the study of hyperbolic

surfaces and their moduli spaces. They are generally equations which express a geometric

quantity or surface invariant in terms of the lengths of a family of curves. For instance

the McShane identity [77] is a way of expressing the horocyclic boundary of a cusp in

terms of the lengths of embedded pants. Around the same time, Basmajian [11] proved

an identity relating the boundary length of a surface with boundary to the set of lengths

of orthogeodesics. The Bridgeman identity [22] used these same orthogeodesic lengths to

express the volume of the unit tangent bundle. This same volume of the unit tangent

bundle was decomposed by Luo and Tan in terms of the boundary lengths of embedded

pants and one-holed tori. The Luo-Tan identity is the first of these identities that doesn’t

require the surface to have any cusp or geodesic boundary.

One interpretation of these identities is that they associate a measure to each element of

the index set, and although these individual measures vary in terms of the geometry of the

surface, their sum remains invariant. We investigate the measures of the Luo-Tan identity,

and a refinement of the identity due to Hu and Tan. A precise version of the identities

(and in particular a description of the index sets) will be given in the next section, but for
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reference we recall them here. The Luo-Tan identity states:

∑
P∈P

ϕ(P) + ∑
T∈T

τ(T) = 8π2(g− 1).

where the sums are taken over so-called properly embedded pairs of pants and one holed

tori. The measures, ϕ and τ, are functions that depend explicitly on the geometries of P or

T. The Hu-Tan variation of the identity can be stated as follows:

∑
P∈P

ϕ(P) + ∑
P∈I

η(P) = 8π2(g− 1),

where the sums are taken over properly and improperly embedded pants, ϕ is the same

as before and η is a different function from ϕ but which also depends explicitly on the

geometry of P.

Our main results are about analytic properties of the measures. We state the most striking

(and useful) properties here, which concern the measures ϕ and η. As they depend only on

the geometry of the pants, they depend only on the boundary lengths of the pants. Hence

ϕ depends on three real parameters and η only two as two of its boundary curves are of

equal length. For practical reasons it is useful to consider, instead of length `, the parameter

t := e−`/2. With these parameters, our results can be expressed as follows.

Theorem 1.1. The functions ϕ and η are strictly increasing on (0, 1]3 and (0, 1]2, respectively, and
satisfy

ϕ(x, y, y) ≤ η(x, y).

Furthermore if we set t := 3
√

xyz then

ϕ(x, y, z) ≥ ϕ(t, t, t) > −24t3 log(t) + 24t3

for all x, y, z ∈ (0, 1].

In particular this says that the measures are strictly decreasing with respect to boundary

length. One might expect this as they necessarily converge to 0 as the lengths increase

(because there are infinitely many terms in the sum which adds up to something finite), but

in fact there is no obvious geometric reason for this to hold infinitesimally and our proof

is entirely analytic. As in Bridgeman’s identity, the functions involve Rogers’ dilogarithm

function and have an intrinsic interest, but our original motivation for studying them was

for possible applications.

From our result, we are able to deduce a few corollaries. As a first application, we recover a

well-known and useful theorem of Thurston’s about dominating length spectra [99].
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Corollary 1.2 (Thurston). If X and Y are marked and closed hyperbolic surfaces of genus g that
satisfy `X(γ) ≥ `Y(γ) for all simple closed geodesics γ, then X = Y.

The surfaces X and Y are points in Teichmüller space (the space of marked hyperbolic

metrics) and Thurston used this result to deduce a positivity result for his asymmetric

metric on Teichmüller space, related to Lipschitz maps between hyperbolic surfaces.

It should be noted that the same result for surfaces with cusps is easily deduced from Mc-

Shane’s identity. Indeed, the summands in the McShane identity are of the form 1
e(`(α)+`(β))/2+1

and thus are obviously strictly decreasing in both `(α) and `(β). A more general observation

of this type can be found in the work of Charette and Goldman [44].

As a second application, we count pants, and find an upper bound on the number of pants

of total boundary length L a surface of genus g can have.

Corollary 1.3. A closed hyperbolic surface X of genus g has strictly less than

2π2(g− 1)eL/2

L + 6

embedded geodesic pants of total boundary length less than L.

This result is related to other results about curve counting. Of course, by the celebrated

results of Mirzakhani [88], the number of pairs of pants grows asymptotically like CX L6g−6

where CX is a constant that depends on the surface, so it is far from optimal for large

L. Nonetheless, the result above is an absolute upper bound that doesn’t depend on the

geometry of the surface. In particular it holds for all L > 0, including relatively small L.

A more directly related result is a result of Buser [33] which says that a surface of genus g
has at most (g− 1)eL+6 primitive closed geodesics of length at most L. This result is used,

among other things, to find upper bounds on the number of surfaces that can have the

same length spectra are not isometric. Also notice that Buser’s result can be applied to find

an upper bound on the number of pants of total length L, but the result is a lot weaker. In a

nutshell, Buser’s upper bound and the above corollary are related, but do not follow from

one another.

One of the novelties of the Luo-Tan identity is that it also holds for closed surfaces, hence

for simplicity we’ve stated our results in this context. However, with the usual caveats, they

generalize without difficulty to surfaces with cusps. This can be seen either by applying

the same methods, or by considering cusped surfaces as lying in the compactification of the

underlying moduli space.
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2. The Luo-Tan identity and variations

In this section we recall a precise formulation of the identity and rewrite it in a slightly

different form more convenient for our purposes.

Let X be a closed, orientable hyperbolic surface of genus g ≥ 2. We will generally be

thinking of X as marked, hence as a point in Teichmüller space Teichg, or if the marking is

not essential, in moduli spaceMg. (Marked in this setting can be thought of as knowing the

names of all simple closed geodesics.) We shall be investigating different small complexity

subsurfaces of X. The subsurfaces we consider are all either considered up to isotopy or

equivalently, we consider their geodesic realizations (their boundary curves are simple

closed geodesics). An (geodesic) embedded three-holed sphere P ⊂ X (or pair of pants) is

said to be properly embedded if its closure is embedded. (In other words, all three of its

boundary curves are non-isotopic.) Otherwise its closure is an embedded one-holed torus

and it is said to be improperly embedded.

With that in hand, the Luo-Tan identity [55] states the following:

∑
P∈P

ϕ(P) + ∑
T∈T

τ(T) = 8π2(g− 1). (1)

The right hand side of the identity is the volume of unit tangent bundle. The left hand

side has two index sets. The first (P) is the set of properly embedded geodesic pants on X
whereas the second (T ) is the set of embedded geodesic one holed tori.

The functions depend explicitly on the geometries of the pants and tori. Hence both can be

made to depend on three real variables. We think of these functions as being measures on

the set of pants and tori, where the measures sum up to full volume.

By cutting a one holed torus along a simple closed geodesic, one obtains a pair of pants.

Hence tori contain infinitely many distinct geodesic pants with embedded interior but,

because of their boundary geodesics, their closures fail to be embedded. Extending the

function for embedded pants to these improperly embedded pants leads to under counting

and hence an inequality. Nonetheless, Hu and Tan [66] found a way of decomposing the

measure associated to a one holed torus as an infinite sum of measures associated to

improperly embedded pants. Putting together the results leads to a new identity where the

second summand set is on improperly embedded pants (the set of which we denote by I):

∑
P∈P

ϕ(P) + ∑
P∈I

η(P) = 8π2(g− 1), (2)

in which ϕ and η are functions that depends on the geometry of P.
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The function ϕ on embedded pairs of pants

We now describe the functions explicitly. Let P be a pair of pants with geodesic boundaries

γ1, γ2, γ3 of lengths `1, `2, `3. For {i, j, k} = {1, 2, 3}, let mi be the length of the shortest

geodesic arc between γj and γk for {i, j, k} = {1, 2, 3}.

γ1

γ2 γ3
m1

Figure 1: A properly embedded pair of pants

The function ϕ applied to P can now be expressed as:

ϕ(P) := 4 ∑
i 6=j

[
2L
(

1− x2
i

1− x2
i yj

)
− 2L

(
1− yj

1− x2
i yj

)
−L(yj)−L

(
(1− yj)

2x2
i

(1− x2
i )

2yj

)]
,

where xi = e−`i/2 and yi = tanh2(mi/2). Note that xi is monotonic decreasing in `i.

One of our goals will be to study the variation of this function in terms of the lengths `i. For

that purpose, we shall express the function solely in terms of the xi. By our definition of y1:

y1 = tanh2(m1/2) =
sinh2(m1/2)
cosh2(m1/2)

=
(cosh(m1)− 1)/2
(cosh(m1) + 1)/2

=
cosh(m1)− 1
cosh(m1) + 1

.

Using standard hyperbolic trigonometry we have

cosh(m1) =
cosh(`1/2) + cosh(`2/2) cosh(`3/2)

sinh(`2/2) sinh(`3/2)
=

(x1 +
1
x1
)/2 + (x2 +

1
x2
)(x3 +

1
x3
)/4

( 1
x2
− x2)(

1
x3
− x3)/4

.

Then

y1 =
2(x1 +

1
x1
) + (x2 +

1
x2
)(x3 +

1
x3
)− ( 1

x2
− x2)(

1
x3
− x3)

2(x1 +
1
x1
) + (x2 +

1
x2
)(x3 +

1
x3
) + ( 1

x2
− x2)(

1
x3
− x3)

=
(x1x3 + x2)(x1x2 + x3)

(x2x3 + x1)(1 + x1x2x3)
.

5



More generally, for {i, j, k} = {1, 2, 3}, we obtain:

yj =
(xjxk + xi)(xjxi + xk)

(xixk + xj)(1 + x1x2x3)
.

Hence
1− x2

i
1− x2

i yj
=

1− x2
i

1− x2
i

(xjxk+xi)(xjxi+xk)

(xixk+xj)(1+x1x2x3)

=
(xixk + xj)(1 + x1x2x3)

xj + x2
i xj + xixk + xix2

j xk
.

Similarly:
1− yj

1− x2
i yj

=
xj(1− x2

k)

xj + x2
i xj + xixk + xix2

j xk
,

and
(1− yj)

2x2
i

(1− x2
i )

2yj
=

x2
i x2

j (1− x2
k)

2

(xk + xixj)(xi + xjxk)(xj + xixk)(1 + x1x2x3)
.

In terms of x1, x2 and x3 we obtain:

ϕ(x1, x2, x3) := 4 ∑
{i,j,k}={1,2,3}

[
2L
(

(xixk + xj)(1 + x1x2x3)

xj + x2
i xj + xixk + xix2

j xk

)

−2L
(

xj(1− x2
k)

xj + x2
i xj + xixk + xix2

j xk

)
−L

(
(xjxk + xi)(xjxi + xk)

(xixk + xj)(1 + x1x2x3)

)

−L
( x2

i x2
j (1− x2

k)
2

(xk + xixj)(xi + xjxk)(xj + xixk)(1 + x1x2x3)

)]
.

The function η on improperly embedded pants

Now let T be a hyperbolic one-holed torus with boundary geodesic β and let α be a

non-peripheral simple closed geodesic of T. Let hα be the length of the shortest simple

orthogeodesic from β to itself which is disjoint from α. Let pα denote the length of the pair

of shortest simple orthogeodesics from α to β. Finally let qα be the length of the shortest

simple orthogeodesic from α to itself.

Let P be the improperly embedded pair of pants associated to T by cutting T along α. Then

the function η is defined as:

η(P) := 8
[
L
(

tanh2
(

qα

2

))
+ 2L

(
tanh2

(
hα

2

))
−L

(
sech2

(
pα

2

))

−2La
(

e−`(α), tanh2
(

hα

2

))
− 2La

(
e−

`(β)
2 , tanh2

(
hα

2

))]
.

Let x := e
−`(β)

2 and y := e
−`(α)

2 , we will express each term of η(P) in term of x and y.

tanh2
(

qα

2

)
=

cosh(qα)− 1
cosh(qα) + 1

=
cosh(`(β)/2) + cosh2(`(α)/2)− sinh2(`(α)/2)
cosh(`(β)/2) + cosh2(`(α)/2) + sinh2(`(α)/2)
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β

α

hα

pα

qα

Figure 2: An improperly embedded pair of pants

=
x + 1/x + 2

x + 1/x + y2 + 1/y2 =
(x + 1)2y2

(x + y2)(xy2 + 1)
.

Similarly,

tanh2
(

hα

2

)
=

x + y2

xy2 + 1
.

and

sech2
(

pα

2

)
=

1
cosh2 ( pα

2

) =
1

sinh2(`(α)/2) sinh2(hα)
=

(1− tanh2( hα
2 ))

2y2

(1− y2)2 tanh2( hα
2 )

=
(1− x)2y2

(x + y2)(xy2 + 1)
.

Following [55], we define the lasso function La as follows:

La(a, b) := L(b) + L
(

1− b
1− ab

)
−L

(
1− a
1− ab

)
,

for a, b ∈ (0, 1). Hence

La
(

e−`(α), tanh2
(

hα

2

))
= La

(
y2,

x + y2

xy2 + 1

)
= L

(
x + y2

xy2 + 1

)
+L

(
1− x
1 + y2

)
−L

(
xy2 + 1
y2 + 1

)
,

and

La
(

e−
`(β)

2 , tanh2
(

hα

2

))
= La

(
x,

x + y2

xy2 + 1

))
= L

(
x + y2

xy2 + 1

)
+L

(
1− y2

1 + x

)
−L

(
xy2 + 1
x + 1

)
.

In terms of x and y we obtain:

η(x, y) = 8L
(

(x + 1)2y2

(x + y2)(xy2 + 1)

)
− 8L

(
(1− x)2y2

(x + y2)(xy2 + 1)

)
− 16L

(
1− x
1 + y2

)
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+16L
(

xy2 + 1
1 + y2

)
− 16L

(
x + y2

xy2 + 1

)
− 16L

(
1− y2

1 + x

)
+ 16L

(
xy2 + 1
1 + x

)
.

Now that we have properly defined the functions ϕ and η, we refer the reader back to our

main result as stated in the introduction (Theorem 1.11.1). Recall that if we express ϕ(P) and

η(P) in terms of the boundary lengths, this theorem tells us that the functions are strictly

decreasing in terms of these lengths. We defer the proof of Theorem 1.11.1 to the final section,

and now concentrate on certain of its implications.

3. Dominating simple length spectra

In this section we show how to deduce a theorem of Thurston’s (Theorem 3.1 in [99]) from

the monotonicity properties of the measures.

Theorem 3.1. If X, Y ∈ Teichg satisfy `X(γ) ≥ `Y(γ) for all simple closed geodesics γ, then
X = Y.

Proof. Just for the purpose of this proof we think of the functions ϕ and η as being functions

of the boundary lengths. In order not to introduce too much notation, we continue to call

them ϕ and η.

Now if `X(γ) ≥ `Y(γ) for all γ, then in particular, by monotonicity of the function ϕ, for

any embedded pair of pants with boundary curves γ1, γ2 and γ3:

ϕ(`X(γ1), `X(γ2), `X(γ3)) ≤ ϕ(`Y(γ1), `Y(γ2), `Y(γ3))

with equality if and only if the lengths are all equal. Similarly, for an improperly embedded

pair of pants with boundary curve β and interior simple closed curve α, we have, by

monotonicity of the function η:

η(`X(β), `X(α)) ≤ η(`Y(β), `Y(α))

with equality if and only if the lengths are equal. As, by Equation 22, the sums of these

functions, summed over all possible properly and improperly embedded pants, are equal

for both X and Y, it follows that each summand is equal.

Now as every simple closed geodesic belongs to certain pairs of pants, either properly

or improperly embedded, the result follows by rigidity of the marked simple length

spectrum.
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4. Counting pants

We now focus on counting the number of pants (embedded or improperly embedded) of

boundary length less than L on any surface (of genus g with n cusps).

Fix a hyperbolic closed surface X and let Y(X) be the set of isotopy classes of geodesic

pants on X (so the union of properly P(X) and improperly embedded pants I(X)). The

Hu-Tan variation of the identity (Equation 22) allows us to associate to each pair of pants P
a measure (either ϕ or η depending on whether it is properly or improperly embedded),

the sum of which adds up to the volume of the unit tangent bundle. The inequalities from

Theorem 1.11.1 will then allow us to bound the number of pants.

Theorem 4.1. For a surface X we set

NPX(L) = ] {Y ∈ Y(X)|`(∂Y) ≤ L}

to be the number of pants of total boundary length less than L. Then any X ∈ Mg satisfies

NPX(L) <
2π2(g− 1)eL/2

L + 6
.

Proof. Let Y ∈ Y(X). Suppose Y is properly embedded, and let `1, `2 and `3 be its boundary

lengths and L their sum. Notice that

e−L/6 =
3
√

e−
`1
2 e−

`2
2 e−

`3
2

and thus by Theorem 1.11.1 we have

ϕ(Y) = ϕ
(

e−`1/2, e−`2/2, e−`3/2
)
≥ ϕ

(
e−

L
6 , e−

L
6 , e−

L
6

)
.

Similarly, if Y is improperly embedded with boundary lengths `1, `2 and `2, and L their

sum, we have

η(Y) = η
(

e−`1/2, e−`2/2
)
≥ ϕ

(
e−

L
6 , e−

L
6 , e−

L
6

)
where the last inequality is again from Theorem 1.11.1. Now by Theorem 1.11.1 again, the

measure associated to any Y of total boundary length L is greater than

ϕ
(

e−
L
6 , e−

L
6 , e−

L
6

)
> 24 e−L/2 L

6
+ 24 e−L/2 = 4

L + 6
eL/2 .

Now as the total sum of all the measures is equal to 8π2(g− 1), we have

NPX(L) < 8π2(g− 1)
1

4 L+6
e−L/2

=
2π2(g− 1)eL/2

L + 6

as desired.
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5. Behavior of the measures

This is the main technical part of the paper, where we show the measures satisfy the

properties we previously claimed. Several of the intermediate claims, although they are

ultimately purely calculus, are in fact quite technical. They can (and have been) checked by

formal computational software.

The following lemma is part of Theorem 1.11.1.

Lemma 5.1. ϕ(x, x, x) > −24x3 log(x) + 24x3 for all x ∈ (0, 1].

Proof. Consider the function f (x) := ϕ(x, x, x) + 24x3 log(x) − 24x3. This function is

continuous on (0, 1], so it is enough to prove that f is strictly increasing on (0, 1). Indeed,

after taking the derivative of f and manipulating terms of f ′ reasonably, we obtain:

f ′(x) = (ϕ(x, x, x))′ − 48x2 + 72x2 log(x) = m

(
a log(1− x) + b log(x) + c log(1 + x3)

−d log
(
1− x + x2)+ h log

(
1− x + x2

1− x

)
− 2(1 + x3)(1− x)x3

)
,

where

m :=
24

(1− x)x(1 + x3)
, a := x(1 + x)(1− x)2, b := 3(1− x)x6, c := (1 + x3)(1− x),

d := x(1 + x), h := x2(1− x2).

Note that the following Taylor series for log(t) around 1 is valid for t ∈ (0, 2]:

log(t) = (t− 1)− (t− 1)2

2
+

(t− 1)3

3
− ... =

∞

∑
k=1

(−1)k−1(t− 1)k

k
.

We observe that for all t ∈ (0, 1], the terms of the Taylor series are negative which implies

that:

log(t) ≤ (t− 1)− (t− 1)2

2
.

Therefore:

f ′(x) ≥ m

(
a log(1− x) + b

(
1− 1

x

)
+ c

(
1− 1

1 + x3

)

−d
(
(1− x + x2 − 1)− (1− x + x2 − 1)2

2

)
+ h

(
1− 1− x

1− x + x2

)
− 2(1 + x3)(1− x)x3

)
.
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Simplifying the right hand side of the above inequality we get:

f ′(x) ≥ 12x(2− x + 3x2 − 4x3 + 9x4 − 9x5 + 2x6)

(1 + x)(1− x + x2)2 +
24(1− x) log(1− x)

1− x + x2

=
24(1− x)
1− x + x2

(
x(2− x + 3x2 − 4x3 + 9x4 − 9x5 + 2x6)

2(1 + x)(1− x)(1− x + x2)
+ log(1− x)

)
.

We now set

g(x) :=
x(2− x + 3x2 − 4x3 + 9x4 − 9x5 + 2x6)

2(1 + x)(1− x)(1− x + x2)
+ log(1− x)

and so

g′(x) =
x2(5− 15x + 34x2 − 46x3 + 28x4 + 4x5 − 18x6 + 13x7 − 3x8)

(1− x)2(1 + x)2(1− x + x2)2

=
x2(2x8 + 10x7(1− x) + (1− x)2(5− 5x + 19x2 − 3x3 + 3x4 + 13x5 + 5x6))

(1− x)2(1 + x)2(1− x + x2)2 > 0,

for all x ∈ (0, 1). Therefore, g(x) > g(0) = 0, for all x ∈ (0, 1).

In particular, f ′(x) > 0, for all x ∈ (0, 1) and thus

f (x) > lim
x→0

(
ϕ(x, x, x) + 24x3 log(x)− 24x3) = 0

which completes the proof.

We now prove the monotonicity of ϕ. Since ϕ is a symmetric function, it suffices to show:

Lemma 5.2.

∂x1 ϕ(x1, x2, x3) > 0

for all x1, x2, x3 ∈ (0, 1).

Proof. Taking the partial derivative of ϕ with respect to the variable x1, and by standard

simplifications, one obtains:

∂x1 ϕ(x1, x2, x3) =
3

∑
i=1

[
ai log(xi) + bi log(1− x2

i )

]
+ c1 log(x1 + x2x3)

+c2 log(x2 + x1x3) + c3 log(x3 + x1x2) + M log(1 + x1x2x3),

where

a1 := − 16(x1 + x2x3)

(1− x2
1)(1 + x1x2x3)

, a2 = a3 := − 16x2x3

1 + x1x2x3
,

b1 := − 8x2x3(1 + x2
1 + 2x1x2x3)

x1(x1 + x2x3)(1 + x1x2x3)
,
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b2 :=
8x3(1− x2

2)

(x2 + x1x3)(1 + x1x2x3)
, b3 :=

8x2(1− x2
3)

(x3 + x1x2)(1 + x1x2x3)
,

c1 :=
16x1 + 8x2x3 + 8x2

1x2x3

(1− x2
1)(1 + x1x2x3)

, c2 = c3 :=
8x2x3

1 + x1x2x3
,

M := −
16x4

1(x2
2 + x2

3 + x2
2x2

3) + 8x3
1x2x3(4 + x2

1 + 3x2
2 + 3x2

3) + 8x2
2x2

3(4x2
1 − 2)− 8x1x2x3(1 + x2

2 + x2
3)

x1(1− x2
1)(x1 + x2x3)(x2 + x1x3)(x3 + x1x2)

.

Again, by some standard manipulations, we can express ∂x1 ϕ(x1, x2, x3) as follows:

∂x1 ϕ(x1, x2, x3) =
8x2x3

1 + x1x2x3
log
((

x1

x2x3
+ 1
)(

x2

x1x3
+ 1
)(

x3

x1x2
+ 1
))

+ b1 log(1− x2
1)

+b2 log(1− x2
2) + b3 log(1− x2

3) +
16x1

1− x2
1

log
(

1 +
x2x3

x1

)
+ M log(1 + x1x2x3).

Note that for all x1, x2, x3 ∈ (0, 1),

b2 log(1− x2
2)+ b3 log(1− x2

3) ≥ b2.
−x2

2

1− x2
2
+ b3.

−x2
3

1− x2
3
=
−8x2x3

1 + x1x2x3
.
(

x2

x2 + x1x3
+

x3

x3 + x1x2

)
and

16x1

1− x2
1

log
(

1+
x2x3

x1

)
+ M log(1+ x1x2x3) ≥

16x1

1− x2
1

log(1+ x1x2x3) + M log(1+ x1x2x3)

=
8x2x3(2x2x3 + x1x2

2 + x1x2
3 + x1 − x3

1)

x1(x1 + x2x3)(x3 + x1x3)(x3 + x1x2)
log(1 + x1x2x3) > 0.

Hence,

∂x1 ϕ(x1, x2, x3) >
8x2x3

1 + x1x2x3
log
((

x1

x2x3
+ 1
)(

x2

x1x3
+ 1
)(

x3

x1x2
+ 1
))

− 8x2x3

1 + x1x2x3
.
(

x2

x2 + x1x3
+

x3

x3 + x1x2

)
+ b1 log(1− x2

1)

=
8x2x3

1 + x1x2x3

[
log
(

x2

x1x3
+ 1
)
− x2

x2 + x1x3
+ log

(
x3

x1x2
+ 1
)
− x3

x3 + x1x2

]
+

8x2x3

1 + x1x2x3
log
(

x1

x2x3
+ 1
)
+ b1 log(1− x2

1).

Note that, log(1 + x) ≥ x
1+x for all x > −1. Therefore,

log
(

x2

x1x3
+ 1
)
≥ x2

x2 + x1x3
,

and

log
(

x3

x1x2
+ 1
)
≥ x3

x3 + x1x2
.

12



And thus

∂x1 ϕ(x1, x2, x3) >
8x2x3

1 + x1x2x3
log
(

x1

x2x3
+ 1
)
+ b1 log(1− x2

1) > 0.

The next lemma is about the monotonicity of η:

Lemma 5.3. The function η satisfies

∂ηx(x, y) > 0 and ∂ηy(x, y) > 0 for all x, y ∈ (0, 1).

Proof. Through some standard manipulations, we can express ∂ηx(x, y) in the following

form:

∂ηx(x, y) = M

(
A log

(
1

1− x

)
+ B log(1− y2) + C log

(
1 + xy2

y

)
+ D log

(
1 + xy2)

+E log
(

x + y2

x + x2y2

))
,

where A := (1− x)y2(1 + x2 + 2xy2), B := (1− x)x(1− y4), C := 2xy2(1− x)(x + y2),

D := (1− x)2(1 + x)y2, E := x(1 + y2)(x + y2), and

M :=
8

(1− x)x(x + y2)(1 + xy2)
.

Note that, log(t) ≥ 1− 1
t for all t > 0. Therefore, for all x, y ∈ (0, 1), we have:

∂ηx(x, y) ≥ M

(
A.x+ B.

(
−y2

1− y2

)
+C.

(
1 + xy2 − y

1 + xy2

)
+D.

(
xy2

1 + xy2

)
+E.

(
y2(1− x2)

x + y2

))

=
8y2(1 + x + x2 + y2 + 4xy2 + 2x2y2 + x3y2 + 2xy4 + 3x2y4 + 2(1− y)(x + y2))

(x + y2)(1 + xy2)2 .

Hence

∂ηx(x, y) > 0,

for all x, y ∈ (0, 1).

Now we proceed to the second inequality of this lemma. The quantity ∂ηy(x, y) can be

expressed as

∂ηy(x, y) = m
(

a log (1− x) + b log
(

1
x

)
+ c log

(
x + y2

y2(1 + xy2)

)
+ d log

(
1 + xy2

1− y2

))
,

13



where

a := (1− x2)y2(1− y2), b := xy2(1− y2)(x + y2), c := (1 + x)y2(x + y2),

d := x(1− y2)(1 + 2xy2 + y4),

and

m :=
16

y(1− y2)(x + y2)(1 + xy2)
.

Similarly, for all x, y ∈ (0, 1), we have:

∂ηy(x, y) ≥ m

(
a
(

1− 1
1− x

)
+ b (1− x) + c

(
1− y2(1 + xy2)

x + y2

)
+ d

(
1− 1− y2

1 + xy2

))

=
16xy(1 + 2x− x2 + 2y2 + 2xy2 + 3x2y2 − x3y2 + y4 + 3xy4)

(x + y2)(1 + xy2)2 .

Hence

∂ηy(x, y) > 0,

for all x, y ∈ (0, 1).

The following lemma is an essential step in our inequalities.

Lemma 5.4. The function ϕ satisfies

ϕ(x, y, z) ≥ ϕ(x,
√

yz,
√

yz),

for all x, y, z ∈ (0, 1]. Furthermore, the function ϕ(x, y, z)− ϕ(x,
√

yz,
√

yz) is monotone increas-
ing with respect to x.

Proof. The derivative with respect to x of the function ϕ(x, y, z)− ϕ(x,
√

yz,
√

yz) is of the

following form:

∂x ϕ(x, y, z)− ∂x ϕ(x,
√

yz,
√

yz) = 8(A + B),

where

A :=
(1− y2)z log(1− y2)

(y + xz)(1 + xyz)
+

y(1− z2) log(1− z2)

(xy + z)(1 + xyz)
− 2(1− yz) log(1− yz)

(1 + x)(1 + xyz)
,

B := −yz log(y)
1 + xyz

− yz log(z)
1 + xyz

− 2yz log(1 + x)
1 + xyz

+
yz log(xy + z)

1 + xyz
+

yz log(y + xz)
1 + xyz

− (1− x)(y− z)2 log(1 + xyz)
(1 + x)(xy + z)(y + xz)

.

14



If we can show that ∂x ϕ(x, y, z)− ∂x ϕ(x,
√

yz,
√

yz) ≥ 0 for all x, y, z ∈ (0, 1), then it will

imply that:

ϕ(x, y, z)− ϕ(x,
√

yz,
√

yz) ≥ ϕ(0, y, z)− ϕ(0,
√

yz,
√

yz) = 0.

Our aim will be to show that both A and B are non-negative for all x, y, z ∈ (0, 1). As

A.(1 + xyz)(xy + z)(xz + y)(1 + x) = x2h2(y, z) + (x− x2)h1(y, z) + (1− x2)h0(y, z),

where

h2(y, z) := 2z(y + z)(1− y2) log(1− y2) + 2y(y + z)(1− z2) log(1− z2)− 2(y + z)2(1− yz) log(1− yz),

h1(y, z) := z(y + z)(1− y2) log(1− y2) + y(y + z)(1− z2) log(1− z2)− 2(y2 + z2)(1− yz) log(1− yz),

and
h0(y, z) := z2(1− y2) log(1− y2) + y2(1− z2) log(1− z2)− 2yz(1− yz) log(1− yz),

the non-negativity of A is implied from the following:

Claim 5.5.
h0(y, z) ≥ 0, h1(y, z) ≥ 0, and h2(y, z) ≥ 0

for all 0 < y, z < 1.

Proof of claim. Note that:

h0(y, z)
y2z2 =

1− y2

y2 log(1− y2) +
1− z2

z2 log(1− z2)− 2
1− yz

yz
log(1− yz).

We consider the following function:

g(t) :=
(1− et) log(1− et)

et ,

where t < 0. Then

g′′(t) =
1

1− et +
log(1− et)

et ,

which is easily checked to be positive for all t < 0. Hence g is convex on its domain.

Therefore, for all negative numbers t1 and t2, we have:

g(t1) + g(t2) ≥ 2g
(

t1 + t2

2

)
.

By substituting t1, t2 by log(y2), log(z2) respectively, we obtain:

1− y2

y2 log(1− y2) +
1− z2

z2 log(1− z2) ≥ 2
1− yz

yz
log(1− yz).
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This implies that h0(y, z) ≥ 0 for all 0 < y, z < 1.

Now we prove that h2(y, z) ≥ 0. Indeed,

h2(y, z)
2(y + z)

= z(1− y2)[log(1− y2)− log(1− yz)] + y(1− z2)[log(1− z2)− log(1− yz)]

= z(1− y2) log
(

1− y2

1− yz

)
+ y(1− z2) log

(
1− z2

1− yz

)
≥ z(1− y2)

(
1− 1− yz

1− y2

)
+ y(1− z2)

(
1− 1− yz

1− z2

)
= 0,

for all y, z ∈ (0, 1).

Lastly, h1(y, z) is non-negative because of the following:

h1(y, z)
y + z

=
[
z(1− y2) log(1− y2) + y(1− z2) log(1− z2)

]
− 2

(y2 + z2)(1− yz)
y + z

log(1− yz)

=

[
h2(y, z)
2(y + z)

+ (z(1− y2) + y(1− z2)) log(1− yz)
]
− 2

(y2 + z2)(1− yz)
y + z

log(1− yz)

=
h2(y, z)
2(y + z)

− (y− z)2(1− yz)
y + z

log(1− yz) ≥ 0,

for all y, z ∈ (0, 1). This completes the proof of Claim 5.55.5.

Finally, we prove the non-negativity of B as follows:

B =
yz

1 + xyz
log
(
(xy + z)(xz + y)

yz(1 + x)2

)
− (1− x)(y− z)2 log(1 + xyz)

(1 + x)(xy + z)(y + xz)

≥ yz
1 + xyz

(
1− yz(1 + x)2

(xy + z)(xz + y)

)
− (1− x)(y− z)2xyz

(1 + x)(xy + z)(y + xz)

=
x2y(y− z)2z(2− yz + xyz)

(1 + x)(xy + z)(y + xz)(1 + xyz)
≥ 0, for all x, y, z ∈ (0, 1).

Remark 5.6. The previous proof tells us that

∂ϕ

∂x
(x, y, z) ≥ ∂ϕ

∂x
(x,
√

yz,
√

yz).

Hence, Lemma 5.25.2 also follows from the following simpler inequality which contains only

two variables:
∂ϕ

∂x
(x, y, y) > 0.
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Lemma 5.7. The function ϕ satisfies

ϕ(x, y, z) ≥ ϕ( 3
√

xyz, 3
√

xyz, 3
√

xyz),

for all x, y, z ∈ (0, 1]

Proof. By applying Lemma 5.45.4 two times, we obtain:

ϕ(x, y, z) ≥ ϕ(x,
√

yz,
√

yz) ≥ ϕ

(√
x
√

yz,
√

x
√

yz,
√

yz
)

(3)

We define a function f from (0, 1]3 to (0, 1]3 as follows:

f (x, y, z) := (x
1
2 y

1
4 z

1
4 , x

1
2 y

1
4 z

1
4 , y

1
2 z

1
2 ),

then from (33), we have a monotonically decreasing sequence:

ϕ(x, y, z) ≥ ϕ( f (x, y, z)) ≥ ϕ( f 2(x, y, z)) ≥ ... ≥ ϕ( f n(x, y, z)) ≥ ... (4)

By induction, we can show that:

f n(x, y, z) = (xan ybn zbn , xan ybn zbn , x2bn−an yan zan)

for all n ∈N, in which an = 1
3 +

2
3

( 1
4

)n
, and bn = 1

3 −
1
3

( 1
4

)n
. Hence

lim
n→∞

( f n(x, y, z)) = (x
1
3 y

1
3 z

1
3 , x

1
3 y

1
3 z

1
3 , x

1
3 y

1
3 z

1
3 ).

Therefore, from (44) and the continuity of the function ϕ on its domain, we have:

ϕ(x, y, z) ≥ lim
n→∞

ϕ( f n(x, y, z)) = ϕ( lim
n→∞

( f n(x, y, z)) = ϕ( 3
√

xyz, 3
√

xyz, 3
√

xyz).

The following lemma is a relation between the two functions ϕ and η:

Lemma 5.8. The functions ϕ and η satisfy:

η(x, y) ≥ ϕ(x, y, y),

for all x, y, z ∈ (0, 1]. Furthermore, the function η(x, y)− ϕ(x, y, y) is monotone increasing with
respect to x.
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Proof. We will prove that:

∂xη(x, y)− ∂x ϕ(x, y, y) > 0,

for all x, y ∈ (0, 1). Indeed,

∂xη(x, y)− ∂x ϕ(x, y, y) = m

(
a log(1− y2) + b log

(
1

1 + xy2

)
+ c log

(
1 + x

1 + xy2

)

+d log
(

x + y2

1 + xy2

)
+ h log

(
x + y2

x(1 + xy2)

))
,

where a := (1− x)x(1− y2)2, b := (1− x)x(1− y2)2, c := (1− x)(1 + x)2y2,

d := x(1 + x)y2(x + y2), h := x(1− y2)(x + y2),

and

m :=
8

x(1 + x)(x + y2)(1 + xy2)

Note that, log(t) ≥ 1− 1
t for all t > 0. Therefore, for all x, y ∈ (0, 1), we have:

∂xη(x, y)− ∂x ϕ(x, y, y) ≥ m

(
a
(

1− 1
1− y2

)
+ b

(
1− (1 + xy2)

)
+ c

(
1− 1 + xy2

1 + x

)

+d
(

1− 1 + xy2

x + y2

)
+ h

(
1− x(1 + xy2)

x + y2

))

=
8(1− x)xy4(1− y2)

(1 + x)(x + y2)(1 + xy2)
> 0.

This implies that:

η(x, y)− ϕ(x, y, y) ≥ η(0, y)− ϕ(0, y, y) = 0,

for all x, y ∈ (0, 1].

This completes the proofs of the technical results in this note. We end with an example in a

similar vein, which can be obtained by using the same methods, and which illustrates that

the function ϕ has a wealth of yet unexplored properties.

Lemma 5.9. The function ϕ satisfies:

ϕ(x, yz, 1) ≥ ϕ(x, y, z),

for all x, y, z ∈ (0, 1]. Furthermore, the function ϕ(x, yz, 1)− ϕ(x, y, z) is monotone increasing
with respect to x.
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