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Abstract. We define and study analogs of curve graphs for infinite type surfaces. Our

definitions use the geometry of a fixed surface and vertices of our graphs are infinite

multicurves which are bounded in both a geometric and a topological sense. We show that

the graphs we construct are generally connected, infinite diameter and infinite rank.

1. INTRODUCTION

The curve complex, the pants complex and a number of other simplicial complexes and

graphs related to simple closed curves on finite type surfaces have been used in multiple

contexts for the study of the Teichmüller and moduli space, mapping class groups and

related topics. In particular the geometry of these complexes has played a part in both

understanding the geometries of Teichmüller spaces and a geometric group theory approach

to the study of the mapping class group.

The Teichmüller theory of infinite type surfaces is not nearly as developed as the finite type

case, but there have been a number of interesting results about geometric properties of such

surfaces (see for instance [55]) and their deformation spaces (see [66, 22, 11]).

There are also recent results about simplicial complexes related to infinite type surfaces.

The usual curve graph can of course be defined on an infinite type surface and for instance

it is a result of Hernandez and Valdez [99] that the mapping class group is the automorphism

group of this graph under certain non-trivial conditions. From the coarse geometric point

of view, as a metric space it is not particularly exciting as it has diameter 2. In another

direction, there is a recent result of Bavard [77] about a ray graph associated to infinite type

planar surfaces that has infinite diameter and is Gromov hyperbolic.

Our goal is to contribute to this setting by defining and studying another graph associated

to infinite type surfaces. Roughly speaking vertices are multicurves whose complement has

bounded complexity and relating vertices if they can be realized disjointly. Depending on

how one makes the about sentence precise, the graph in question is generally disconnected.
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We define our graphs with respect to fixed hyperbolic structure on a surface. In the case

of finite type surfaces, this is equivalent to the usual setup, but in the case of infinite type

surfaces, this makes a big different. To be precise, we require that our surfaces have a certain

type of bounded geometry, namely that they admit a (generalized) pants decomposition

where supremum of the lengths of the individual curves in the decomposition is bounded.

Deformation spaces of such surfaces have been studied by Alessandrini et al. and have

been called upper-bounded surfaces.

We fix a surface M with a hyperbolic metric as above. Now for each K ∈ N ∪ {∞}, we

get a graph GK(M) where vertices are multicurves that also have this bounded property

length and whose complementary regions have complexity at most K. Again, edges appear

when the multicurves can be realized disjointly (the cases K = 0, ∞ are special - see the

next section for the precise definitions). Note that for finite type surfaces, our graphs for

certain K are essentially the curve graph, the pants graph and some sort of set of graphs ”in

between”. In particular they are all connected and generally have interesting geometries.

It is not a priori obvious that these graphs are connected in the infinite type case (in fact

without the bounded length property they aren’t necessarily) so our first theorem is about

the connectedness.

Theorem 1.1. For any upper-bounded M and any K ∈N∪ {∞}, the graph GK(M) is connected.

Again, from a geometric point of view, we don’t want the graphs to be too connected - by

which we mean finite diameter. For finite K we show they aren’t - and they are as far as

possible from being Gromov hyperbolic.

Theorem 1.2. For any upper-bounded M of infinite type and K ∈N, rank(GK(M)) = ∞.

To show this we exhibit arbitrarily large quasi-flats via subsurface projections onto finite

type subsurface curve graphs. We note that we don’t know whether these graphs are

quasi-isometric for different K.

We conclude the paper with the example of a graph G∞(Z), for a particular type of surface

Z, which has finite diameter (at most 3). It’s not completely obvious that the diameter of

this graph is bounded (it is proved in Theorem 5.15.1). The example is intriguing because it is

in some sense the limit of infinite rank metric spaces.

2. PRELIMINARIES

We begin by defining the graphs we will be studying. Let M be an orientable hyperbolic

surface with non-trivial fundamental group. In general M will be a surface of infinite type
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but it is interesting to note that many of the definitions apply to finite type surfaces and

give rise to some of the usual combinatorial graphs associated to curves on surfaces. It’s

important to note that, in contrast to the usual setting of curve graphs, we consider a fixed

hyperbolic structure on M. We make the following further assumption on M: we assume

that M admits a geodesic pants decomposition such that the supremum of the lengths of

the individual curves is finite. This condition on the metric is referred to as being upper
bounded in [22] where the authors define and study Fenchel-Nielsen coordinates for this type

of surface. It might be worth remarking - but we will not dwell on it here - that the only

real requirement we need for any of our results is that we have a metric surface which is

bi-lipschitz equivalent to a hyperbolic surface as described above.

When M is of finite type, the complexity κ(M) of M is the number of curves in a pants

decomposition of M. So if M is homeomorphic to a surface of genus g with n boundary

curves, then κ(M) = 3g− 3 + n.

We recall the definition of the usual curve graph C(M): vertices are isotopy classes of

non-trivial simple closed curves and two vertices share an edge if they can be realized

disjointly on M. In this context, when M has boundary, non-trivial means non-isotopic to

a point and non-peripheral to boundary. We think of C(M) as a geometric graph where

edges have length 1. Note that on a surface of infinite type, any two curves are distance at

most 2 in this graph. Its geometry - from this point of view - is somewhat limited.

For general M as above, and for an integer K > 0, we define the following graph GK(M):

- Vertices of GK(M) are (geodesic) multicurves µ of M such that any connected component

Γ of M \ µ satisfies κ(Γ) ≤ K (finite complexity condition) and

sup{`(αµ) | αµ ∈ µ is a connected component of µ} < +∞ (finite length condition).

- Two vertices µ and µ′ span an edge if they can be realized disjointly.

We note that if M is of finite type and K = κ(M)− 1 then GK(M) is the usual curve graph

with extra vertices corresponding to all simplices.

For K = 0 we define G0(M) similarly. The vertex set is defined as previously (so in this case

geodesic pants decompositions with finite supremum of individual curve lengths ) but the

edge set is slightly different.

For this we recall the definition of an elementary move between pants decompositions. Two

pants decompositions µ, µ′ are related by an elementary move if they differ by exactly

one curve and if the curves that distinguish them intersect minimally on the complexity 1

subsurface which they share (see Figure 11).
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Figure 1: The two types of elementary moves

Elementary moves can be performed simultaneously if they are performed on disjoint

complexity 1 subsurfaces. Two pants decompositions in G0(M) share an edge if they differ

by (a possibly infinite number) of simultaneous elementary moves. This graph is sometimes

referred to as the diagonal pants graph.

For K = ∞, we define a graph G∞(M) as follows. Vertices are (geodesic) multicurves µ of

M such that

sup{κ(Γ) | Γ is a connected component of M \ µ} < ∞

and

sup{`(αµ) | αµ ∈ µ is a connected component of µ} < +∞.

We’ll be thinking of these graphs as metric graphs where edge lengths are all 1 and we’ll be

interested in their geometry.

Observation. We point out that, by definition, if 0 < K′ < K then

GK′(M) ⊂ GK(M).

The vertices of G0(M) lie in all GK(M) but as any two elements of G0(M) intersect, none

of the edges of G0(M) lie in GK(M) for K > 0. However, any pants decompositions that

share an edge in G0(M) differ on the complement of a multicurve where each connected

component has complexity at most one. This means that they are at distance 2 in any of the

graphs GK(M) for K > 0. The converse is not (necessarily) true.

The first step will be to show that these graphs are connected and the previous observation

will be crucial in showing that.

3. CONNECTEDNESS

In this section we prove that the graphs we defined are all connected.

We begin by showing that for any µ ∈ GK(M) there exists a pants decomposition µP ∈
GK(M) that contains µ. It is immediate that this is true when M is of finite type. As such it
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is also immediate that there exists a geodesic pants decomposition which contains µ for any

type of M - what requires a proof is that one can choose this pants decomposition to lie in

GK(M) because if one chooses an arbitrary pants decomposition then it won’t necessarily

satisfy the finite length condition. We state the result as a lemma.

Lemma 3.1. For any µ ∈ GK(M) there exists a pants decomposition µP ∈ GK(M) that contains
µ.

Proof. This essentially follows from results on the length of pants decompositions. In par-

ticular, any surface of area A and boundary length at most B admits a pants decomposition

of length at most a function of A and B (this follows from generalizations of results of Bers

and Buser, see for instance [44]).

Now let L := sup{`(αµ) | αµ ∈ µ is a connected component of µ}. Let M′ be a connected

component of M \ µ. As it is of complexity at most K, it has at most K + 2 boundary curves.

Each is of length at most L so

`(∂M′) ≤ (K + 2)L.

As M′ is hyperbolic, its area is also bounded above by a function of K. As such, by the

result described above, M′ admits a pants decomposition where every curve has length

bounded above by a function of K and L. As this is true for all connected M′ ⊂ M \ µ,

we obtain a pants decomposition of M which contains µ and continues to enjoy the finite

length property.

We now prove the following theorem.

Theorem 3.2. For any K ∈N∪ {∞}, the graph GK(M) is connected.

Proof. In light of the observation at the end of the preceding section, it suffices to prove that

G0(M) is connected.

We begin by proving the following claim.

Claim 1. For any v, w ∈ G0(M), there exists Nv,w such that all curves α ∈ v and β ∈ w satisfy

i(α, w) ≤ Nv,w and i(β, v) ≤ Nv,w.

To prove the claim, observe that the lengths of curves in v and w are uniformly bounded by

a constant, say L. Each intersection point between a curve α ∈ v and w forces α to enter the

collar of a curve in β and then leave again. By the collar lemma, the width of this collar is

uniformly bounded below by a positive constant CL that only depends on L. As such, if α
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intersects w at least k times, its length must be greater than kCL. As such it follows that k
satisfies

k <
L

CL
.

A symmetric argument works for the intersection between β ∈ w and v and this proves the

claim.

The key to the argument is the following claim.

Claim 2. There exists a positive function F : N→ N such that if v, w ∈ G0(M) and for all

α ∈ v and all β ∈ w satisfying

i(α, w) ≤ N and i(β, v) ≤ N

then

d(v, w) ≤ F(N)

where d denotes distance in G0(M).

This is Lemma 4.4 from [33] which applies to both finite type and infinite type surfaces.

The result is a simple consequence of the two claims.

4. QUASI-CONVEXITY OF STRATA AND INFINITE RANK

In this section we prove that for K ∈ N, strata in GK(M) corresponding to the set of

multicurves containing a fixed multicurve µ, are quasi-convex. Using this we are able to

deduce that for all infinite type surfaces M, and all K ∈N, the graph GK(M) is of infinite

rank.

We begin with the following lemma. For convenience, we denote distance in GK(M) by d.

Lemma 4.1. Let M′ be a subsurface of M of complexity K′ > K. We denote by C(M′) the usual
curve graph associated to M′. Then there exists a projection

πM′ : GK(M)→ C(M′)

satisfying
dC(M′)(πM′(v), πM′(w)) ≤ 9 d(v, w).

Proof. As K′ > K, any v ∈ GK(M) contains a curve α such that α ∩ M′ 6= ∅. Thus the

following map is well defined: for any v ∈ GK(M) we define πM′(v) to be any single curve

in the subsurface projection of v to M′.
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(Recall that a subsurface projection to M′ is the collection of isotopy classes of simple closed

curves formed by an ε-neighborhood of {v ∩M′} ∪ ∂M′.)

We observe that if any two curves α, β lie in the subsurface projection of the same multiarc

v, then

i(α, β) ≤ 4.

We state the following well known fact about the curve graph which can be shown by a cut

and paste type argument (see for example [88]).

Fact. Any two curves on a surface which intersect at most k times are distance at most

2 log2(k) + 2 apart in the underlying curve complex.

Suppose that K > 0 and let v and w be vertices of GK(M) joined by an edge. Both πM′(v)
and πM′(w) lie in the subsurface projection of the multicurve v ∪ w so by the above are

distance at most 4 in C(M′). The result then follows by induction.

Now if K = 0, we argue a little bit differently. Let v and w share an edge in G0(M). If a is

an arc (or a curve) in v ∩M′ and b an arc (or a curve) in w ∩M′ then

i(a, b) ≤ 2.

Indeed both a and b are subsets of curves of v and w and any two curves in v and w intersect

at most 2 times. As a consequence if α = πM′(v) and β = πM′(w) then

i(α, β) ≤ 12

(each end of an arc can produce 2 intersection points in the projection and each arc intersec-

tion point can produce 4 in the projection). We deduce that α and β are distance at most 9

in curve graph of M′. Again the result follows from induction.

Remark 4.2. In the above proof we obtain a better bound (namely 6 d(v, w)) in the case

of K > 0 than in the case of K = 0. It might be interesting to know by how much these

constants can be improved.

An immediate consequence of the above lemma is the following.

Corollary 4.3. Let M′ ⊂ M be a subsurface of complexity K′. Then C(M′) (uniformly) quasi-
isometrically embeds into GK(M) for K = K′ − 1.

Proof. Let µ be a geodesic multicurve so that M′ is the only connected component of positive

complexity of M \ µ (and such that µ ∈ GK′(M)). Associated to µ is a natural map

σµ : C(M′)→ GK(M)
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defined as

σµ(α) = α ∪ µ.

By the above lemma the map σµ is a quasi-isometric embedding.

We observe that this implies that for infinite type M, all of the graphs GK(M) for K 6= ∞ are

of infinite diameter. We can now show that they also have infinite rank.

Theorem 4.4. For any infinite type M and any K ∈N, rank(GK(M)) = ∞.

Proof. As M is of infinite type, for any K we can find an infinite set of subsurfaces Mi, i ∈N∗

such that Mi ∩Mj = ∅ for i 6= j and κ(Mi) = K + 1 for all i ∈N∗.

Now for any n ∈ N∗, we consider bi-infinite geodesics γi on each C(Mi), i = 1, . . . , n. A

choice of origin on each of them and a direction gives us a natural embedding of the set of

points of Zn into GK(M) as we shall explain. This embedding will be a quasi-isometry as in

the previous corollary.

We consider the following `∞ metric on the product Pn of these curve graphs. More precisely,

let

Pn := Π1≤i≤nC(Mi)

be endowed with the following metric: two elements (α1, . . . , αn), (α1, . . . , αn) are at dis-

tance 1 if

max
i=1,...,n

dC(Mi)(αi, βi) = 1.

In this metric space, the restriction to the metric on the embedding of Zn is the `∞ metric, but

is naturally quasi-isometric to the usual metric on Zn. As such we have a quasi-isometric

embedding of Zn in Pn.

Using Lemma 4.14.1, we now get a distance (quasi) non increasing map from GK(M) to Pn.

As in the previous corollary, by choosing a pants decomposition on the complementary

region of the Mi, i = 1, . . . , n, we can quasi-embed Pn into GK(M). In turn this provides the

quasi-isometric embedding of Pn - and thus of Zn - we were looking for. As this can be

done for any n, the theorem is proved.

5. A CASE OF FINITE DIAMETER

We conclude the article by studying a particular example of infinite type surface Z and show

that for this surface G∞(Z) has diameter at most 3. The reason the example is intriguing is

that G∞(Z) is in some sense the limit of infinite rank metric spaces.
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We describe the surface Z in terms of Fenchel-Nielsen coordinates. Consider the infinite

cubic graph as in Figure 22.

Figure 2: An infinite cubic graph and the surface Z lurking behind

This is the graph dual to a pants decomposition (vertices correspond to pants and edges

to pants curves). The surface locally looks like Figures 22 and 33. We now construct M by

taking each pair of pants to have all three lengths equal to a fixed constant `0 and twist

parameters equal to 0.

Figure 3: The surface Z with the curves γi

We will need the curves γi, i ∈ Z in the sequel: these are the curves corresponding to the

separating edges of the cubic graph (they are indicated on Figure 33). We order them by

arbitrarily choosing a γ0 and by asking that γi separates γi−1 from γi+1 for all i.

Although we have constructed M explicitly, the arguments we use are clearly adaptable to

other surfaces, including any bi-lipschitz equivalent surface.

We now prove the result.

Theorem 5.1. Any two elements of G∞(Z) are distance at most 3 apart.

Proof. For µ, ν ∈ G∞(Z), we consider pants decompositions v, w ∈ G∞(Z) such that µ ⊂ v,

ν ⊂ w. We set

Lv := sup{`(α) | α ∈ v is a connected component of v}

and similarly for Lw. We now set L := max{Lv, Lw}.

Now for x ∈ {v, w} and for any γi defined as above, we consider the minimal finite

subsurface Zx,i of Z which contains all curves of x that intersect γi and the curve γi itself.
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The surface Zx,i enjoys certain properties. As it contains γi, it separates the surface Z and

two of the connected components of Z \ Zx,i are infinite. As such the curves of ∂Zx,i also

enjoy this property and note that they belong to the pants decomposition x.

It is of finite complexity bounded by a function of L. One way to see that the complexity

is bounded is via the collar lemma: the number of intersection points between x and γi is

bounded above by a function of L. It follows that the number of curves of x that intersect

γi is bounded as well.

We now show that if dZ(γi, γj) > L, then Zx,i and Zy,j for x, y ∈ {v, w} are disjoint. Indeed,

any curve contained inside Zx,i can be formed by arcs of curves of length at most L and γi.

As such they can be isotopically realized by curves that live in the subset of Z consisting of

points of distance at most L
2 . By applying the same argument to Zy,j any curve of Zx,i can

be realized disjointly from any curve of Zy,j and thus they do not intersect.

We can now prove the main result. We consider a subset γik , k ∈ Z of the separating curves

such that dZ(γik , γik+1) > L. We also choose them so that

sup
k∈Z

{dZ(γik , γik+1)} < +∞.

For even k ∈ Z we consider the multicurve v′ ⊂ v obtained by considering the union of the

(geodesic realizations of) the curves in ∪k∈2Z∂Zv,ik . By construction, v′ ∈ G∞(Z) and v and

v′ span an edge (and so do µ and v′). We construct w′ in an analogous way by considering

the curves in ∂Zv,ik for odd k. By construction, the multicurves v′ and w′ span an edge. So

we have a path µ, v′, w′, ν and this completes the proof.
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