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Abstract. This article gives a short proof that all ideal polygons admit a short ortho-
geodesic decomposition. Specifically, all n-gons admit an orthogeodesic decomposi-
tion with orthogeodesics all of length at most ∼ 2 log(n), and this is roughly optimal.

1. Introduction

In hindsight, the study of moduli spaces of hyperbolic surfaces began with Riemann’s
moduli problem, asking for a "good" parameter set for conformal classes of surfaces.
One version is to find an exact classification of conformal classes, which, taking into
account the uniformization theorem, is the question of finding a precise description of
the moduli space of hyperbolic metrics on an orientable closed surface of genus g ≥ 2.
While this is difficult in general,t the question of finding rough parametrizations,
where rough can take different meanings, has been solved in different ways.

One interpretation is the search for a fundamental domain for the action of the map-
ping class group on Teichmüller space. By considering Fenchel-Nielsen coordinates
and a theorem of Bers which states that any surface can be decomposed into pants
decompositions of length at most a constant that only depends on the topology, you
can find a rough fundamental domain, where each conformal class of surface appears
at most a fixed number of times. This leads to questions about the growth of so-called
Bers constants in terms of the genus, with lower bounds on the order of

√
g and upper

bounds on the order of g (see [11, 22, 66, 77, 99, 1010]).

Here a similar problem is considered, but this time for ideal hyperbolic n-gons,
whose moduli space will be denoted by Mn. An ideal n-gon can be cut along
maximal collections of orthogeodesics, that is geodesics orthogonal to the sides of
the polygon, pairwise disjoint and maximal with respect to inclusion. These will
be called orthogeodesic decompositions, and are natural replacements for pants
decompositions in this context. In fact, an ideal polygon can be doubled along
its perimeter to obtain an n-punctured sphere with a natural reflexion, and the
doubling of such an orthogeodesic decomposition results in a pants decomposition,
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by construction invariant under the reflexion. The main observation of this note is
that a similar result to Bers’ holds, and whose asymptotic growth is straightforward
to obtain.

Theorem 1.1. For any n, there exists a constant On such that any P ∈ Mn admits an
orthogeodesic decomposition µ1, . . . , µn−3 where each orthogeodesic is of length at most On.
Furthermore

2 arcsinh
(

3
2

cot
(π

n

))
≤ On ≤ 2 arccosh

(
1

sin
(

π
n
))

and in particular
lim

n→∞
On/2 log(n) = 1.

One of the main ingredients in the proof of the upper bound is the following obser-
vation, which has undoubtably been observed before but which we state here for
completeness.

Proposition 1.2. For P ∈ Mn and p ∈ P, the inradius of p is bounded above by

rn = arccosh

(
1

sin
(

π
n
))

and the bound is only attained for the unique regular ideal n-gon Pn

The moduli spaceMn has been studied before, namely in [88] where billard paths
are studied. The authors observe that this moduli space can be thought of as the
subset of the moduli space of n-punctured spheres with an orientation reversing
involution that fixes the punctures. Likewise, you can double the ideal polygon to
get a punctured sphere. Now within the larger Teichmüller space of the punctured
sphere, this forms a geodesically convex subspace for the Weil-Petersson metric, and
the authors use the convexity of length functions [1111] to prove that the average billard
path length with fixed number of bounces is uniquely minimized for the polygon Pn

above.
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2. Preliminaries and setup

An ideal n-gon in the hyperbolic plane H is a polygon with its n vertices on the
boundary of H. The space of all ideal n-gons up to isometry is a moduli space,
denoted here byMn. For n = 3, the moduli space consists of one point, as there is
only one ideal triangle up to isometry, so from now on n ≥ 4. As 2n− 3 lengths and
angles determine a hyperbolic polygon, and n angles are equal to 0,Mn is of real
dimension n− 3.

Given two non-adjacent sides of P ∈ Mn, there is a unique geodesic between them
which realizes their distance, and orthogonal in both endpoints. These will be called
orthogeodesics. Note that any path between the two corresponding sides is homo-
topic, with endpoints allowed to move along the sides, to this unique orthogeodesic.
This useful fact can be thought of as the "ideal polygon" version of the unicity of
closed geodesics in the free homotopy class of a closed curve on a hyperbolic surface.
By a counting argument, any ideal n-gon has exactly 1

2 n(n− 2) orthogeodesics. Note
that on surfaces, also with boundary but with more topology, there are infinitely
many orthogeodesics which have been studied in different contexts. For instance,
Basmajian and Fanoni studied properties of the shortest orthogeodesic [44].

A set of disjoint orthogeodesics which is maximal with respect to inclusion is called an
orthogeodesic decomposition. An orthogeodesic decomposition is always a collection
of n− 3 orthogeodesics. There are many ways to see this. One way is to associate it to
a triangulation, by orienting the boundary of the polygon and pulling each endpoint
of the orthogeodesic to a vertex, following the orientation. A triangulation of an
n-gon has n− 3 edges, so the orthogeodesic decomposition had n− 3 elements as
well. Another way is to observe that the complementary region of the decomposition
consists in a collection of pieces that are either right-angled hexagons, right-angled
pentagons with one ideal point, or a quadrilateral with two adjacent ideal points and
two right angles (see Figure 11).

Observe that one can think of the different pieces as generalized right-angled hexagons,
where one or two of the sides are allowed to be of length 0. In particular, the lengths
of the orthogeodesic sides determine their geometry and they are all area π. Unlike
for pants decompositions, there are no twist parameters, as the endpoints of the
orthogeodesics have to match up. In particular this means:

Proposition 2.1. The n − 3 (marked) lengths of the orthogeodesics in an orthogeodesic
decomposition determine P ∈ Mn uniquely.
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Figure 1: The different types of complementary regions to an orthogeodesic decomposition

Note that for hyperbolic trigonometry formulas, which will be used throughout this
note, one can refer to [77], page 454.

To end this preliminary section, the case where n = 4 is considered. Note that in this
case an orthogeodesic decomposition consists in a single orthogeodesic.

Proposition 2.2. Any P ∈ M4 admits an orthogeodesic of length at most 2 arcsinh(1),
and the bound is sharp. In particularM4 is in one-to-one correspondence with the interval
]0, 2 arcsinh(1)] where t ∈]0, 2 arcsinh(1)] represents the length of the shortest orthogeodesic
of the ideal 4-gon.

Proof. An ideal 4-gon only has 2 orthogeodesics, say of lengths x and y with x ≤ y,
and it is not difficult to see that they intersect orthogonally and bisect each other.
They split the ideal quadrilateral into 4 isometric so-called Lambert quadrilaterals,
with 3 right angles and an ideal point. The non-infinite lengths of these smaller
quadrilaterals are thus x

2 and y
2 . By a standard formula for quadrilaterals,

sinh
(x

2

)
sinh

(y
2

)
= 1

from which we can deduce that x ≤ 2 arcsinh(1) and y ≥ 2 arcsinh(1). This proves
the claim.

Note that there is a unique quadrilateral with 2 equal orthogeodesics (of lengths
2 arcsinh(1)) and which has a rotational symmetry. This quadrilateral is the unique
orbifold point in this 1-dimensional moduli space, and thus plays a similar role to the
square and the hexagon torus in the moduli space of flat tori which are the orbifold
points of the modular surface H/PSL2(Z).

4



3. Embedded disks and short orthogeodesic decompositions

One of the more remarkable members ofMn is the unique regular ideal n-gon Pn,
which can be constructed, in the Poincaré disk model, by taking as vertices n evenly
spaced points on the boundary circle of the hyperbolic plane. It has a maximally
embedded disk, tangent to each of its n sides. We begin by computing the radius of
this disk, which we think of as the maximal inner radius of Pn.

Lemma 3.1. The largest embedded disk in Pn has radius rn where

rn = arccosh

(
1

sin
(

π
n
))

Proof. Using the symmetry of the polygon, we can reduce the computation to a single
right-angled triangle with one ideal point, and the unique non-infinite side of length
rn. Following a standard hyperbolic trigonometry formula (see Figure 22), we have

cos(0) = cosh(rn) sin
(π

n

)
from which the formula is easily deduced.

rn π
n

Figure 2: Computing the inradius of Pn

For completeness, we provide a quick proof of the following result which is in fact a
very simple version of an identity of Basmajian [33].

Lemma 3.2. For any point p ∈ P, P ∈ Mn, let x1, . . . , xn be the distances to the n sides of
P. Then

n

∑
k=1

arcsin
(

1
cosh (xk)

)
= π
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Proof. The proof is very similar to the previous computation. To each boundary
component, associate the triangle it forms together with p. The path of length xk is
the height of this triangle with two ideal points, and denote by θk the angle at p. By
the same formula as before, we can compute θk is function of xk:

θk = 2 arcsin
(

1
cosh (xk)

)
.

Now the angles add up to 2π, so we have
n

∑
k=1

θk =
n

∑
k=1

2 arcsin
(

1
cosh (xk)

)
= 2π

and the identity follows by dividing by 2.

Our final result before proving the theorem is the following corollary of the above
result.

Proposition 3.3. For P ∈ Mn and p ∈ P, the inradius of p is bounded above by

rn = arccosh

(
1

sin
(

π
n
)) .

Proof. Choose any p ∈ P, and consider x1, . . . , xn and θ1, . . . , θn as in the previous
lemma. Note that they each satisfy the following equality, obtained by expressing the
distance in terms of the angle:

xk = arccosh

 1

sin
(

θk
2

)
 .

Observe that the function arcsin
(

1
cos(x)

)
is decreasing in x, hence the maximum angle

θmax := max{θk | k = 1, . . . , n}

corresponds to the minimal distance

xmin := min{xk | k = 1, . . . , n}

which is also the maximal inradius at p.

Now as θmax ≥ 2π
n , we have

xmin = arccosh

 1

sin
(

θmin
2

)
 ≤ arccosh

(
1

sin
(

π
n
))

as claimed.
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We note that this result is analogous to the more difficult result for closed surfaces,
proved by Bavard [55], and that the proof shows that equality only occurs for Pn.

We can now prove the upper bound on the length of orthogeodesics.

Theorem 3.4. Any P ∈ Mn admits an orthogeodesics decomposition µ1, . . . , µn−3 with

`(µk) ≤ 2 rn

for all k ∈ {1, . . . , n− 3}.

Proof. By Proposition 3.33.3, each point p ∈ P is at distance at most rn from the boundary
of P. We decompose P into cells as follows. To each p ∈ P, we associate it to the side
of P it is closest to.

This decomposes P into cells whose boundary points correspond to points at equal
distance from at least 2 sides. The boundary of each cell is piecewise geodesic, and
the points at which the geodesic is broken correspond to points at equal distance to at
least 3 sides. The collection of boundary points will be referred to as the cut locus, and
observe that the cut locus s a geodesic tree as it cannot contain any cycles. Its vertices
are of degree ≥ 3. (In fact, for a generic P, its vertices are all of degree exactly 3. This
is because having a point at distance from more than 3 sides is a rather extraordinary
coincidence among polygons ofMn, and only occurs for lower dimensional subsets.
This can also be shown via a Baire category argument, (but in any event, this fact
won’t be used).

Now take any point not on a leaf or a vertex. There are exactly two geodesic rays,
both of equal length and of length at most rn, linking the point to two non-adjacent
boundary arcs. Together they are freely homotopic to a unique orthogeodesic. Note
that any point on the same edge will give same homotopy class and hence the same
orthogeodesic. We take the full collection of these orthogeodesics, pairwise disjoint.

Note that if the cut locus was a regular tree of degree 3, this collection would already
consist in an orthogeodesic decomposition. If not, the complementary regions contain
pieces that need to be broken up further. To do this, label the m ≥ 4 geodesic paths
a1, . . . , am from the vertex of the locus to the boundary by choosing a1 arbitrarily and
then by choosing an orientation around the vertex. Orient a1 from the boundary to
the vertex and orient the others from the vertex to the boundary. For k = 2, . . . , m,
choose the m− 1 homotopy classes αk of arcs obtained by concatenating a1 and ak

(see Figure 33).
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α2
β1

Figure 3: Constructing a decomposition

Note that αk has a unique geodesic minimizer in its homotopy class (with endpoints
gliding on the side of the polygon), which is either an orthogeodesic or possibly, for
k = 2 and/or k = m, an ideal point. In any case its length is always bounded above
by 2rn. To these we add the orthogeodesics βk homotopic to the concatenation of a−1

k
and ak+1.

As all of the complementary pieces are elementary, the full collection of orthogeodesics
consists in an orthogeodesic decomposition as required.

4. A lower bound on On

In the previous section, an upper bound on On was obtained, and so to conclude the
proof of Theorem 1.11.1, we need to compute the lower bound. (The statement about
asymptotic growth is a straightforward consequence of the two bounds.)

A lower bound comes from looking at Pn. We begin by computing the lengths of all
of the orthogeodesics of Pn.

Note that any orthogeodesic splits the vertices of Pn into two sets, those lying on either
side of the orthogeodesic. If the cardinalities of the two sets are n1 and n2, observe
that n1, n2 ≥ 2 and n1 + n2 = n. The length of the orthogeodesic only depends on this
splitting. If we suppose that n1 ≤ n2, we can compute the length of the orthogeodesic
observing that is homotopic to the concatenation of two geodesic arcs of length rn

which meet at an angle of n1
n 2π. It can thus be computed using the formula for a

quadrilateral with three right angles and one angle equal to n1
n π (see Figure 44). The

length of the orthogeodesic is denoted `n1 as it only depends on n1.

Using hyperbolic trigonometry again, we have
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rn

n1
n π

Figure 4: Computing orthogeodesic lengths on Pn

sinh
(
`n1

2

)
= sin

(n1

n
π
)

sinh(rn)

and so
`n1 = 2 arcsinh

(
sin
(n1

n
π
)

sinh(rn)
)

.

A crucial observation is that any orthogeodesic decomposition contains at least
one orthogeodesic that splits at least n

3 vertices on both sides. (The argument is
analogous to the argument that a 3 regular tree with n leaves has an edge that that
separates at least n

3 leaves on both sides.) In particular, this means there is at least one
orthogeodesic of length

2 arcsinh
(

sin
(π

3

)
sinh(rn)

)
= 2 arcsinh

(
3
2

cot
(π

n

))
.

This proves the lower bound on On in Theorem 1.11.1.
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