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Abstract. The goal of the article is to provide different explicit quantifications of the non

density of simple closed geodesics on hyperbolic surfaces. In particular, we show that within

any embedded metric disk on a surface, lies a disk of radius only depending on the topology

of the surface (and the size of the first embedded disk), which is disjoint from any simple

closed geodesic.

1. Introduction

The set of simple closed geodesics on finitely generated hyperbolic surfaces has many re-

markable properties and is related to various aspects of geometric and dynamical properties

of moduli spaces and mapping class groups. Among these properties is a result of Birman

and Series which states that the larger set of simple complete geodesics is nowhere dense

and has Haussdorf dimension 1, the same result holding true for geodesics with uniformly

bounded self-intersection number [22]. This result, which might seem surprising at first in

light of other phenomena, answered a question raised by Jorgensen [88] who first exhibited

surfaces with non-dense sets of simple closed geodesics.

It is easy to see that this is really a feature of negative curvature: for instance simple

complete geodesics on a flat torus leaving from a given point cover the entire surface and

the closed ones are dense (even though they form a measure 0 subset of the surface). Of

course on a flat torus all closed geodesics are simple and similarly, on a hyperbolic surface,

the set of all closed geodesics is not only dense but also dense in the unit tangent bundle.

This is one of many instances of how simple geodesics are rare within the set of all closed

geodesics.
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Another prime example is for the growth of the number of curves on hyperbolic surfaces.

By Huber’s asymptotic law [77], the number of closed geodesics of length less than L grows

asymptotically like eL/L. In contrast, Mirzakhani showed that simple geodesics have very

different asymptotic growth as they grow polynomially in L with leading term on the order

of L6g−6+n where g is the genus and n the number of cusps [99]. Her results show much

more than just asymptotic growth and relate the growth function to the underlying moduli

space in many ways. In particular the exact asymptotic behavior doesn’t only depend on

the topology but also on the underlying geometry of the surface. That the number of

simple curves is bounded above by a polynomial function of length was already was one of

the key arguments in the results of Birman and Series, and the correct rough asymptotic

growth was first proved by Rivin [1111]. More generally, a polynomial upper bound holds for

curves with bounded intersection number, and there has been a flurry of results showing

asymptoptic growth for such curves in more general contexts [55, 66, 1010, 1212, 1313].

In this article we quantify the non-density of simple complete geodesics. The Birman-Series

result tells us that given any hyperbolic surfaces, in any neighborhood of a point, there is

a small disk entirely untouched by any simple complete geodesic. The type of questions we

aim to answer are: How large can you take that disk to be? What is the size of the largest

disk disjoint from all simple complete geodesics?

The set of points of S that lie on a simple complete geodesic will be denoted BS(S) or simply

BS and we shall sometimes refer to this set as the Birman-Series set. Given a surface S, we

can look at the radius of the largest disk on the complement of BS. Given a moduli space

M, the size of this “maximal gap” is a function over M and in fact is continuous. Using

this and a computation of what happens towards the boundary of moduli spaces, one can

show that there is a positive lower bound to GS which only depends on the topology of the

underlying surface (some of the details can be found in [44]). In particular, this shows the

existence of a constant Kg > 0 such that any closed hyperbolic surface of genus g has a gap

of size Kg (or similarly the existence of a constant Kg,n > 0 such that any genus g surface

with n cusps has a gap of size Kg,n). One might hope to find a universal lower bound on

the size of gaps but in fact this is impossible. Take any ε-dense but finite set of closed

geodesics on a closed surface. Then a theorem of Scott [1515] asserts that there is a finite

cover where all lifts of the closed geodesics are simple. In the cover, the simple geodesics

reproduce the ε-density.

So as there are no universal positive lower bounds on Kg, one of our underlying goals is

to quantify the constant Kg in terms of g. Our first approach to this leads to a precise

computation for surfaces in the thin part of moduli space following the natural thick-thin
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decomposition of moduli space with the systole function. The systole sys(S) of a finite type

hyperbolic surface S is the length of a non-trivial curve of minimal length (by non-trivial

we mean non-homotopically trivial and non-peripheral to boundary). Surfaces with systole

at least ε > 0 are said to lie in the ε-thick part of moduli space. A first step to proving

the above theorem is to show that (closed) surfaces with systole below a certain threshold

have a gap of that same size.

Theorem 1.1. Let ag = 1
4·(4π(g−1))2 . If sys(S) ≤ ag, then CS ≥ ag.

The next step is to deal with surfaces with systole length bounded below. To do so we show

the following local result which essentially says that given an embedded disk on the surface,

there is a quantifiable gap of a certain radius within that disk. The radius only depends on

the topology of the underlying surface (and the size of the initial disk of course).

Theorem 1.2. Assume s = min{12sys(S), 13}. Then for any ρ ≤ s and any disk Bρ of

radius ρ in S there exists a point p ∈ Bρ such that

dist(p,BS) ≥ ρ2e−M(g−1),

where M is an explicit constant that depends only on s.

The constant M can be taken to be 194
s2

log(134s ) and together with the result for thin

surfaces, this provides a quantifiable lower bound on Kg. Using the same techniques it also

holds for (sufficiently thick) surfaces with cusps.

Our final goal is to establish a quantified local result which does not depend on systole

length. It implies an explicit bound on the constant Kg,n discussed previously.

Theorem 1.3. Let S be a hyperbolic surface of genus g with n cusps and Bρ a disk of

radius ρ in the ε-thick part of S, where 0 < ρ < ε ≤ 1/3. Then there exists a point p ∈ Bρ
such that

dist(p,BS) ≥ e−3κR,

where κ = 3g − 3 + n and R = 2 log 1
ρ +M(g − 1 + n/2) with M = 195

ε2
log 134

ε .

Note than in the above, as Bρ always lies in the ρ-think part, so in particular the result holds

with ε = ρ. Our local estimates without prior assumptions on systole length are weaker.

This comes from our method in which we use a sort of classification of short curves: if they

are sufficiently short with respect to the other short curves we treat them like cusps and if

not we treat them as “short but not too short curves”.
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We end this introduction with some images of the Birman-Series set for genus 2 surfaces

illustrating its intricacy; although these geodesics are nowhere dense, the gaps are already

quite small.

m=48, t=21+15
√
2 m=24, t=33+23

√
2 m=48, t=109+77

√
2

m=96, t=149+105
√
2 m=48, t=273+193

√
2 m=24, t=1991+1408

√
2

Figure 1: Simple closed geodesics on the Bolza surface

Figure 11 shows a number of simple closed geodesics on the regular fundamental domain of

the Bolza surface, the genus 2 Riemann surface with the maximal number of symmetries.

Originally the idea was to show all the simple closed geodesics up to length roughly 15

on the same fundamental domain. However, even under optimal printing conditions, the

fundamental domain came out evenly black. We have therefore split up the geodesics

into families where all members of a family have the same length. Figure 11 shows a few.

In this figure, m is the multiplicity, i.e. the number of geodesics in the family, and t =

arccosh(`(γ)/2) is half the trace of the conjugacy class in the Fuchsian group that represents

a closed geodesic of length `(γ).

Figure 22 shows roughly the first (ordered by length) three hundred simple closed geodesics

on two other genus 2 surfaces. These surfaces were obtained by perturbing Fenchel-Nielsen

length and twist parameters of the Bolza surface. The size of the largest gaps appears to
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Figure 2: Perturbations of the Bolza surface

grow. Although we have no real evidence other than these figures, we wonder if the Bolza

surface might be the surface where the largest gaps are the smallest.

Organization. The article is organized as follows. In Section 2 we prove Theorem 1.11.1,

denoted Theorem 2.12.1 in the sequel. Section 3 is dedicated to the proof of Theorem 1.21.2,

referred to later as Theorem 3.13.1. Thin surfaces and surfaces with cusps are treated in

Section 4 where we prove Theorem 1.31.3, relabelled as Theorem 5.15.1. The article is concluded

by an appendix which contains two technical results somewhat different in nature from the

rest of the article.

Acknowledgements. We heartily thank Chris Judge, Manuel Racle, Klaus-Dieter Semm-

ler, Juan Souto and Caroline Series for enlightening conversations and their encouragement.

2. Gaps on thin surfaces

In this part we show the following result, where ag = 1
4·(4π(g−1))2 .

Theorem 2.1. If sys(S) ≤ ag, then CS ≥ ag.

We shall show explicitly where on the surface a “forbidden disk” with the indicated radius

may be found. For this we first construct a certain pair of pants on S.

Lemma 2.2. Let γ be a simple closed geodesic on S of length `(γ) < 1
2 . Then there exists

a pair of pants Y ⊂ S with boundary geodesics γ, γ1, γ2 such that
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cosh(12`(γi)) <
sinh(12`(γ))

`(γ)
· 4π(g − 1), i = 1, 2 (1)

Before giving the proof we note that the length bound of 1
2 on γ can be replaced by

arcsinh(1) which is “optimal” for the argument we give.

Proof. We adapt an argument from [33, Section 5.2]. Cut S open along γ into a bordered

surface S̃ (consisting of either one or two connected components) with copies γ′, γ′′ of γ on

the boundary. Take the component S′ of S̃ that has γ′ on the boundary and look at the

sets C(r) = {p ∈ S′ | dist(p, γ′) ≤ r} for r > 0. For small r this set is an annulus and it

does not intersect γ′′. As we let r grow, some first value rγ will be reached where one of

these two properties ceases to hold. Now, the injectivity radius near γ′′ is far too small to

allow the C(r) to come close to γ′′ as long as r < rγ . (Their boundaries are simple closed

curves of geodesic curvature smaller than the curvature of a horocycle). Hence, it’s the

annulus property that ceases to hold for C(rγ).

The rest is exactly as in [33, Section 5.2]: There are two geodesic segments of length rγ

emanating orthogonally from γ′ and meeting each other under the angle π at their end-

points, thus forming a smooth geodesic arc η of length 2rγ . The endpoints of η on γ′

dissect γ′ into two arcs c1, c2. The closed curves c1η and η−1c2 are freely homotopic to

simple closed geodesics γ1, γ2 that together with γ′ form the boundary of a pair of pants

Y ⊂ S′ and by formula [33, 2.3.4(i)] the lengths satisfy cosh(12`(γi)) = sinh(rγ) sinh(12ci) <

sinh(rγ) sinh(12`(γ)) for i = 1, 2. Since the interior of C(rγ) is still an annulus we have

area(C(rγ)) = `(γ) sinh(rγ) < area(S) = 4π(g − 1) and the lemma follows.

Throughout the paper we will be using hyperbolic trigonometry. As in the above proof, we

will always refer to formula numbers from [33].

We also need an extension of the usual collar lemma [33, chapter 4] that includes complete

non closed simple geodesics. For any simple closed geodesic γ on S the width is the quantity

wγ = arcsinh(1/ sinh(12`(γ))) (2)

The collar theorem states among other things that the collar Cγ = {p ∈ S | dist(p, γ) < wγ}
is homeomorphic to an annulus. (In contrast to the above C(r) the collars Cγ are defined

as open sets.) The needed complement is the following.

Lemma 2.3 (Simple geodesics in collars). Any complete simple geodesic intersecting Cγ
either intersects γ or converges to it.
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Proof. Let η be a complete simple geodesic on S, closed or non closed, that neither intersects

γ nor converges to it. Let p be a point on η closest to γ. Let a be a simple geodesic arc

from p to γ orthogonal to both η and γ and of length `(a) = dist(γ, η) > 0. In the universal

cover of S there are lifts γ̃ of γ and γ̃1, γ̃2 of η, as in Figure 33 (which we use for two different

purposes), together with lifts a1, a2 of a from γ̃1 and γ̃2 to γ̃ whose endpoints on γ̃ are

distance `(γ) apart from each other.

Since η is simple its lifts γ̃1 and γ̃2 are disjoint; they may have a common endpoint at

infinity, though. We thus have a, possibly degenerated, right-angled geodesic hexagon with

three consecutive sides of lengths `(a), `(γ), `(a). This hexagon splits into two isometric

pentagons. Applying formula [33, 2.3.4(i)] to either of them we get

sinh(`(a)) · sinh(
1

2
`(γ)) ≥ 1

and hence, dist(η, γ) ≥ wγ .

a1 a2

γ̃1 γ̃2

γ̃

wγ

b

ω1 ω2

ω3

B0

B1 B2

B3
M

ρ

g1

g2

p

f

h

Figure 3: The geodesic hexagon G with a forbidden area

Proof of Theorem 2.12.1. Let γ be a simple closed geodesic of length `(γ) ≤ ag, where we

think of ag as being rather small; the bound for ag as in the theorem will show up towards

the end of the proof.
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By Lemma 2.22.2 there exist simple closed geodesics γ1, γ2 with lengths bounded as in (11)

that together with γ form the boundary of a pair of pants Y . We shall find a forbidden

disk in the half collar C(wγ) in Y .

Y may be decomposed into two isometric right-angled geodesic hexagons by drawing the

common perpendicular geodesic arcs a1 from γ1 to γ; a2 from γ to γ2; and b from γ2 to γ1.

Figure 33 shows the lift G of one of the hexagons in the universal covering H of S. (It need

not be symmetric as drawn.) The lifts of the three perpendiculars are named after their

originals, the lifts of the boundary geodesics are named, respectively, γ̃1, γ̃, γ̃2. We let ω1,

ω2 be the endpoints at infinity of γ̃, labelled in such a way that ω1 and a2 lie on different

sides of a1. We also consider the endpoint ω3 at infinity of γ̃2 that is separated from a2 by

b.

The dotted lines in Figure 33 are as follows. The vertical lines g1, g2 are the perpendicular

geodesics from ω1, ω2 to b with respective endpoints B1, B2 on b. The horizontal line h

consists of all points in the hexagon that have distance wγ from γ̃. Line f is the geodesic

from ω1 to ω3.

We will prove below that if γ is as short as indicated, then the configuration of these lines

is such that a shaded area ∆ occurs, as drawn in the figure, consisting of points in the

hexagon lying above h, to the right of g2 and to the left of f . We will also estimate the size

of ∆. Anticipating this for a moment we prove that ∆ is forbidden, i.e., no lift of a simple

complete geodesic of S in H intersects ∆.

Since ∆ lies in a lift of Cγ Lemma 2.32.3 implies that only then a simple geodesics η may have

a lift passing through ∆ when η intersect γ or converges to it. Now, take any such η and

let c ⊂ η be a connected component of η ∩ interior(Y ) with one of its ends converging to

γ (either by converging to a point on γ or by winding infinitely often around it). Let c̃ be

a component of its lift in H that meets the part of G above line h. We have to show that

c̃ ∩∆ = ∅. Since c has no self-intersections there are only the following three cases.

Case 1: the other end of c also converges to γ. Here we consider the geodesic symmetry

σ : H→ H with respect to the geodesic through b and observe that G∪ σ(G) is a lift of Y .

Hence, one end of c̃ converges to γ̃ and the other to σ(γ̃). This implies that the part c̃∩G
lies between g1 and g2 and cannot intersect ∆.

Case 2: the other end of c converges to γ1. In this case the other end of c̃ converges to γ̃1.

This implies that, speaking with Figure 33, c̃ lies on the left hand side of g2 while ∆ lies on

the right hand side.

Case 3: the other end of c converges to γ2. By the same argument as before c̃ now lies on
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the right hand side of f and cannot intersect ∆ either. This completes the proof that ∆ is

forbidden.

For the existence and the size of ∆ we need a number of estimates beginning with the

length of side b = B0B3. To that end, we abbreviate the right hand side of Inequality (11)

by coshλ. The inequality in Lemma 2.22.2 then becomes 1
2`(γi) < λ, (i = 1, 2). By formula

[33, 2.4.1(i)] we have the following (where from now on we omit ` in the formulas):

cosh(
1

2
γ) = cosh(b) sinh(12γ1) sinh(12γ2)− cosh(12γ1) cosh(12γ2).

Here the right hand side is ≥ 1 and it increases when we replace 1
2γ1 and 1

2γ2 by λ. Using

the identity cosh(b) sinh2(λ)− cosh2(λ) = 2 sinh2(12b) sinh2(λ)− 1, we get

sinh(12b) sinhλ ≥ 1. (3)

The next estimate concerns the distance ρ = dist(b, h), where we note that ρ + wγ is the

length of the common perpendicular of b and γ̃. This perpendicular decomposes G into

two right-angled pentagons. Applying formula [33, 2.3.4(i)] to the one that has the bigger

side on γ̃ we get sinh(ρ + wγ) · sinh(14γ) ≤ coshλ. Using that eρ sinh(wγ) ≤ sinh(ρ + wγ)

and applying the definition (22) of wγ we get the following, where τ = sinh(12γ)/ sinh(14γ) is

a factor close to 2:

eρ ≤ τ · coshλ. (4)

We now assume that the labelling of the sides of G has been set such that dist(B1, B3) >
1
2b.

Let M be the intersection point of b and f , where f = ω1ω3. Then M is the midpoint

of the ideal crossed geodesic quadrilateral ω1B1B3ω3 and so we have an ideal right-angled

triangle ω1B1M with side

B1M >
1

4
b. (5)

We estimate how far sides g1 = ω1B1 and ω1M are apart from each other in the neighbor-

hood of h. To this end, we take a point p on f and drop the perpendicular pp1 to g1, the

position of p being such that dist(B1, p1) = ρ + r with 0 ≤ r ≤ 1
5 . Applying formula [33,

2.2.2(iv)] to the ideal triangles ω1B1M and ω1p1p we get, using an obvious limit argument,

tanh(p1p)

tanh(B1M)
= e−(ρ+r). (6)

Finally, we provide a similar estimate for g2 and g1. Applying the pentagon formula [33,

2.3.4.(i)] to half of the ideal quadrilateral ω1B1B2ω2 we have

sinh(12B1B2) · sinh(ρ+ wγ) = 1.
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Similarly to the preceding step we take a point q on g2 and drop the perpendicular qq1 to

g1, the position of q being such that dist(B1, q1) = ρ+ r with 0 ≤ r ≤ 1
5 . By formula [33,

2.3.1(iv)] and using that tanh(2t) ≤ 2 sinh(t), for t ≥ 0, we have tanh(q1q) = cosh(ρ+ r) ·
tanh(B1B2) ≤ 2 cosh(ρ+ r) sinh(12B1B2). Hence,

tanh(q1q) ≤ 2
cosh(ρ+ r)

sinh(ρ+ wγ)
≤ 2

cosh(r)

sinh(wγ)
= 2 cosh(r) sinh(12γ). (7)

By (77) on the one hand and by (33)–(66) on the other, by approximating the small terms in

(33)–(77) linearly and using that r ≤ 1
5 so that cosh(r) < 1.03 and e−r > 0.818, we get:

dist(q1, q) < 1.1 `(γ), dist(p1, p) >
0.8

(4π(g − 1))2
.

It follows that if `(γ) ≤ ag with ag as in the statement of the theorem, then in the vicinity

of line h the points on g2 are closer to g1 than 1.1`(γ) and the points on f are further

away than 3.2`(γ). Hence the shaded domain ∆ shows up and one now easily sees that it

contains a disk of radius ag.

3. Local quantification in terms of the systole

In this section S is a compact hyperbolic surface of genus g. We aim to show the following

result.

Theorem 3.1. Assume s = min{12sys(S), 13}. Then for any ρ ≤ s and any disk Bρ of

radius ρ in S there exists a point p ∈ Bρ such that

dist(p,BS) ≥ ρ2e−M(g−1),

where M is a constant that depends only on s.

We shall get the explicit bound M = 194
s2

log(134s ). Observe that Theorem 3.13.1 together with

Theorem 2.12.1 provides a computable lower bound on the minimum value of CS .

3.1. A Voronoi cell decomposition and its properties

We begin with a lemma that concerns ε-nets on S, by which we mean a set of points of

pairwise distance at least ε and maximal for this property with respect to inclusion. The

maximality of the set implies that the open balls of radius ε around the points cover the

surface. Throughout we shall restrict ourselves to ε ≤ s
2 , where s is the systole of S.
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Lemma 3.2. For fixed 0 < ε ≤ s
2 there exists an ε-net on S consisting of points {pi}Ni=1

with

N ≤ 2

cosh ε/2− 1
(g − 1).

Proof. To construct such a set begin with an arbitrary point and add successively new

points at least ε away from the preceding ones until this is no longer possible. The open

balls of radius ε/2 around the resulting points pi are pairwise disjoint, embedded and of

area 2π(cosh ε/2 − 1). The total area of the surface is 4π(g − 1) thus the number of balls

cannot be greater than
4π(g − 1)

2π(cosh ε/2− 1)

which proves the lemma.

Given an ε-net one gets a cell decomposition of the surface given by the Voronoi cells

associated to each point: each open cell Vi is the set of points whose closest point in the

net is pi. The boundary of Vi consist of points closest to more than one of the pks. By

the maximality of the ε-net any boundary point of Vi is closer to pi than ε. Since ε ≤ s
2 it

follows that Vi is contained in an embedded disc. Thus, the Vi are simple convex hyperbolic

polygons. Since the vertices lie at distance ≤ ε from the center the sides of Vi have lengths

≤ 2ε.

Remark 3.3. Note that up until now we haven’t given any restrictions on how we choose

the points. By standard perturbation techniques, if the points are chosen “generically”,

there will be exactly three cells adjacent to any vertex. By this we mean that by using a

standard measure on the choice of points (using the measure on the surface), the choices

where all vertices are not adjacent to exactly three cells lie in a measure 0 set. In all that

follows, we shall suppose that this is the case. Hence, there will always be a triangulation

dual to our Voronoi cell decompositions.

Lemma 3.4. Each Voronoi cell has at most v(ε) sides, where v(ε) is the integer part of

π/ arccot
(

cosh(ε) ·
{√

1 + 2 cosh ε+
√

2 + 2 cosh ε
})

.

Proof. Consider the triangulation dual to the Voronoi cell decomposition. Each side of a

triangle has length at least ε. Any of the triangles is contained in a ball of radius ε (around

the intersection point of the three Voronoi edges dual to the triangle). The number of sides

of a Voronoi cell is the number of dual triangles that meet in its center. We now apply

Lemma A.1A.1 from the appendix.
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From the two previous results we deduce a bound on the number of edges found in our

Voronoi cell decomposition. We shall, however, assume from now on that ε is small. A

restriction that has proved to be practical is ε ≤ 1
3 .

Corollary 3.5. Assuming that ε ≤ min{ s2 ,
1
3} we have v(ε) = 12, and there are at most

12
g − 1

cosh ε/2− 1
<

(
97

ε2
− 10

)
(g − 1)

edges in a cell decomposition obtained as above.

Proof. The number of cells times the maximum number of edges per cell is an upper bound

on twice the number of edges. Now v(ε) from Lemma 3.43.4 is monotone increasing and

v(0) = v(13) = 12. This proves the result.

In everything that follows in this section we shall suppose that we have a fixed Voronoi cell

decomposition V like the one we have just constructed with ε ≤ min{ s2 ,
1
3}.

3.2. Scheme of proof

In this subsection we describe the strategy of our proof without any computations in order

to motivate the estimates we perform afterwards.

Given an embedded disk D = Bρ of radius ρ > 0 on S, we look at the restriction of the

Birman-Series set to D. This consists of a countable collection of geodesic segments between

points on the boundary of D.

To find quantifiable “empty space” between these segments we begin by introducing a

constant R > 0 that later will be adjusted. For each segment c we look at a larger geodesic

segment c̄ obtained by extending c outside of D. Specifically, we take the continuation

of c of length R − 2ε in both directions (measured from the midpoint of c). This larger

“segment” is not necessarily embedded but as c belongs to the Birman-Series set, it does

not contain any transversal self-intersections. Either endpoint of c̄ lies in some Voronoi cell

of V . (The two cells may coincide.)

To “capture” c̄ we associate to it what we shall call a model strand mc the precise con-

struction of which shall follow in the next subsection. Among its properties we have the

following. The endpoints of mc lie on vertices of the 1-skeleton of V and mc is freely ho-

motopic to c̄, where one allows endpoints to move within the start and terminal Voronoi

cells of c̄. The important part of mc is its middle intersection with D, i.e., the connected

component mc of mc ∩D that contains the midpoint of mc. We call mc a model strand in

D.
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The model strands shall allow us to quantify the arguments in [22] by showing that the

number of all mc grows polynomially with R while the distance between c and mc has an

upper bound that decays exponentially with R. As a result, for large enough R there are

“relatively few” model strands in D and each segment c lies in an “extremely small” tubular

neighborhood of some of these. Outside these tubular neighborhoods we shall then have

empty space whose size can be estimated in terms of R.

The model strands will be obtained in two steps. First we associate to c̄ a combinatorial

path P (c̄) on the 1-skeleton of V that is simple in the combinatorial sense (see the next

subsection ). The number of such paths can be estimated using combinatorial arguments.

In the second step we then homotope the path P (c̄) into a geodesic arc mc keeping the

endpoints fixed. It may turn out that mc has self-intersections, but mc is simple. The

distance between c and mc is estimated in Section 3.53.5.

3.3. Constructing combinatorial arcs and their properties

Here we describe a method for associating to any simple arc such as c̄ a combinatorial path

that lies in the 1-skeleton of V .

Consider a finite oriented geodesic arc a on S which we assume to be simple in the sense

that it has no transversal self-intersctions. We also assume that a is longer than 4ε (in

our applications a will be much larger). Then a begins in some Voronoi cell V0, traverses

a sequence of cells {Vi}ni=1 and ends up in some cell Vn+1 (each cell may appear multiple

times). We break up a into smaller arcs ai where for i = 0, . . . , n+ 1 each ai is a connected

component of a ∩ Vi and ai is connected to ai+1 (i ≤ n). Intersections that consist of a

vertex only are ignored, that is we list the cells such that each ai has positive length. For

the combinatorial path we proceed as follows.

a0 and an+1 do not contribute to our combinatorial path.

For i = 1, . . . , n, if ai intersects the interior of Vi we associate to it the homotopic

polygonal arc Pi on the boundary ∂Vi that has the same endpoints as ai and uses the

minimal number of edges of Vi (see Figure 55).

If ai is a side of Vi we set Pi to be ai.

We add a refinement to item 2: if Vi has an even number of sides, say mi, and if ai connects

a pair of opposite sides of Vi, then there are two choices for the path Pi, either using 1
2mi+1

edges of Vi. To remove this ambiguity we choose, for any Voronoi cell V , a “separator point”
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pV (not necessarily the geometric center of V ) in the interior of V \a and then require that

in the above cases Pi is the path homotopic to ai in the punctured disk Vi \ {pVi}.

Figure 4: Pushing the path to the 1-skeleton

The concatenation of these paths, P1∪· · ·∪Pn, yields a connected path that lies entirely on

the 1-skeleton of V , possibly with partial edges. We shall remove the latter by “shrinking”

homotopies that take place on the edges of the 1-skeleton as indicated in Figure 66 so as to

obtain a purely combinatorial connected sequence of edges P (a) of the Voronoi polygons.

Figure 5: Obtaining a polygonal path

Thus, the construction is in two steps, the first step consisting in “pushing the arcs to the

boundary” as indicated in Figure 44, the second step being the shrinking away of the partial

edges.

The combinatorial path P (a) obtained in this way is simple in that it does not contain

any transversal self-intersections. To see this one my consider an arbitrarily thin tubular

neighborhood T around the 1-skeleton and slightly modify the pushing and shrinking ho-

motopies so as to obtain a genuine simple path P ′(a) in T with the same combinatorics as

P (a).

We define the combinatorial length of P (a) to be the number of edges it contains. The next

lemma provides an upper bound of this length in terms of the original path length.
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Figure 6: Elimination of partial edges by shrinking

Lemma 3.6. A path a as above of length ` passes through at most

4

ε
(`+ 3ε)

Voronoi cells. This multiplied by 6 is an upper bound for the combinatorial length of P (a).

Proof. We argue in the universal cover by considering a lift ã of a. Along ã we have the

sequence of lifts Ṽ1, . . . , Ṽn of the Voronoi cells V1, . . . , Vn with the property that Ṽi ∩ ã is a

lift of ai, i = 1, . . . , n (recall that a0 and an+1 are not taken into account). The interiors of

the lifted cells are pairwise disjoint and so are the balls of radius ε/2 around their centers

q1, . . . , qn. Furthermore, these balls lie in a tubular neighborhood of radius 3ε/2 around ã.

We now apply an area argument. The total area of the ε/2-balls around the points {qi}ni=1

is

n · 2π(cosh ε/2− 1).

The area of the 3ε/2 neighborhood of ã is

2 (` sinh 3ε/2 + π(cosh 3ε/2− 1)) .

Area comparison and elementary simplification using that ε ≤ 1
3 now yields the first state-

ment. The second statement follows from Lemma 3.43.4 using that v(ε) ≤ v(13) = 12 and

that for the crossing of any cell Vi the combinatorial path P (a) runs along at most half the

edges of Vi.

Remark 3.7. Although this is not needed in what follows we indicate a reverse inequality

giving a lower bound on the number of Voronoi cells a path a of length ` as in the lemma

necessarily traverses. To see this consider a maximal set of points 2ε apart on the covering

ã. There are at least `/2ε such points. As Voronoi cells have diameters less than 2ε this

means that ã, respectively a needs to traverse at least

`

2ε
− 1
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Voronoi cells. There is also a lower bound on the combinatorial length L of P (a): using

that the edges of a Voronoi cell are not longer than the diameter the triangle inequality

yields 2ε(L+ 2) ≥ ` and thus

L ≥ `

2ε
− 2.

3.4. Counting combinatorial paths

We need to bound the number of combinatorial paths in terms of the lengths of the model

strands. Using the lemma above, this can be obtained via the combinatorial lengths. For

the following we denote by E the number of edges of our Voronoi decomposition V .

Lemma 3.8. There are at most 4L2
(
L+E
L

)
combinatorial simple paths of length at most L.

Proof. The model for the argument that follows is the following useful fact: the homotopy

class of a (simple) multicurve lying on a triangulated surface is determined by its intersection

numbers with each of the sides of the triangulation. The triangulation in our case is the

triangulation dual to the Voronoi cells and the intersection numbers are exactly the numbers

of times the path traverses a given edge. So if our path was closed it would be uniquely

determined by the number of times it passes through each edge.

a = 3

b = 5 c = 4

Figure 7: Example of how the numbers of parallel segments determine the combinatorial

paths

We now modify this for non closed paths. In order not to confuse path edges with the E

edges of the 1-skeleton of the Voronoi decomposition, we shall call path edges segments.

We begin by distributing a number ≤ L of segments (later to be concatenated) among the

E edges. By elementary combinatorics this is possible in
(
L+E
L

)
different ways. For ease

of description we place them as distinct segments parallel to the corresponding edges in a

thin tubular neighborhood of the 1-skeleton of V as drawn in Figures 77 and 88.
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Next we select, for any such distribution, a pair of segments that shall play the role of the

end segments of the path to be constructed and erase half of each of the two segments. This

is possible in at most 4L2 different ways. Figure 88 shows an example with half a segment

erased.

Figure 8: An example of how to construct the path with a given starting segment

At any vertex of the 1-skeleton there are now a number of incoming segments and there is

at most one way to paste these together at the endpoints such that the resulting arcs do

not intersect each other (pairs of segments on the same edge are not allowed to be pasted

together). Of course, not every distribution allows one to paste all segments at all vertices,

and even if the pasting is possible the result may be disconnected; but every simple path of

length ≤ L may be obtained by some distribution and, hence, there are at most 4L2
(
L+E
L

)
such paths.

3.5. Bounding the distance between arcs and model arcs

In what follows, we need to metrically compare the model arcs to the arcs they are intended

to approximate. This is achieved via the following lemma about arcs in the hyperbolic plane.

Lemma 3.9. Fix δ > 0, ρ > 0. In the hyperbolic plane, let b, b′ be two geodesic arcs of

lengths > 2(ρ + δ) such that the two initial points and the two endpoints are at respective

distances ≤ δ from each other. Furthermore, consider a disk D of radius ρ centered at the

midpoint of b. Then D ∩ b lies in an r-neighborhood of b′, where

r ≤ arcsinh

(
cosh ρ sinh δ

cosh `(b)
2

)
.

Proof. We search for an “extremal” b′ that shall allow us to compute the constants appear-

ing in a worst case scenario. For this we consider the two disks of radius δ surrounding the

endpoints of b.

An extremal b′ must have its endpoints on the boundary of these disks and a moment’s

reflection shows that the worst case scenario is given by the two geodesics tangent to the
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boundary of these disks that do not cross b (see Figure 99).

b

b′

ρ p

δ d(b, b′) dmax `(b)/2
δ

D

Figure 9: Comparing the two arcs

Let b′ be one of them. By symmetry, the distance path between b and b′ reaches b at its

midpoint. One can now compute in the trirectangles as shown in the figure. The bigger

trirectangle has sides of lengths δ, 1
2`(b

′), d(b, b′), 1
2`(b). Using hyperbolic trigonometry

formula [33, 2.3.1(v)]) we obtain

sinh δ = sinh d(b, b′) cosh
`(b)

2
.

The least upper bound dmax for the distances to b′ of points on D ∩ b is reached for the

point p where b intersects the boundary of D. It remains to show that for r := dmax the

inequality as in the lemma is satisfied. We actually have equality: p is the vertex of the

smaller trirectangle with sides dmax, ρ′, d(b, b′), ρ; using the same formula as before we

obtain

sinh dmax = sinh d(b, b′) cosh ρ

and putting the two formulas together we get

sinh dmax =
cosh ρ sinh δ

cosh `(b)
2

.

3.6. Estimates and finalizing the proof

We first collect and simplify some of the earlier bounds.

Number of edges. In view of Corollary 3.53.5, we use the abbreviations

G :=
97(g − 1)

ε2
, G′ := G− 10. (8)

By the same corollary, V has at most G′ edges.
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Combinatorial length. As described in Section 3.23.2 any arc c in the disk D = Bρ that occurs

as a connected component of D ∩ γ for some simple complete geodesic γ on S is extended

to a larger arc c̄ on γ. The extension goes in both directions, starting from the midpoint

of c, each half of the extension having length R − 2ε. To c̄ we associate the combinatorial

path P (c̄) as described in Section 3.33.3 (with c̄ in the role of a). The extension c̄ has length

` = 2R− 4ε and by Lemma 3.63.6 the combinatorial length of P (c̄) is bounded above by

LR :=
48

ε
R. (9)

The number of model strands. By Lemma 3.83.8 there are at most

4L2

(
L+G′

L

)
≤ 4L2(L+G′)G

′

G′!
≤ 4G2(L+G)G

G!
(10)

combinatorial paths P (c̄) of combinatorial length L. For L = LR this is at the same time an

upper bound for the number of model strands mc, respectively the number of strands mc in

D.

A heuristic check shows that the area argument that will follow further down can only

succeed if

R > G.

We shall therefore work from now on under this hypothesis. Using Stirling’s formula and

the fact that G ≥ 97
ε2

we then get the following bound for the number of model strands

which has been tailored in view of its later application:

N(R) :=
1

10

mG

GG
RG with m =

134

ε
. (11)

Distance between c and mc. By construction the two initial, respectively endpoints of

c̄ and its associated model strand mc lie in the same Voronoi cells and their respective

distances are smaller than 2ε. Furthermore, c̄ has length 2R− 4ε. By Lemma 3.93.9, c lies in

an r-neighborhood of mc where, by elementary simplification and using that ρ ≤ ε ≤ 1
3 ,

r ≤ cosh ρ sinh 2ε

cosh(R− 2ε)
≤ 3e−R =: wR. (12)

Area argument. This is the heart of the proof. For subsets A ⊂ D and t > 0 we shall

denote by At the part of the t-neighborhood of A that lies in D. For each model strand mc

in D the set m2wR
c has area

area(m2wR
c ) ≤ 2`(mc) sinh(2wR) ≤ 4ρ sinh(2wR) < 9 ρwR. (13)
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Now let M be the union of all model strands in D. Then M 2wR has area less than 9ρwR

times the number of model strands in D, while D has area 2π(cosh(ρ) − 1) > πρ2. On

the other hand BS is contained in MwR . Hence, if we can determine R such that the area

bound for M 2wR is smaller than πρ2, then M 2wR does not cover D. By (1212) we therefore

get a point p ∈ D at distance wR from BS if we take R to be a solution > G to the equation

1

ρ

mG

GG
RG = eR. (14)

Estimating the solution and end of proof. We first state the following lemma which shall

also be used in the next section.

Lemma 3.10. Let α, γ be positive constants, α > eγ

γγ . Then the equation αtγ = et for

t > 0 has two solutions t1 < γ, t2 > γ and

log(αγγ) < t2 < 2 log(αγγ).

Proof. The equation is equivalent to γα
1
γ t
γ = e

t
γ . Substituting τ = t

γ we transform it into

eτ

τ
= β (15)

for τ > 0 with β = γα
1
γ . By the hypothesis on α we have β > e and so (1515) has two

solutions τ1 < 1 and τ2 > 1. For τ ′ = log β we have τ ′ > 1 and eτ
′

τ ′ < β. For τ ′′ = 2 log β

we have τ ′′ < β and eτ
′′

τ ′′ > β. Hence, log β < τ2 < 2 log β. Substituting back we get the

claims of the lemma.

In the case of equation (1414) we have γ = G and α = 1
ρ
mG

GG
. By Lemma 3.103.10 the larger of

the two solutions to the equation has the bound R ≤ 2 log(1ρ) + 2G log(m). We thus get

the lower bound on the maximal distance to BS in D:

wR ≥ 3ρ2e−2G logm. (16)

For ε = s this yields the bound as stated in Theorem 3.13.1.

4. Surfaces with cusps and (very) small geodesics

In this section we generalize the local quantification results of the previous sections to

include surfaces with cusps and small geodesics. The process will be almost identical to

previously with just a number of necessary changes that will be detailed. Again ε is a fixed

constant, 0 < ε ≤ 1
3 .
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4.1. Thick and thin decomposition

We consider this time a complete orientable finite area hyperbolic surface S of genus g with

n ≥ 0 cusps. A closed geodesic on S shall be called small if its length is ≤ 2ε. We let

β1, . . . , βh be the list of all small geodesics of S arranged with decreasing lengths

2ε ≥ `(β1) ≥ `(β2) ≥ · · · ≥ `(βh).

The list may be void, but we shall assume that n+ h > 0 to contrast this section from the

preceding ones. We make use of the collar theorems as e.g. Theorems 4.1.1, 4.1.6 and 4.4.6

in [33] of which we recall the following.

For the cusps we have the cusp neighborhoods Pi, i = 1, . . . , n, filled by the horocycles

of lengths < 2. Each βk is simple and has a collar neighborhood Ck, k = 1, . . . , h, filled

by the points at distance < w(βk) from βk, where sinh(w(βk)) sinh(12`(βk)) = 1. The two

boundary curves of Ck are parallel curves to βk (i.e. all points have the same distance o

βk) and their lengths satisfy `(βk) · cosh(w(βk)) > 2. Topologically the Pi are punctured

discs, the Ck are annuli and all these neighborhoods are pairwise disjoint. Finally we note

that

h ≤ 3g − 3 + n. (17)

βk

p′

p′′

p′′′

p

ωk

ω′k

ε

εε

ε

ε

ε

Figure 10: Reduced collar C ′k with part of the Voronoi cell at vertex p

For k = 1, . . . , h we now choose ωk < w(βk) in such a way that on either side of βk the

parallel curve at distance ωk admits a quadruple of points at consecutive distances ε as the

points p, p′, p′′, p′′′ shown in Figure 1010. The value of ωk is given by

sinh(ε/2) = sinh(
1

8
`(βk)) cosh(ωk),

which is formula [33, 2.3.1(v)] applied to the trirectangle with acute angle at p′ and

consecutive sides of lengths ε
2 , ωk,

1
8`(βk), ω

′
k, where ω′k is the distance between βk and

the segment from p to p′. From the formulas for w(βk) and ωk we deduce by elementary
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computation that indeed ωk < w(βk). More accurately (using a numerical check for the

upper bound),

arccosh(2) < ωk < w(βk)−
1

3
. (18)

The same formula also yields the injectivity radius rp at p (and p′, etc.). Indeed, the shortest

geodesic loop at p together with βk forms two identical trirectangles with consecutive sides

ωk,
1
2`(βk), · , rp and we have sinh(rp) = sinh(12`(βk)) cosh(ωk). Bringing the two formulas

together we obtain

sinh(rp) =
sinh(12`(βk))

sinh(18`(βk))
sinh

(
ε/2
)
> 4 sinh

(
ε/2
)
.

Since ε ≤ 1
3 we have rp > 1.8ε.

The geodesic segments of length ε that connect the points p, p′, p′′, p′′′, p form a simple curve

homotopic to βk and there is another such curve on the other side of βk. We choose it in

such a way that the subset C ′k of Ck that lies between these two curves is symmetric with

respect to βk as shown in Figure 1010. We call C ′k the reduced collar.

In a similar manner we define the reduced cusp neighborhoods P ′
i ⊂Pi, i = 1, . . . , n. For

each Pi the vertices p, p′, p′′, p′′′ on the boundary of P ′
i lie on a horocycle. Since cusps may

be viewed as limits of half collars we may apply the previous estimates taking the limit for

`(βk)→ 0. In particular the injectivity radius at the points p, p′, etc. has again the lower

bound rp > 1.8ε. We call the union of the reduced cusps and collars the thin part of S and

the complement

S′ = S \
(
C ′1 ∪ · · · ∪ C ′h ∪P ′

1 ∪ · · · ∪P ′
n

)
the thick part. By the collar theorems and the lower bound on rp the injectivity radius at

any point in S′ is larger than ε.

The main result is the following.

Theorem 4.1. Let S be as described and set

σ = `(β1) · · · `(βh)

if h ≥ 1 and σ = 1 if h = 0. Then for any ρ ≤ ε and any disk Bρ of radius ρ in the thick

part of S there exists a point p ∈ Bρ such that

dist(p,BS) ≥ ρ2σ2e−M(2g−2+n),

where M is a constant that depends only on ε.

The proof will be finalized in section 4.64.6, where we shall get the explicit bound M =
97
ε2

log(134ε ).
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4.2. An ε-net in the thick part and Voronoi cells in S

We construct an ε-net in S′ beginning with the above vertices p, p′, . . . , on the boundaries

of the reduced collars and cusp neighborhoods. We call these points the “special points”.

By the estimates in the preceding section and because collars and cusps are pairwise disjoint

the special points have pairwise distances ≥ ε. We now complete them into an ε-net on S′

by successively adding additional “ordinary points” on S′ at pairwise distances ≥ ε until

this is no longer possible. For the properties of the resulting Voronoi cells we first prove

the following.

Lemma 4.2. For x ∈ S \ S′ the distance to the special points of the ε-net is smaller than

the distance to the ordinary points.

Proof. Let q be an ordinary point of the ε-net. The shortest connection from x to q

intersects one of the boundary segments of length ε in some point y. One of the endpoints

of the segment, say p, satisfies dist(y, p) ≤ ε/2. We now have dist(x, p) ≤ dist(x, y) +

dist(y, p) ≤ dist(x, y) + ε/2, where at least one of the inequalities is strict. On the other

hand dist(x, q) = dist(x, y) + dist(y, q) ≥ dist(x, y) + dist(p, q) − ε/2 ≥ dist(x, y) + ε/2.

Altogether dist(x, p) < dist(x, q) which proves the claim.

Our ε-net will now be considered as a distribution of points on S and defines a decomposition

of S into Voronoi cells. We shall call “special Voronoi cells” those around special points and

“ordinary Voronoi cells” those around ordinary points. The cell decomposition consisting

of all special and all ordinary Voronoi cells is again denoted by V . The following properties

take over from those in Section 3.13.1:

Lemma 4.3. Any cell of V contains an embedded disk of radius ε/2 and has at most 12

sides.

Proof. Lemma 4.24.2 implies that the ordinary Voronoi cells are contained in S′ and have the

same properties as those in Section 3.13.1. For the special cells we argue as follows. Consider,

for instance, the special point p on the boundary of the reduced collar C ′k as shown in

Figure 1010. It follows from Lemma 4.24.2 that the part in C ′k of the Voronoi cell at p is the

shaded polygon shown in the figure with two sides of length ε/2 on the segments adjacent

to p, then the two perpendiculars from these segments to βk and finally a side of length
1
4`(βk) on βk. The domain may be decomposed into two identical trirectangles with acute

angle, say ϕ, at p. Formula [33, 2.3.1(iii)] yields cosh(18`(βk)) = cosh(ε/2) sinϕ. Given

that ε ≤ 1
3 and `(βk) ≤ 2ε we deduce from it that the obtuse angle of the shaded domain
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at p is 2ϕ ≥ 0.9π. Proceeding as in the proof of Lemma 3.43.4 we now conclude that the

Voronoi cell at p has at most 9 sides. (From a combinatorial point of view, however, we

count an additional degenerate side on βk since at the endpoints of the sides on βk there

are four meeting cells.) Finally, with a glance at Figure 1010 we see that the cell contains an

embedded disk of radius ε/2 centered at p.

When p is on the boundary of a reduced cusp neighborhood then the result is the same

except that the shaded domain is degenerate and one side is replaced by a point at infinity.

Summing up we have the same conclusion as in Corollary 3.53.5 using that the area of S is

now 2π(2g − 2 + n)

Corollary 4.4. The number of sides of V is bounded above by
(
97
ε2
− 10

)
(g − 1 + n

2 ).

4.3. Traversing and terminal arcs

We now proceed as in the previous section to construct our model strands. As before, we

consider an embedded disk D of radius ρ > 0 and a geodesic segment c in D belonging to

the Birman-Series set. This time, however, D is contained in the thick part S′. We take

the continuation c̄ of c in both directions of length R − 2ε. The endpoints lie in Voronoi

cells. The only difference with the previous sections is the way in which we deal with the

special Voronoi cells. The intersections of c̄ with the collars and cusps may be of two kinds:

traversing arcs and terminal arcs. The precise definition and properties are as follows.

Traversing arcs. Figure 1111 shows half of a traversing arc T lifted to the universal covering

of S. The horizontal line β̃k on the top is a lift of the geodesic βk, the lower end is a lift of

one of the boundary curves of C ′k consisting of geodesic segments of length ε. The dotted

line is tangent to these and is a curve parallel to β̃k at distance ω′k. The vertices have

distance ωk to β̃k. The meanings of ωk and ω′k are the same as in Section 4.14.1 (Figure 1010).

The projection (under the universal covering map) on S of the strip between the dotted

lines is the dotted collar C ′′k ⊂ C ′k ⊂ Ck defined as

C ′′k = {x ∈ S | dist(x, βk) ≤ ω′k}. (19)

The boundary curves of C ′′k are tangent to the boundary curves of C ′k. In a similar way

we define (for later use) in each cusp neighborhood Pi the dotted cusp neighborhood

P ′′
i ⊂ P ′

i ⊂ Pi whose boundary curve is a horocycle tangent to the boundary curve of

P ′
i.

Note that the traversing arcs begin and end on the dotted lines, i.e., any traversing arc T
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β̃k

ωk

ω′k ω′k

ε/2 ε/2 ε ε

λ

λ̂

p̃

ε

A
U

Figure 11: Traversing arc depicted in the universal covering

is a connected component, for some k = 1, . . . , h, of c̄ ∩ C ′′k that has its endpoints on the

two opposite boundary curves of C ′′k .

The arc labelled λ in Figure1111 is half of the lift of T going from the dotted line to β̃k. The

label also denotes the length of this arc. Projecting λ orthogonally to β̃k we obtain the leg

λ̂ of a right-angled geodesic triangle with hypothenuse λ whose other leg is ω′k. We now

compare λ with λ̂.

Formula [33, 2.2.2(i)] applied to the aforementioned right angled triangle yields cosh(λ) =

cosh(λ̂) cosh(ω′k), and by formula [33, 2.3.1(iv)] applied to the trirectangle with sides
1
2ε, ω

′
k,

1
8`(βk), ωk we have cosh(ω′k) = tanh(ε/2) coth(18`(βk)). Bringing this together and re-

calling that `(βk) ≤ 2ε, ε ≤ 1/3 we get cosh(λ) ≥ cosh(λ̂) tanh(ε/2) coth(ε/4) ≥ 1.98 cosh(λ̂)

and then, by an elementary estimate,

λ− λ̂ > 2/3. (20)

The endpoint A of λ on the dotted line lies in a disk U of radius ε/2 around one of the

vertices p̃. By the triangle inequality this implies, in turn, that U is contained in the disk

of radius ε around A.

Terminal arcs. These are the connected components of the intersections of c̄ with the

dotted collars and cusp neighborhoods that have one endpoint on the boundary while the

other lies in the interior. There are at most two such components.

Since the infinite geodesic extension of c̄ is a simple curve it follows that terminal arcs in a

cusp neighborhood are “vertical” that is, orthogonal to the horocycles. In the collars the

situation is different.

To deal with the terminal arcs in Ck (k = 1, . . . , h) we supplement the 1-skeleton of V by a
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Figure 12: Endpoints for model strands in a reduced collar lifted to the universal covering.

The dashed line is the lift of an extended terminal arc.

set of terminal segments since the ε-net has no vertices in C ′′k . For the description we use

again the universal covering. Figure 1212 shows the part of the lift of Ck that lies between

the dotted lines. The horizontal line in the middle is a lift β̃k of βk. The vertical lines are

geodesic arcs orthogonal to β̃k at successive distances

σk =
1

4
`(βk).

The shaded domain with vertices p̃, q̃ and sides of lengths ε/2, ω′k, σk, ω
′
k,
ε/2 has the same

meaning as in Figure 1111 and is a lift of the shaded domain shown in Figure 1010.

The terminal segments will be issued at the midpoints of the boundary segments of lengths

ε. We describe these arcs in the case of the midpoint point q at the boundary of C ′k whose

lift q̃ in the universal covering is shown in Figure 1212. We shall assume that R ≥ 2ω′k and

add the simple modification for R < 2ω′k at the end.

The midpoints of the boundary segments on the dotted line on the top – we shall call them

“white points” – have successive distances of some value ε′ slightly smaller than ε. We let

B be the white point on the top opposite to q̃ and then C the white point to the right of

B whose distance R′ to q̃ is as close to R as possible. Then R− ε′ ≤ R′ ≤ R + ε′. For the

number z1 of white points from B to C, not counting B, we have the following, where t is

the orthogonal projection of the segment of length R′/2 onto β̃k (Figure 1212),

z1 =
2t

σk
≤ R′

σk
≤ R+ ε

σk
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Some of the comparison arcs will go from q̃ to these points, but we need further ones.

To this end we look at the geodesic ray η emanating from q̃ asymptotic to β̃k as shown

in Figure 1212. Together with β̃k and the vertical line at q̃ it forms an ideal right-angled

triangle with finite leg ω′k and acute angle at q̃ which we write as a sum φ+ θ, φ being the

angle at q̃ of the right-angled triangle with hypothenuse R′/2 and legs ω′k, t. By formula

[33, 2.2.2(vi)]

cos(φ) =
tanh(ω′k)

tanh(R′/2)
, cos(φ+ θ) = tanh(ω′k).

Out of these relations we get, by elementary transformations,

sin(θ) =
tanh(ω′k)

tanh(R′/2)
· 1

cosh(ω′k)

{
1−

√
1−

cosh(ω′k)
2

cosh(R′/2)2

}
.

Using that for 0 ≤ x ≤ 1 we have 1−
√

1− x ≤ x and that θ < π/2 sin(θ) we further obtain

θ <
π sinh(ω′k)

sinh(R′)
.

We now introduce additional white points on the arc that goes from C to D ∈ η on the

circle with radius R′ and center q̃ as shown in Figure 1212. We position them in such a

way that the successive arcs between them have lengths ε. Let z2 be the number of these

points, not counting C. Then z2 ≤ θ
ε sinh(R′) < π

ε sinh(ω′k). Using that cosh(ω′k) =

tanh(ε/2) coth(σk/2) ≤ ε
σk

, formula [33, 2.3.1(iv)] applied to the trirectangle with sides

ε/2, ω′k,
σk/2, ωk) we further get

z2 <
π

σk
.

Now z1 + z2 is the number of white points to the right of B (Figure 1212) and there is the

same number of similar points on the left. Drawing the connecting geodesic arcs from q̃

to these points (including the arc from q̃ to B) and projecting them from the universal

covering to S we get the terminal segments at q.

So far we have assumed that R ≥ 2ω′k. If R < 2ω′k, then z1 = 0 and the number of white

points on the circular arc of radius R is smaller than or equal to the number of such points

we would get on the arc of radius 2ω′k. For the latter we have already found the bound π
σk

.

Hence again z2 <
π
σk

.

Summing up we have the following.

Lemma 4.5. At any white point q on the boundary of C ′′k there are at most 2
σk

(R + 4)

terminal segments.
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Finally, if q is a white point on the boundary of a reduced cusp neighborhood P ′
i then we

need only one terminal segment, namely the geodesic arc of length R at q that is orthogonal

to the horocycles.

4.4. Constructing the model strands

We begin by assigning to each collar C ′′k a winding number τk with respect to c̄ as follows. If

C ′′k contains no traversing arc we set τk = 0. Otherwise we let Tk be the longest traversing

arc in C ′′k , project it orthogonally to a parametrized curve T̂k on βk (that may go around

βk many times) and set

τk = sk

[
`(T̂k)
`(βk)

]
, (21)

where [x] for x ∈ R denotes the largest integer ≤ x and sk ∈ {−1, 1} is the orientation, i.e.,

sk = 1 if T̂k winds around βk in the positive sense (with respect to a fixed orientation of βk)

and sk = −1 otherwise. At some later point we shall simultaneously unwind all traversing

arcs in C ′′k by applying a Dehn twist Dk of order τk along βk in the “unwinding direction”:

if T traverses C ′′k from, say A to A′, then Dk(T ) is the geodesic arc from A to A′ in C ′′k
that is homotopic (with fixed endpoints) to the curve T ′ that goes along T from A to βk,

then |τk| times around βk in the opposite direction of T̂k and after that along T to A′. It

follows from this construction that the orthogonal projection of Dk(Tk) on βk has length

< `(βk). Since the traversing arcs are pairwise disjoint we conclude that all of them have

this property, i.e., any Dk(T ) winds less than once around C ′′k .

The model strand for c̄ is constructed in a similar fashion as in Section 33, though with a

modification for the traversing arcs and the terminal arcs. We proceed in three steps. First

we split c̄ into a product

c̄ = c0c1c2c3 · · · c2J+1c2J+2

(J ≥ 0), where c0 and c2J+2 are either terminal arcs (Section 4.34.3) or point curves depending

on whether or not c̄ begins, respectively ends with a terminal arc; the parts c1, c3, . . . , c2J+1

are outside the dotted collars and dotted cusp neighborhoods; the parts c2j , for j = 1, . . . , J ,

comprise all the traversing arcs, each of them traversing some dotted collar C ′′kj . Here we

are using that a complete simple geodesic cannot enter and leave a collar on the same side

(Lemma 2.32.3) and that, similarly, it cannot enter and leave a cusp neighborhood. To deal

with the windings separately we first “unwind” c̄ and also leave out c0 and c2J+2 setting

c̆ = c1c̆2c3c̆4c5 · · · c2J−1c̆2Jc2J+1,
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where c̆2j = Dkj (c2j), j = 1, . . . , J . Now c̆ traverses a succession of Voronoi cells and we

associate to it a polygonal curve P (c̆) by the same procedure as in Section 3.33.3 with a minor

adaptation: if c0 is a terminal arc, say c0 ⊂ C ′′` , then P (c̆) has its initial point on the

boundary of C ′′` (as though C ′′` was the 0-th Voronoi cell that c̆ goes along). This initial

point is then one of the white points. Similarly, if c2J+2 is a terminal arc in some C ′′k , then

the endpoint of P (c̆) is a white point on the boundary of C ′′k .

The curves c̆ and P (c̆) have nearby endpoints: there is a geodesic arc ŭ of length ≤ 2ε

leading from the initial point of c̆ to the initial point of P (c̆) and a geodesic arc v̆ of length

≤ 2ε leading from the endpoint of P (c̆) to the endpoint of c̆. The paths c̆ and ŭP (c̆)v̆ are

homotopic.

In the next step we apply to P (c̆) the reversed Dehn twists D−1k , k = 1, . . . , h. The resulting

curve
_
P (c̆) = D−11 · · ·D

−1
h (P (c̆)) has the same endpoints as P (c̆) and ŭ

_
P (c̆)v̆ is homotopic

to the curve c1c2c3c4 · · · c2J+1.

In the final step we add the possible terminal segments. We describe this for c2J+2, the

procedure for c0 being the same. If c2J+2 is a point curve we set c̆2J+2 = c2J+2. Now

assume that c2J+2 is a terminal arc in some dotted collar C ′′k . Then the initial point of

c2J+2 lies within distance ≤ ε/2 of the endpoint, say q, of
_
P (c̆) on the boundary of C ′′k and

we first extend c2J+2 to a longer geodesic arc c′2J+2 in such a way that if we lift it to the

universal covering, then the other endpoint lies within distance ≤ ε/2 of some white point,

say r̃, on the arc BCD as depicted in Figure 1212 (or its symmetric image across q̃B), where

the dotted line is c′2J+2. The geodesic from q̃ to r̃ is the lift of a terminal segment and

we let c̆2J+2 be this terminal segment. There is a connecting arc v of length ≤ ε/2 from

the endpoint of c̆2J+2 to the endpoint of c′2J+2, and the curves (v̆)−1c̆2J+2v and c′2J+2 are

homotopic. Finally, if c2J+2 is a terminal arc in some dotted cusp neighborhood P ′′
i , then

we proceed similarly except that we take the extension c′2J+2 to be of length R. In this

latter case c̆2J+2 is a geodesic arc orthogonal to the horocycles.

We now let c̄′ be the extended geodesic arc c̄′ = c′0c1c2c3c4 · · · c2J+1c
′
2J+2 (where c′0 is

defined in the same way as c′2J+2) and define the model strand mc to be the geodesic arc

in the homotopy class of c̆0
_
P (c̆)c̆2J+2. Then there is a connecting arc u of length ≤ 2ε

from the initial point of c̄′ to the initial point of mc, and the already described connecting

arc v of length ≤ 2ε from the endpoint of mc to the endpoint of c̄′. By the aforementioned

homotopies the curves umcv and c̄′ are homotopic. In the disk D we have therefore the

same estimate for the distance between c and mc as in (1212) and so we get the following

result for our model strands mc and their components mc in D:

Lemma 4.6. Any component c of the Birman-Series set in D lies in a tubular neighborhood
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of radius wR := 3e−R of the model strand mc.

4.5. Estimating the number of model strands

Lemma 4.7. Let L̆ be the number of path edges of P (c̆) and τ1, . . . τh the winding numbers

of c̄ at β1, . . . , βh as in (2121), then

ε

24
L̆+

h∑
k=1

`(βk)|τk| ≤ `(c̄) + 3ε.

Proof. For j = 0, . . . , J , any Voronoi cell (including the special ones) that is crossed by

c2j+1 has its center at distance ≤ ε from c2j+1 (by the completeness of the ε net in S′). By

the same area argument as in the proof of Lemma 3.63.6 it follows that c2j+1 crosses at most
4
ε (`(c2j+1) + 3ε) times some Voronoi cell. Each c̆2j , for j = 1, . . . , J , crosses an additional

number of at most 4 special Voronoi cells. This is so because c̆2j winds at most once around

the corresponding collar and its initial and final cells are on the accounts of c2j−1 and c2j+1,

respectively. Altogether c̆ crosses at most 4
ε

∑J
j=0(`(c2j+1) + 3ε) + 4J times some Voronoi

cell and this multiplied by 6 is an upper bound of L̆:

L̆ ≤ 24

ε

J∑
j=0

(`(c2j+1) + 3ε) + 24J. (22)

For any k = 1, . . . , h, such that τk 6= 0 there is the longest traversing arc Tk in C ′′k which

is one of the c2j say Tk = c2j(k). By (2020) its orthogonal projection ĉ2j(k) on βk has length

satisfying `(βk)|τk| ≤ `(ĉ2j(k)) < `(c2j(k)) − 4/3 ≤ `(c2j(k)) − 4ε. Using that any other

traversing arc has length `(c2j) > 4ε we get

h∑
k=1

`(βk)|τk| ≤
J∑
j=1

(`(c2j)− 4ε) (23)

With (2222) and (2323) the proof is complete.

In the next lemma the constant G stems from Corollary 4.44.4. In the case n = 0 it is the

same as in (88), Section 3.63.6.

Lemma 4.8. Set G = 97
ε2

(g − 1 + n
2 ) and

N (R) =
1

10

mG

GG
RG

1

`(β1) · · · `(βh)
,

with m = 134
ε . Then for given R > G there are at most N (R) model strands in D.
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Proof. We first count how many model strands arise from extensions c̄ that have both

endpoints outside the dotted collars. We shall say that these curves belong to the first

category. For any of them the model strand mc is uniquely determined by the following

three sets of data: the winding numbers τ1, . . . , τh, the numbers n1, . . . , nV of path edges

of P (c̆) on each of the V edges of the cell decomposition V (which we assume enumerated

from 1 to V in some way) and the selection of the initial and end path edge. By Lemma 4.74.7

we have, noting that L̆ = n1 + · · ·+ nV , and `(c̄) ≤ 2R− 4ε,

ε

24
(n1 + · · ·+ nV ) +

h∑
k=1

`(βk)|τk| ≤ 2R. (24)

The number of model strands in the present case is thus bounded above by 4L̆22h times

the number of strings (n1, . . . , nV , |τ1|, . . . , |τh|) satisfying inequality (2424). By Corollary B.2B.2

this number is bounded above by

B :=
1

(V + h)!
(
ε
24

)V
`(β1) · · · `(βh)

(2R+ γ)V+h, (25)

where γ = ε
24V + `(β1) + · · · + `(βh). Hence, the upper bound 4L̆22hB for the number of

model strands with endpoints outside the dotted collars.

We also note using (1717) and Corollary 4.44.4 that h ≤ 3(g − 1 + n
2 ) and hence,

V + h ≤ G− 5, γ <
1

50
R. (26)

We extend our first category of curves by allowing, in addition, the endpoints to lie in dotted

collars that contain traversing arcs. For this extended category we have the previous bound

multiplied by the number of possible choices of the terminal segments that are attached

to
_
P (c̆). Any such segment must be homotopic with fixed endpoints to a curve that

does not intersects
_
P (c̆) except at the endpoints. One of the latter is the attachement to

_
P (c̆), the other is among the four white points on the opposite boundary component of

the corresponding dotted collar. Hence, at either end of
_
P (c̆) there are at most 5 possible

choices for the terminal segment. This yields the bound 100L̆22hB for the number of curves

in the extended first category.

The second category consists of the cases where exactly one endpoint of c̄ lies in a dotted

collar that contains no traversing arcs or where both endpoints lie in the same dotted collar

that contains no traversing arcs. We shall count the arising model strands for the cases for

which this collar is C ′′k and then take the sum for k = 1, . . . , h. Now for c̄ with initial point

in C ′′k (and possibly the end point also but without traversing arcs in C ′′k ) the attachment
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point for the terminal segment that is glued to the beginning of
_
P (c̆) is uniquely determined

by the sequence (n1, . . . , nV ), but the previous bound of 5 for the possible directions is now

replaced by 8
`(βk)

(R + 4) (Lemma 4.54.5). At the same time, since τk = 0, inequality (2424) is

now replaced by ε
24(n1 + · · ·+ nV ) +

∑h
j=1,j 6=k `(βk)|τk| ≤ 2R, and Corollary B.2B.2 yields the

bound

B′ :=
`(βk)

(V + h− 1)!
(
ε
24

)V
`(β1) · · · `(βh)

(2R+ γ)V+h−1.

for the number of strings that satisfy it. If the second endpoint of c̄ happens to lie in C ′′k also,

then both attachment points are determined by (n1, . . . , nV ) but for given direction of the

terminal segment at the beginning there are at most 5 directions for the terminal segment

at the end, owing to the fact that both terminal arcs of c̄ in C ′′k lie on the same simple

geodesic. It follows that for C ′′k there are at most 10L̆2h−1B′ 8
`(βk)

(R+ 4) ≤ 40L̆2h(V +h)B

possible cases, and summing up for k = 1, . . . , h we get the upper bound 40hL̆2h(V + h)B

for the number of model strands arising from curves in category 2.

The third and final category consists of the cases where the two endpoints of c̄ lie in distinct

dotted collars that both contain no traversing arcs. A similar argument as before shows

that there are at most 8h22h(V + h)(V + h − 1)B model strands arising from this last

category.

Let now N be the sum of the bounds for the three categories. By Lemma 4.74.7 and since

`(c̄) ≤ 2R − 4 (Section 4.34.3) we have L̆ ≤ 48
ε R (2626). Furthermore, by the hypothesis of the

lemma, G < R and therefore V + h < R. Hence, allowing rough estimates at this point,

N ≤ 100

(
48

ε

)2

R2{1 +
1

10
h+

1

100
h2}2hB ≤ 100

(
48

ε

)2

R23hB.

Applying to B that γ < 1
50R (2626) and using that x! ≥ xxe−x for x > 0 we get

B ≤ 1

`(β1) · · · `(βh)

(
24

ε

)V (
2 +

1

50

)V+h( eR

V + h

)V+h

.

Since the function x→ (eR/x)x is monotone increasing for x ∈ [1, R] and, by (2626), V +h ≤
G−2 < R, the last factor has the bound (eR/(V +h))V+h ≤ (eR/(G−2))G−2. The bound

in the lemma now follows by elementary simplification using that G > 400.

4.6. Finalizing the proof

Theorem 4.14.1 is now proved by the same argument as in the proof of Theorem 3.13.1: the

given disc Bρ has area ≥ πρ2; for any model strand mc in Bρ the part m2wR
c of the

tubular neighborhood of radius 2wR that lies in the disc has area < 9 ρwR (see (1313)),
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where wR = 3e−R. By Lemma 4.84.8 there are at most N (R) such strands and by Lemma 4.64.6

the tubular neighborhoods of radius wR around them contain the Birman-Series set ∩Bρ.
We thus get a point p in Bρ at distance ≥ wR from it if we set R to be a solution ≥ G to

the equation
1

ρ σ

mG

GG
RG = eR.

This is (1414) with ρ replaced by ρ σ. By Lemma 3.103.10 this solution satisfies

R ≤ 2 log(
1

ρ σ
) + 2G log(m) (27)

and, analogously to (1616), we get the bound wR ≥ 3ρ2σ2e−2G logm with G and m as in

Lemma 4.84.8. This completes the proof.

5. Systole independent bounds

From a geometric point of view collars around very small geodesics are similar to pairs of

cusps. This suggests that there should also exist a version of Theorem 3.13.1 with bounds

that are independent of the systole. Here we show that this is indeed possible. However,

the constants arising from our approach become extremely small.

The main idea is that if the width of a collar is sufficiently large with respect to R then

it cannot contain traversing arcs and, furthermore, the number of possible directions of

terminal segments (c.f. Lemma 4.54.5) at any white point on the boundary is just equal to 1

as in the case of a cusp.

In Figure 1313 we calculate how much larger than R the width must be. The figure depicts

again part of the universal covering of the surface S and is in correspondence with the

earlier Figure 1212. The distance from the white point q̃ to the lift β̃k of the small geodesic

βk is equal to R + H with H to be determined and σk = 1/4`(βk). The geodesic ray η

issued at q̃ is asymptotic to β̃k and forms an angle θ with the vertical geodesic from q̃

orthogonally to β̃k. We now determine H in such a way that η contains the hypothenuse

of a geodesic triangle q̃CD with right angle at C and small sides R and ε. The latter

is almost identical with the arc CD from C to η on the cricle of radius R centered at q̃.

Speaking in terms of Figure 1212 we have B = C and there is only one white point on the

curve BCD (and its symmetric image across q̃C) and thus only one choice for the direction

of a terminal segment at q in S. The necessary distance H is determined by the following

triangle formulas (formula [33, 2.2.2(iv)])

sinh(R) = tanh(ε) cot(θ), sinh(R+H) = cot(θ). (28)
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Figure 13: Asymptotic geodesic depicted in the universal covering

By the formula for the grey shaded trirectangle already used prior to (2020) (with ω′k = R+H)

we have cosh(R + H) = tanh(ε/2) coth(σk/2). For H determined by (2828) the length of βk,

with negligible error, is equal to 16 tanh(ε/2) tanh(ε)e−R. Thus, if we define

L(R) = 4ε2e−R (29)

then for given R any collar C ′′k with `(βk) ≤ L(R) may be dealt with as though it was a

pair of cusps.

We now start an iteration beginning by setting

`0 = 1, R0 = 2 log(
1

ρ
) + 2G log(m),

where ρ, G, m are as in Theorem 4.14.1 and Lemma 4.84.8. The value for R0 stems from (2727)

and is the bound for R in the proof of Theorem 4.14.1 that holds if h = 0, i.e., in the case

where S has no small geodesics. By what we have said above, this bound is also valid if all

small geodesics on S have lengths ≤ L(R0), and so under this weaker hypothesis we still

have the lower bound 3e−R0 for the largest distance to the Birman-Series set in the disc

Bρ.

In the first iteration step we set `1 = L(R0) and set R1 equal to the right hand side of

(2727) for the special case σ = `1. This is then the bound for R in the proof of Theorem 4.14.1

that holds if h = 1, and the same bound is valid in the more general case where all small

geodesics different from β1 have lengths ≤ L(R1). In this way we continue getting two

sequences sequence `0, `1, `2, . . . and R0, R1, R2, . . . , with the iteration scheme

`k = L(Rk−1) = 4ε2e−Rk−1
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Rk = 2 log 1
ρ + 2 log 1

`1
+ · · ·+ 2 log 1

`k
+ 2G log(m)

and at each step the result that some point in Bρ has distance ≥ wRk = 3e−Rk to the

Birman-Series set provided that on S all small geodesics different from β1, . . . , βk are shorter

than L(Rk). Now the recursion for Rk is equivalent to

Rk = 3Rk−1 + 2 log 1
4ε2

and Rk has the closed form

Rk = 3kR0 + (3k − 1) log 1
4ε2
.

But the iteration stops at k = 3g− 3 + n at the latest because this is the maximal possible

number of small geodesics for S of genus g with n cusps. Hence we have the following.

Theorem 5.1. Let S be a hyperbolic surface of genus g with n cusps and Bρ a disk of

radius ρ in the ε-thick part of S, where 0 < ρ < ε ≤ 1/3. Then there exists a point p ∈ Bρ
such that

dist(p,BS) ≥ e−3κR,

where κ = 3g − 3 + n and R = 2 log 1
ρ +M(g − 1 + n/2) with M = 195

ε2
log 134

ε .

Appendix A: Hyperbolic triangles

For the convenience of the reader we gather a number of properties of hyperbolic triangles

inscribed in a circle that are certainly well known but not easily accesible in the literature.

Lemma A.1. Consider, for given ε > 0, a hyperbolic triangle with sides of lengths ≥ ε

inscribed in a circle of radius ≤ ε. Then all angles are bounded from below by ϕε, where

cot
ϕε
2

= cosh(ε) ·
{√

1 + 2 cosh ε+
√

2 + 2 cosh ε
}
. (30)

For the proof we shall show that the smallest possible angle is ϕε and is achieved in the

case as shown on the left hand side in Figure 1414, where we have an isosceles triangle ABC

with base AB of length ε inscribed in a circle of center O and radius ε. An intermediate

step in the proof is the following property that does not hold in Euclidean geometry.

Lemma A.2. Let ABC be an arbitrary hyperbolic triangle inscribed in some circle of radius

ρ > 0. If we allow C to move on the circle without crossing A or B, then the angle γ at C

becomes minimal if and only if dist(A,C) = dist(B,C).
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Figure 14: Two different triangles

Proof. We let ζ ∈ ]0, 2π[ be the measure of the angular region between OA and OB into

which C is not allowed to enter. As a parameter for the position of C we then take the

angle 2t ∈ ]0, 2π − ζ[ from OB to OC. The orthogonal line from O to BC decomposes

the triangle OBC into two isometric right-angled triangles OMC, OMB with the oriented

angle β = β(t) at C, the orientation being from CO to CB.

In a similar way we let 2s ∈ ]0, 2π − ζ[ be the angle between OC and OA. The orthogonal

line from O to AC decomposes the triangle OAC into two isometric right-angled triangles

with oriented angle α = α(s) at C, the orientation being from CA to CO. With these

orientation conventions we have

2t+ 2s+ ζ = 2π

For the right-angled triangles the following formulas hold:

cosh ρ = cotβ cot(t); cosh ρ = cotα cot(s).

Indeed, for the configuration as in Figure 1414, where s, t, α, β ∈ ]0, π2 [ these are instances of

formula [33, 2.2.2(ii)], and using that cot(π−s) = − cot(s) we easily see that the formulas

remain valid in the cases where α ≤ 0 or β ≤ 0. One also may check that in all cases the

angle γ of triangle ABC at C satisfies

γ = α+ β.

A straightforward computation involving trigonometric identities (including tan(s)+tan(t) =
sin(s+t)

cos(s) cos(t)) now yields the following formula for γ as a function of t ∈ ]0, π − ζ
2 [ ,

cot γ(t) = cot ζ2 · cosh ρ− 1

2

sinh2ρ

sin ζ
2 cosh ρ

{
cos(2t+ ζ

2) + cos ζ2

}
.

Thus, γ becomes minimal when 2t = π − ζ
2 .
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Proof of Lemma A.1A.1. By Lemma A.2A.2 it suffices to look at triangles ABC that are isosceles

at C. If we move A, B on the given circle towards each other until their distance is ε the

angle γ decreases. If we then increase the height of the isosceles triangle keeping the base

AB fixed until the circumcircle reaches radius ε the angle γ decreases again. Hence, the

comparison triangle with the minimal angle ϕε as on the left hand side in Figure 1414.

To compute ϕε we begin with the angle ψε at O of the equilateral triangle OAB. By

formula [33, 2.2.2(iii)]we have sinh ε
2 = sin ψε

2 · sinh ε or equivalently, using the half angle

formulas for cot and sinh,

cot
ψε
4

=
√

1 + 2 cosh ε+
√

2 + 2 cosh ε. (31)

In the right-angled triangle OMC the angles at O and C are 1
2π−

1
4ψε and 1

2ϕε, respectively.

By the formula used earlier,

cosh ε = cot ϕε2 · cot(π2 −
ψε
4 ) = cot ϕε2 · tan ψε

4 ,

which implies the formula of the lemma.

For completeness we add an upper bound on the angles of an inscribed triangle. The

argument for this is easy: the largest angle is reached for the triangle ABD inscribed in

a circle of radius ε with sides AB and BD of length ε. Triangles OAB and OBD are

equilateral with the interior angles ψε and so we have

Lemma A.3. Consider, for given ε > 0, a hyperbolic triangle with sides of lengths ≥ ε

inscribed in a circle of radius ≤ ε. Then all angles are bounded from above by 2ψε, where

ψε is as in (3131).

Appendix B: A combinatorial lemma

To distribute up to L identical objects into K distinct boxes is possible in
(
L+K
L

)
different

ways; a simple bound is (L+K)K

K! . Here we prove a bound for the case for distributions in

packets.

Lemma B.1. For any string of positive integers ~s = (s1, . . . , sK) ∈ (N \ {0})K and any

L ∈ N\{0} we denote by χ~s(L) the number of ordered sequences (n1, . . . nK) ∈ NK satisfying

n1s1 + · · ·+ nKsK ≤ L.

Then

χ~s ≤
1

K! s1 · · · sK
(L+ s1 + · · ·+ sK)K .
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Proof. By induction over K. For K = 1 the inequality is clear. For the step from K to

K+ 1 we abbreviate sK+1 = s, nK+1 = n. The possible values for n are n = 0, 1, 2, . . . ,
[
L
s

]
(largest integer ≤ L

s ). Now we observe that

χ(s1,...,sK+1) =

[Ls ]∑
n=0

χ~s(L− n s).

By the induction hypothesis, for any n = 0, . . . ,
[
L
s

]
the number of sequences n1, . . . , nK

has the upper bound

χ~s(L− n s) ≤
1

K! s1 · · · sK
(L− n s+A)K ,

where we have abbreviated A = s1 + · · ·+ sK . It remains to prove that

[Ls ]∑
n=0

1

K!s1 · · · sK
(L− n s+A)K ≤ 1

(K + 1)! s1 · · · sKs
(L+A+ s)K+1.

Now

[Ls ]∑
n=0

(L+A− n s)K =

[Ls ]∑
n=0

∫ n

n−1
(L+A− n s)Kdt ≤

[Ls ]∑
n=0

∫ n

n−1
(L+A− t s)Kdt

≤
∫ L/s

−1
(L+A− t s)Kdt =

1

s(K + 1)

(
(L+A+ s)K+1 −AK+1

)
≤ 1

s(K + 1)
(L+A+ s)K+1

and the above inequality follows.

There is also a real valued version of the lemma:

Corollary B.2. For any string of positive real numbers ~ρ = (ρ1, . . . , ρK) ∈ RK and any

λ > 0 we denote by χ~ρ(λ) the number of ordered sequences (n1, . . . nK) ∈ NK satisfying

n1ρ1 + · · ·+ nKρK ≤ λ.

Then

χ~ρ ≤
1

K! ρ1 · · · ρK
(λ+ ρ1 + · · ·+ ρK)K .

Proof. Take t > 0 smaller than ρ1, . . . , ρK and set L =
[
λ
t

]
+1, sk =

[ρk
t

]
, for k = 1, . . . ,K.

Any string satisfying n1ρ1 + · · ·+nKρK ≤ λ then also satisfies n1s1 + · · ·+nKsK ≤ L. We

may thus apply Lemma B.1B.1 and the corollary is obtained in the limit as t→ 0.
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Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1992.

[4] Peter Buser and Hugo Parlier, The distribution of simple closed geodesics on a Riemann

surface, Complex analysis and its applications, OCAMI Stud., 2. Osaka Munic. Univ.

Press, Osaka, 2007.

[5] Moira Chas, Non-abelian number theory and the structure of curves on surfaces,

arXiv:1608.02846, Preprint, 2016.

[6] Viveka Erlandsson and Juan Souto, Counting curves in hyperbolic surfaces, Geom.

Funct. Anal., 26(3):729–777, 2016.

[7] Heinz Huber. Zur analytischen Theorie hyperbolischer Raumformen und Bewegungs-

gruppen. Math. Ann., 138: 1–26, 1959.

[8] Troels Jørgensen. Simple geodesics on Riemann surfaces. Proc. Amer. Math. Soc.,

86(1):120–122, 1982.

[9] Maryam Mirzakhani. Growth of the number of simple closed geodesics on hyperbolic

surfaces, Ann. of Math. (2), 168(1):97–125, 2008.

[10] Maryam Mirzakhani, Counting mapping class group orbits on hyperbolic surfaces,

arXiv:1601.03342, Preprint, 2016.

[11] Igor Rivin, Simple curves on surfaces, Geom. Dedicata, 87(1-3): 345–360, 2001.

[12] Igor Rivin, Geodesics with one self-intersection, and other stories, Adv. Math., 231(5):

2391–2412, 2012.

[13] Jenya Sapir, Bounds on the number of non-simple closed geodesics on a surface., Int.

Math. Res. Not. IMRN, 24:7499–7545, 2016.

[14] Jenya Sapir, A Birman-Series type result for geodesics with infinitely many self-

intersections, arXiv:1609.00428, Preprint, 2016.

39



[15] Peter Scott. Subgroups of surface groups are almost geometric. J. London Math. Soc.

(2), 17(3):555–565, 1978.

Addresses:

Institute of Mathematics, EPFL, Switzerland

Email: peter.buser@epfl.chpeter.buser@epfl.ch

Department of Mathematics, University of Luxembourg, Luxembourg

Email: hugo.parlier@uni.luhugo.parlier@uni.lu

40

mailto:peter.buser@epfl.ch
mailto:hugo.parlier@uni.lu

	Introduction
	Gaps on thin surfaces
	Local quantification in terms of the systole
	A Voronoi cell decomposition and its properties
	Scheme of proof
	Constructing combinatorial arcs and their properties
	Counting combinatorial paths
	Bounding the distance between arcs and model arcs
	Estimates and finalizing the proof

	Surfaces with cusps and (very) small geodesics
	Thick and thin decomposition
	An -net in the thick part and Voronoi cells in S
	Traversing and terminal arcs
	Constructing the model strands
	Estimating the number of model strands
	Finalizing the proof

	Systole independent bounds
	References

