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Abstract. Our goal is to show, in two different contexts, that “random” surfaces have large pants
decompositions. First we show that there are hyperbolic surfaces of genus g for which any pants
decomposition requires curves of total length at least g7/6−ε. Moreover, we prove that this bound
holds for most metrics in the moduli space of hyperbolic metrics equipped with the Weil-Petersson
volume form. We then consider surfaces obtained by randomly gluing euclidean triangles (with unit
side length) together and show that these surfaces have the same property.

Any surface of genus g, g ≥ 2, can be decomposed into three-holed spheres (colloquially, pairs
of pants). We say that a surface has pants length ≤ l if it can be divided into pairs of pants by
curves each of length ≤ l. We say that a surface has total pants length ≤ L if it can be divided
into pairs of pants by curves with the sum of the lengths ≤ L. The pants length and total pants
length measure the size and complexity of a surface. In particular, they describe how hard it is to
divide the surface into simpler parts. One of the main open problems in this area is to understand
how big the pants length of a genus g hyperbolic surface can be. It would also be interesting to
understand how big the total pants length of a genus g hyperbolic surface can be. In this paper, we
use a random construction to find hyperbolic surfaces with surprisingly large total pants length.

To put the paper in context, we review the known results about pants length and total pants
length. In [Ber74, Ber85], Bers proved that for each genus g, the supremal pants length of a genus
g hyperbolic surface is finite. This result is non-trivial because the moduli space of hyperbolic
surfaces is not compact, and Bers’s result gives information about the geometry of surfaces near
the ends of moduli space. The supremal pants length of a genus g hyperbolic surface is called the
Bers constant, Bg. Later work gave explicit estimates for the Bers constant. In [BS92], Buser and
Seppälä proved that every genus g hyperbolic surface has pants length at most Cg (where C is a
constant independent of g). On the other hand, Buser [Bus81] gave examples of hyperbolic surfaces

with pants length at least cg1/2 for arbitrarily large g. Buser conjectured that the Bers constant of
a hyperbolic surface is bounded by Cg1/2 [Bus92].

The total pants length has not been studied as much as the pants length, but it also seems like
a natural invariant. Since a pants decomposition has 3g− 3 curves in it, the estimate of Buser and
Seppälä implies that every genus g hyperbolic surface has total pants length at most Cg2. This
is the best known general upper bound. In the other direction, it is easy to construct hyperbolic
surfaces with total pants length at least cg for every g by taking covers of a genus 2 surface. The
only previous non-trivial estimate comes from work of Buser and Sarnak on the geometry of certain
arithmetic surfaces [BS94]. They proved that there exist families of surfaces, one in each genus g,
with the property that every topologically non-trivial curve has length at least ∼ log g. Since each
curve in a pants decomposition is non-trivial, the total pants length of these arithmetic hyperbolic
surfaces is at least ∼ g log g.

Now we have the background to state our main theorem.

Theorem 1. For any ε > 0, a “random” hyperbolic surface of genus g has total pants length at
least g7/6−ε with probability tending to 1 as g →∞. In particular, for all sufficiently large g, there
are hyperbolic surfaces with total pants length at least g7/6−ε.
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(To define a “random” hyperbolic surface we need a probability measure on the moduli space of
hyperbolic metrics. We use the renormalized Weil-Petersson volume form. We discuss this notion
of randomness more below.)

As another piece of context for our result, we mention the analogous questions for hyperbolic
surfaces with small genus but many cusps. For simplicity, let’s consider complete hyperbolic surfaces
with genus 0 and n cusps for n ≥ 3. These surfaces also have pants decompositions, and pants
length is defined in the same way. The arguments of Buser and Seppälä show that such a surface has
pants length at most Cn, and Buser’s conjecture was that the pants length should be at most Cn1/2.
Balacheff and Parlier proved this conjecture in [BP09]. In a more general context in [BPS10], it
is shown how to recuperate these results via Balacheff and Sabourau’s diastolic inequality [BS10].
There are also very good estimates for the total pants length in this context. Balacheff, Parlier and
Sabourau showed that the total pants length of a hyperbolic surface with genus 0 and n cusps is at
most Cn log n. It’s easy to find examples where the total pants length is at least cn, so their bound
is sharp up to logarithmic factors. The same authors went on to show that hyperelliptic genus g
hyperbolic surfaces have total pants length at most ∼ g log g. The hyperbolic surfaces in Theorem
1 are very different from hyperelliptic surfaces or from surfaces of genus 0 with many cusps.

Our lower bound is a lot stronger than the one coming from the Buser-Sarnak estimate. Instead
of improving the trivial bound by a factor of log g, we improve it by a polynomial factor g1/6−ε.
Let’s take a moment to explain why it is difficult to prove such a lower bound. Almost all the
random hyperbolic surfaces we construct have diameter around log g. Therefore, they have lots of
non-trivial curves with length around log g. For example, we can make a basis for the first homology
of the surface using curves of length around log g. So there are lots of short curves that look like
good candidates to include in a pants decomposition. The key issue seems to be that the curves
in a pants decomposition need to be disjoint. After we pick a first curve, the second curve needs
to avoid it. This cuts down our options for the second curve. Then the third curve needs to avoid
the first two curves, so we have even fewer options. If the pants length of the surface is near g7/6,
then the curves “get in each other’s way” so much that we have to pick dramatically longer curves
to finish building a pants decomposition. This kind of effect looks difficult to prove because there
are so many choices about how to choose the early curves. At the present time, for any particular
hyperbolic surface, we cannot prove that the total pants length is any larger than g log g. But for
a random hyperbolic surface, the pants length is usually much larger than g log g.

Our proof is essentially a counting argument. If a surface has total pants length at most L, we can
construct it by gluing some hyperbolic pairs of pants with total boundary length ≤ L. A hyperbolic
pair of pants is determined by its boundary lengths, so the number (really, Weil-Petersson volume)
of possible surfaces with total pants length ≤ L is governed by the number of possible ways of
choosing these hyperbolic pairs of pants and gluing them together. We estimate this volume and
show that if L ≤ g7/6−ε, then it is much smaller than the total volume of moduli space.

To define the random hyperbolic surfaces above, we use the Weil-Petersson volume form on
moduli space. Moduli space and the Weil-Petersson volume form are both fairly abstract, making
it particularly hard to visualize what is going on. To help make things more down-to-earth, we will
also consider an elementary random construction: randomly gluing together equilateral triangles
to form a closed surface. Suppose that we take N Euclidean triangles of side length 1, where N
is even. These triangles can be glued together to make a surface, and Gamburd and Makover
[GM02] showed that this surface usually has genus close to (N + 2)/4. We consider the set of
triangulated surfaces obtained in this way. We identify surfaces that are simplicially isomorphic,
and the equivalence classes form a kind of combinatorial “moduli space”. We put the uniform
measure on this finite set, so we can speak of a random combinatorial surface. (This definition
goes back to Brooks and Makover [BM04], who studied the first eigenvalue of the Laplacian and
the systole of random combinatorial surfaces.)
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Theorem 2. For any ε > 0, a random combinatorial surface with N triangles has total pants
length at least N7/6−ε with probability tending to 1 as N →∞.

The proof of Theorem 2 is closely parallel to the proof of Theorem 1. In some ways, the proof
is not as clean, but on the other hand the proof is completely elementary and self-contained.

In a similar spirit, Brooks and Makover suggested that for large N , the counting measure on the
combinatorial moduli space above may be close to the Weil-Petersson measure on the moduli space
of hyperbolic metrics. We’re not sure how to phrase this in a precise way, but there does seem to be
a strong analogy between combinatorial surfaces with N triangles and hyperbolic surfaces of genus
g when N = g/4. For example, there are roughly NN/2 ≈ g2g different surfaces with N triangles,
comparable to the volume of moduli space, which is roughly g2g.

The combinatorial metrics we study in Theorem 2 are not hyperbolic, so let us mention what
is known about the pants lengths of arbitrary metrics on a surface of genus g. Here the natural
question is how the pants length relates to the area. Generalizing his work with Seppälä, Buser
proved that any (not necessarily hyperbolic) genus g surface with area A has pants length at most

Cg1/2A1/2 [Bus92]. It’s easy to give examples of surfaces with area A and pants length at least

CA1/2. Generalizing his conjecture for hyperbolic metrics, Buser conjectured that any metric on a
surface with area A should have pants length at most CA1/2. Recall that the systolic inequality for
surfaces says that any surface of genus g ≥ 1 and area A has a non-trivial curve of length at most
CA1/2. If it’s true, Buser’s conjecture about pants lengths would greatly strengthen the systolic
inequality. For an introduction to systolic geometry, see Chapter 4 of [Gro07].

In both cases, hyperbolic and combinatorial, our results seem to be based primarily on genus.
Just as spheres with cusps have much smaller pants length than high-genus hyperbolic surfaces
with the same area, small-genus random surfaces, e.g. random combinatorial surfaces conditioned
to have genus 0, might have simpler geometry than high-genus random surfaces.

The study of small-genus random surfaces is an active area in probability theory especially in
recent years, and it has been an active area in physics for a long time. A lot of study has been
paid to random metrics on S2, and one of the key ideas is that there is essentially only one really
natural random metric on S2. Following this idea, one conjectures that different procedures for
producing a random metric on S2 should give the same result. In addition to the example above,
where one glues N triangles together and rejects any result which isn’t a sphere, one can begin with
the standard metric on S2 and change it by a randomly chosen conformal factor (the conformal
factor being a Gaussian free field). Conjecturally, for large N , the probability distribution coming
from gluing triangles converges to the probability distribution for the random conformal factor.
For an introduction to these issues, see the survey article [LG07].

There are many open questions related to the work in this paper. The central problem, under-
standing the maximal pants length of a genus g hyperbolic surface, remains wide open. We found
random surfaces to be useful in studying the total pants length, and there are also many questions
about pants length for random surfaces. For instance, what is the average pants length of a random
genus g surface, and is the average pants length close to the Bers constant? Do the pants lengths
of random genus g surfaces concentrate near a single value? One also has the analogous questions
for total pants length.

In several ways, arithmetic surfaces have properties similar to random surfaces. How does the
pants length of an arithmetic surface compare with the pants length of a random surface? In
particular, is it true that an arithmetic surface has pants length at least g1/6−ε?

Many of the same questions arise for random combinatorial surfaces along with some new ones.
Most random combinatorial surfaces have large genus, but we can also consider the set of combi-
natorial surfaces where the genus g is fixed, but the number of triangles N increases. If g is small,
say g = 0, and we look at large values of N , then we get something quite similar to a “random
planar map” studied in probability and physics - see [LG07]. If we take g large and N to be roughly
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4g, it seems that we get some kind of approximation to the moduli space of hyperbolic metrics.
There are many questions about the geometry of such a random surface - what is its systole, first
eigenvalue of Laplacian, or its Uryson width? What are its isoperimetric properties? How many
balls of various radii are needed to cover it? What are its pants length and total pants length?
And so on.

In the first section of the paper, we review the topology of pants decompositions. In the second
section, we review some key background theorems about the Weil-Petersson volume form, and we
use them to prove Theorem 1. In the third section, we introduce the combinatorial moduli space
and prove Theorem 2. In the last section, we mention some open problems.

Notation: Many of the numbers we will be concerned with are super-exponential. For two numbers
A(x) and B(x) that depend on a variable x, A(x) ≈ B(x) (resp. A(x) & B(x)) will mean that they
are equal (resp. the inequality holds) up to an exponential factor in x. For example, by Stirling’s
inequality, g! ≈ gg.

1. Topological types of pants decompositions

Pants decompositions come in different topological types. Let us fix a surface Σ. A pants de-
composition determines a trivalent graph where each pair of pants corresponds to a vertex and two
vertices are joined by an edge if the corresponding pants share a boundary. (This trivalent graph
may have multiple edges or loops.) We call this graph the topological type of the pants decom-
position. We say that two pants decompositions are topologically equivalent if their topological
types are isomorphic graphs. It’s straightforward to check that if two pants decompositions are
topologically equivalent, then there is a diffeomorphism of Σ taking one to the other.

For example, if Σ is a surface of genus 2, then it has two topological types of pants decomposition.
The two types each correspond to trivalent graphs with two vertices. In the first case, there are three
edges that go between the two vertices. In the second case, each vertex has one edge connecting it
to the other vertex and one loop connecting it to itself.

The first result that we need is an estimate for the number of different topological types of pants
decomposition on a surface of genus g. In [Bol82], Bollobas gave a precise asymptotic formula for
the number of trivalent graphs. We need only the following cruder version of Bollobas’s formula.

Lemma 1. (Bollobas) There are ≈ nn trivalent graphs with 2n vertices.

This lemma is cruder than Bollobas’s result, and it also has a simpler proof. For reference, we
include a proof here.

Proof. We start with 2n labeled tripods and consider all the ways to glue them together to produce
a trivalent graph. The tripods have total degree 6n, and there are

(6n)!

(3n)!23n
≈ n3n

ways of dividing the 6n half-edges into pairs, each of which corresponds to a trivalent graph with
vertices numbered v1, . . . , v2n. An unlabeled trivalent graph occurs many times in this collection.
The permutation group S2n acts on the set of labeled graphs by permuting the labels, and each orbit
of the permutation group consists of isomorphic graphs. The number of equivalence classes is thus
at most the number of orbits. If G is a labeled graph, recall that its orbit has CardS2n/CardSG

2n

elements, where SG
2n is the stabilizer of G. The stabilizer of G consists of permutations of the

vertices which lead to an isomorphic graph. We can describe such a permutation in terms of the
image of a basepoint in G and a permutation of the neighbors of each vertex, so

1 ≤ CardSG
2n ≤ 2n62n . 1.

Hence each orbit has ≈ n2n elements, and the number of orbits is ≈ nn. �
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Consequently, a pants decomposition of a genus g surface has one of ≈ gg possible topological
types.

2. The moduli space of hyperbolic metrics

In this section we show that a random hyperbolic metric on a genus g surface has total pants
length at least roughly g7/6 with very high probability. To begin, let us define what we mean by a
random metric and make a precise statement.

We denote the moduli space of closed hyperbolic surfaces of genus g byMg. The Weil-Petersson
metric is a Riemannian metric on Mg. We use the volume form of the Weil-Petersson metric
to define volumes on moduli space. By renormalizing the Weil-Petersson volume form, we get a
probability measure on moduli space. We take random metrics with respect to this probability
measure.

Theorem 1. For any ε > 0, a random metric in Mg has total pants length at least g
7
6
−ε with high

probability: the probability tends to 1 as g →∞.

Let us indicate the plan of our proof.
First, we observe that without loss of generality, we may assume that the curves in the pants

decomposition are closed geodesics. Suppose we begin with a pants decomposition of a hyperbolic
surface Σ. By definition, the pants decomposition consists of disjoint embedded curves γ1, ..., γ3g−3

so that each component of the complement is a three-holed sphere. This is equivalent to just
requiring that the curves γi are disjoint and non-parallel: no two curves among them bound an
annulus. Following a standard trick, we ‘tighten’ the curves γi: we replace each curve γi with a
closed geodesic γ̄i in its free homotopy class. By standard arguments in hyperbolic geometry, the
closed geodesics will be embedded and disjoint, and no two of them will bound an annulus. Hence
the curves γ̄i give a pants decomposition of Σ also, and they have smaller lengths than the curves
γi.

From now on we assume that the curves in the pants decomposition are closed geodesics. So
each three-holed sphere in the pants decomposition has a hyperbolic metric with geodesic boundary.
We call such a pair of pants with such a metric a hyperbolic pair of pants. The classification of
hyperbolic pairs of pants is easy to descibe: the boundary curves may have any positive lengths,
and for each choice of lengths there is a unique metric.

Now our plan consists of describing all the ways to glue together hyperbolic pairs of pants to
make a closed hyperbolic surface, and then estimating the volume in moduli space covered by these
surfaces.

To prove our theorem, we use two fundamental facts about the Weil-Petersson volume form.
Recall that the Teichmüller space Tg denotes the space of hyperbolic metrics on a fixed surface
of genus g, where two metrics are equivalent if they are related by an isometry isotopic to the
identity. The moduli space Mg is the quotient of Teichmüller space Tg by the action of the
mapping class group. The Weil-Petersson metric on Teichmüller space is a non-complete Kähler
metric with negative sectional curvature, and is very much related to the hyperbolic geometry of
surfaces. Although it is a very natural metric to consider, it is quite technical to define, so we refer
the reader to [Wol03] for details. The Weil-Petersson metric is invariant under the action of the
mapping class group, so it descends to a metric on moduli space.

We will need the following result of Schumacher and Trapani [ST01].

Background Theorem 1 (Asymptotic volume growth). The volume of moduli space Mg grows
(up to an exponential factor) like g2g; i.e.,

VolMg ≈ g2g.

This result was an improvement of previous lower [Pen92] and upper bounds [Gru01].
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The second background theorem expresses the Weil-Petersson volume form in a set of Fenchel-
Nielsen coordinates. Before stating the result, we quickly recall Fenchel-Nielsen coordinates.

Fix a pants decomposition of the genus-g surface. We denote the curves in the pants decompo-
sition by γ1, ..., γ3g−3. Recall that li and τi, the length and twist parameters, define coordinates on
the Teichmüller space Tg. The length parameter li measures the length of the shortest curve homo-
topic to γi in the given metric; this is a positive real number. The twist parameter τi measures the
twist in the gluing across this geodesic; this is a real number measured in units of length. Different
length and twist parameters may correspond to the same point in Mg; for instance, replacing τi
by τi ± li yields a metric isometric to the original one by a Dehn twist around γi.

The volume form for the Weil-Petersson metric has a very simple form in terms of these coordi-
nates [Wol03].

Background Theorem 2 (Wolpert). In Fenchel-Nielsen coordinates, the volume form of the
Weil-Petersson metric is simply the standard volume form dl1 ∧ ... ∧ dl3g−3 ∧ dτ1 ∧ ... ∧ dτ3g−3.

The region in moduli space with total pants length less than L in our fixed pants decomposition
is covered by the following region of Teichmüller space:

S = {(li, τi) ∈ Tg|
∑
i

li ≤ L, 0 ≤ τi ≤ li}

The Weil-Petersson volume of this set is the same as its volume in the standard Euclidean metric
on R6g−6 and it is not hard to estimate.

Lemma 2. If 1 ≤ L ≤ exp(g), then VolS . (L/g)6g, where . is taken with respect to g.

Proof. First consider the (3g−3)-dimensional simplex defined by the inequalities 0 < li,
∑

i li ≤ L.
We denote this simplex by ∆L. By Fubini’s theorem,

VolS =

∫
∆L

3g−3∏
i=1

li.

By the arithmetic-geometric mean inequality,∏
li ≤ (

L

3g − 3
)3g−3 . (

L

g
)3g.

Hence VolS . Vol(∆L)(L/3g)3g.
The volume of the simplex ∆L may be calculated inductively using the formula for the volume

of a pyramid. It is equal to L3g−3

(3g−3)! . (L/g)3g. �

Remark. The calculation in this lemma is basically sharp: the region of Teichmüller space above
has volume ≈ (L/g)6g. The region of moduli space covered by this region of Teichmüller space has
volume . (L/g)6g. (The volume in moduli space may be much smaller if the covering map is highly
non-injective. We don’t know how to estimate this effect.)

Now let Mg(≤ L) ⊂ Mg denote the subset of hyperbolic metrics that admit pants decomposi-
tions of total length ≤ L.

If E denotes a topological type of pants decomposition, we let Mg(≤ L,E) ⊂Mg(≤ L) denote
the the subset of hyperbolic metrics that admit a pants decomposition of type E and total length
≤ L. For each E, the calculation in Fenchel-Nielsen coordinates shows that the volume of Mg(≤
L,E) is . (L/g)6g. There are ≈ gg different topological types E. Every pants decomposition
belongs to one of these ≈ gg types, and so the volume of Mg(≤ L) is . L6gg−5g.

As we saw above, the volume of Mg is ≈ g2g. If we set L = g
7
6
−ε, then we see that the volume

of Mg(≤ L) . g(2−6ε)g. Recalling the definition of . and &, we see that the volume of Mg is at

least ce−cgg2g, while the volume of Mg(≤ g(7/6)−ε) is at most CeCgg(2−6ε)g. So for g sufficiently
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large, the volume of Mg is much larger than the volume of Mg(≤ g(7/6)−ε). This proves Theorem
1.

3. The combinatorial viewpoint

If N is even, one can construct a oriented surface by gluing together N triangles (we allow edges
of the same triangle to be glued together and allow edges to form loops). We call the corresponding
CW-complex a combinatorial surface. We declare two combinatorial surfaces to be equivalent if
there is a homeomorphism which sends edges to edges and faces to faces and we define CombN to
be the set of equivalence classes of such surfaces with N triangles. Gamburd and Makover [GM02]
showed that as N → ∞, a random element of CombN has genus at least (1/4 − ε)N with high
probability, so CombN is a rough combinatorial equivalent of MN/4.

We think of each triangle in a combinatorial surface as a Euclidean equilateral triangle with side
length 1. In this way, each combinatorial surface in CombN has a metric on it. In particular,
we can define its pants length and total pants length. We also have a good notion of a random
combinatorial surface given by the counting measure on CombN . Using these definitions, we get
the following combinatorial version of our main result.

Theorem 2. For any ε > 0, a random combinatorial surface in CombN has total pants length at
least N7/6−ε with probability tending to 1 as N →∞.

The proof of Theorem 2 is morally analogous to the proof of Theorem 1. It is more elementary,
because it does not rely on the Weil-Petersson metric, but there are also some additional subtleties.

One of the key observations in the proof of Theorem 1 was that a hyperbolic surface of total
pants length L can be cut into hyperbolic pairs of pants whose boundaries have total length at most
2L. The main subtlety in the proof of Theorem 2 is to find the right combinatorial analogue for
this step.

Suppose we start with an arbitrary pants decomposition of a combinatorial surface Σ. The curves
γi are arbitrary curves, and so the pairs of pants in the decomposition do not have combinatorial
structures. To get a combinatorial decomposition, we need the γi to be combinatorial curves.
For each i, we can approximate γi by a combinatorial curve γ̄i which is homotopic to γi and has
comparable length. At this point, some problems appear: the curves γ̄i need not be embedded and
need not be disjoint. If the γ̄i are chosen carefully, however, we can still express Σ as the union
of combinatorial pairs of pants, glued along the γ̄i. A combinatorial pair of pants will consist of
triangles and edges, but some of the edges may not border any of the triangles. These isolated
edges can be thought of as ‘infinitely thin’ pieces of surface. We will show that we can choose the γ̄i
to be combinatorial geodesics, so that each one has minimal length compared to all combinatorial
curves in its homotopy class.

At this point, there is a further problem. A hyperbolic pair of pants is determined by the
lengths of its boundary curves. But there are many different combinatorial pairs of pants with the
same boundary lengths. When we count how many ways we can glue together combinatorial pairs
of pants with given boundary lengths, we get a large unwanted factor coming from the different
choices for a pair of pants with fixed boundary curves. The underlying cause of this problem is
that combinatorial geodesics — unlike hyperbolic ones — are not unique. The solution to this
problem is to consider only special combinatorial pants decompositions which we call ‘tight pants
decompositions’. We define these below. Roughly speaking, they are pants decompositions of
minimal complexity in an appropriate sense.

With this well-chosen definition, the analogy runs smoothly. In Section 3.1, we prove that CombN

has cardinality ≈ NN/2, but that for any fixed g, the number of N -triangle combinatorial surfaces of
genus g grows only exponentially. In Section 3.2, we introduce combinatorial pants decompositions
and tight combinatorial pants decompositions. We show that any pants decomposition can be
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improved to make a tight combinatorial pants decomposition. In Section 3.3, we count the number
of tight combinatorial pants decompositions of total length ≤ L.

3.1. Counting combinatorial surfaces. The goal of this part is to count surfaces that lie in our
combinatorial moduli space. Our main goal is to prove that the cardinality of CombN is ≈ NN/2.
Since most surfaces in CombN have genus close to N/4, this is analogous to the fact that the
Weil-Petersson volume of moduli space of surfaces of genus g is ≈ g2g.

Over the course of our argument, we will need to consider the set of combinatorial surfaces with a
particular genus. Let CombNModg,k denote all combinatorial surfaces of genus g with k boundary
components made from N triangles. Again, we will allow two edges of the same triangle to be glued
together, and again we consider surfaces up to homeomorphisms preserving edges and faces.

For fixed g and k, we will see that the cardinality of CombNModg,k grows only exponentially
with N .

We begin by studying the cardinality of CombN .

Lemma 3 (Combinatorial volume growth).

Card(CombN ) ≈ NN/2.

Proof. If Σ ∈ CombN , we can construct a trivalent graph with N vertices by letting the vertices
of the graph be the faces of Σ and connecting vertices whose corresponding faces share an edge.
Given a trivalent graph, we can construct a surface with the corresponding pattern of gluings, so
by Lemma 1, Card(CombN ) & NN/2.

On the other hand, many surfaces might correspond to the same graph, since the graphs do not
record which of the three edges of each triangle is glued to which other edge. With this information,
a graph uniquely identifies a surface, but there are only 6N ways to add this information to the
graph, so Card(CombN ) . NN/2 as well. �

In contrast, the number of ways to triangulate a surface of a fixed genus with many triangles
grows only exponentially:

Lemma 4. For any g ≥ 0, k ≥ 0,

Card(ComnModg,k) - en.

In other words,

Card(ComnModg,k) ≤ C(g, k)en.

Proof. In the special case that (g, k) = (0, 1) (i.e., for triangulations of a disk), this follows from a
result of Brown [Bro64]; we will reduce the general case to the case of a disk.

Brown counted the number of rooted simplicial triangulations of the disk, that is, triangulations
with a marked oriented boundary edge such that the endpoints of each edge are distinct and no
face is glued to itself, and showed that the number of such with j + 3 boundary vertices and k
interior vertices is

2(2j + 3)!(4k + 2j + 1)!

(j + 2)!j!k!(3k + 2j + 3)!
.

Restating this in terms of the number n = j + 2k + 1 of triangles, we find that

2(2j + 3)!(2n− 1)!

(j + 2)!j!
(n−j−1

2

)
!(3n+j−3

2

)
!
,

where we require that 0 ≤ j ≤ n−1 and j ≡ n−1 mod 2. Call this number θ(n, j). Our combina-
torial surfaces differ from Brown’s in that the two endpoints of an edge may be identified, but any
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element of ComnMod0,1 can be barycentrically subdivided twice to get a simplicial triangulation.
We thus find that

Card(ComnMod0,1) ≤
6n−1∑
j=0

j≡6n−1 (mod 2)

θ(6n, j).

Since j ≤ n− 1, there is a c such that

θ(n, j) ≤ ecn (2n− 1)!(n−j−1
2

)
!(3n+j−3

2

)
!

= ecn(2n− 1)

(
2n− 2
n−j−1

2

)
≤ ecn22n−2(2n− 1),

so there is a c′ such that for all n > 0,

n−1∑
j=0

j≡n−1 (mod 2)

θ(6n, j) ≤ ec′n.

Now consider CombNModg,k. If Σ is a triangulated genus-g surface with k holes and (g, k) 6=
(0, 0), we can cut it along non-separating simple closed curves or simple arcs between boundary
components until we get a disk; this takes at most 2g+ k cuts. We can thus obtain any element of
CombNModg,k by performing at most 2g + k gluings on an element of ComnMod0,1. Each gluing
identifies two edge paths on the boundary, so a gluing is determined by the endpoints of the paths
that are glued. There are at most (3n)4 ways to perform each gluing, so as long as (g, k) 6= (0, 0),

Card(ComnModg,k) ≤ ec′n(3n)2g+k - en.

For the case that (g, k) = (0, 0), note that if Σ is a triangulation of a sphere, then we can obtain a
triangulation of the disc by cutting along an edge of Σ, so

Card(ComnMod0,0) ≤ ec′n - en

as desired. �

3.2. Combinatorial pants decompositions. In this part, we define pants decompositions of
combinatorial surfaces and their lengths. We then focus our interest on pants decompositions of
minimal length, and we show that in the isotopy class of such a pants decomposition there is always
a pants decomposition of a particular type, called a tight pants decomposition.

A pants decomposition of a surface of genus g is a maximal set of disjoint and freely homotopically
distinct non-trivial simple closed curves. A pants decomposition always contains 3g−3 curves, and
its complementary region consists of a set of 2g−2 three holed spheres, or pairs of pants. To define
a pants decomposition in the combinatorial setting, we focus on these pairs of pants.

A combinatorial pair of pants will consist of a simplicial complex equipped with some boundary
curves. Let ∆ be a simplicial complex which is a deformation retract of a three-holed sphere M0,3.
If we consider ∆ as a subset of M0,3, this implies that a regular neighborhood of ∆ is a three-
holed sphere. The boundary curves of this three-holed sphere correspond to simplicial curves in
the boundary of ∆, and when ∆ is equipped with these boundary curves, we call it a combinatorial
pair of pants. These curves inherit an orientation from M0,3. Note that ∆ need not be a manifold;
for instance, it could be two vertices connected by three edges. In general, ∆ may contain edges
that are not boundaries of triangles. Such edges we call stranded.

We can glue pairs of pants to get surfaces. If P1, . . . , P2g are combinatorial pairs of pants, each
one has three boundary components, and we can identify pairs of boundary components which have
the same length. Like its geometric analogue, there are many ways to identify the same pair of
boundary components, and these ways differ by a shift; by fixing a basepoint on each boundary
curve, we can define twist parameters for the gluing. If we glue all of the boundary curves in pairs,
we obtain a complex

⋃
Pi/ ∼; this may not be a surface, because there may still be edges which are
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not part of a triangle. If
⋃
Pi/ ∼ is isomorphic to a triangulated surface Σ, we call the collection

of the Pi, the gluing instructions, and the isomorphism a combinatorial pants decomposition of Σ.
The boundary curves of the Pi project to simplicial curves on Σ; we call these the boundary curves
of the pants decomposition. If the boundary curves have minimal (combinatorial) length in their
free homotopy classes, we say that the pants decomposition is minimal.

We will show that a geometric pants decomposition gives rise to a minimal combinatorial pants
decomposition. Recall that a Lipschitz closed curve on a triangulated surface is homotopic to a
simplicial curve whose length is bounded by a constant times the length of the original curve:

Lemma 5. Let α : S1 → Σ be a Lipschitz curve on a triangulated surface Σ. There is a simplicial
curve λ on Σ which is homotopic to α and whose length satisfies

`(λ) ≤ 2`(α).

Proof. For any ε > 0, we can perturb α to get a smooth curve α′ of length `(α′) ≤ `(α) + ε which
avoids vertices of Σ and intersects its edges transversely. The edges of the triangulation cut α′

into finitely many arcs, each contained in a single triangle. Each arc a cuts the boundary of its
triangle into two arcs. We homotope the arc a to the shortest of these two boundary arcs (say b).
By elementary euclidean geometry, we have `(b) ≤ 2`(a). As such, the resulting curve β satisfies
`(β) ≤ 2`(α).

The resulting curve is not necessarily a simplicial curve as it may go partway along an edge
and then backtrack. A further homotopy removes this backtracking and decreases the length. The
resulting curve λ is now a simplicial curve and has length at most the length of β. This proves the
lemma. �

We can now focus our attention on the equivalent statement for full pants decompositions.

Proposition 1. Let Σ be a triangulated surface and let α1, . . . , αk : S1 → Σ be the boundary curves
of a pants decomposition for Σ. There is a minimal combinatorial pants decomposition of Σ with
boundary curves λ1, . . . , λk : S1 → Σ such that for all i, λi is homotopic to αi and `(λi) ≤ 2`(αi).

Proof. The first step is to approximate the αi by simplicial curves. For all i, let βi be a simplicial
closed curve of minimal length which is homotopic to αi. In general, the βi may share edges; we
will subdivide Σ and make them disjoint.

We first duplicate the edges of Σ so that the βi do not share edges. If e = (x, y) is an edge of Σ
which occurs n ≥ 2 times in the βi, we replace e with n − 1 bigons glued edge-to-edge. We make
no changes to edges which do not occur or occur only once. Now we replace the vertices of Σ; if
a vertex has degree d, we replace it with a d-gon which we call a vertex polygon. Each incoming
edge connects to one vertex of this d-gon; this makes the bigons created in the previous step into
rectangles which we call edge rectangles. Each edge rectangle has two edges which are shared by
vertex polygons and two edges which connect vertex polygons; we call the edges which connect
vertex polygons long edges. Call the resulting complex Σ′. This complex is homeomorphic to Σ,
and there is a natural map p : Σ′ → Σ which collapses the edge rectangles to edges and the vertex
polygons to vertices; this map sends long edges to edges of Σ homeomorphically.

We call a curve semi-simplicial if it consists of alternating long edges and curves in vertex
polygons; the image of a semi-simplicial curve under p is thus a simplicial curve. If γ is a semi-
simplicial curve, we define its length by `(γ) := `(p(γ)). We can lift each of the βi to semi-simplicial
curves in Σ′ by replacing edges of βi with corresponding long edges and replacing vertices of βi with
curves in the vertex polygons. There are enough long edges in Σ′ that we can ensure that no long
edge is used twice, so this gives us curves β′i in Σ′ which intersect only in the vertex polygons. We
may assume that at most two curves intersect at a point and that all intersections are transverse.

A standard argument allows us to perform surgeries to make these curves disjoint. If two curves
β′i and β′j intersect (where possibly i = j), the fact that the two curves are homotopic to disjoint
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Figure 1. From Σ to Σ′

curves (or, in the case that i = j, to a simple curve) implies that there is a pair of intersection
points x, y, a segment γ1 of β′i, and a segment γ2 of β′j , such that γ1 and γ2 connect x and y

and are homotopic relative to their endpoints. Because β′i and β′j have minimal length, we have

`(γ1) = `(γ2). We can modify β′i and β′j by swapping γ1 and γ2 and deforming the resulting
curves near x and y to eliminate those two intersection points. This operation reduces the number
of intersection points by two, so we can repeat it to eliminate all intersection points. Since we
have only swapped subsegments of curves and performed homotopies inside vertex polygons, the
resulting curves are still semi-simplicial and still have minimal length; call them β′′1 , . . . , β

′′
k .

We will get a combinatorial pants decomposition of Σ by cutting Σ′ along these curves and
collapsing edge rectangles and vertex polygons. The curves β′′1 , . . . , β

′′
k are the boundary curves of

a geometric pants decomposition of Σ′ into subsurfaces P1, . . . , P2k/3. Each of these subsurfaces is
homeomorphic to a pair of pants (i.e., a three-holed sphere), and is the union of edge rectangles,
subsets of the vertex polygons, and faces of Σ′ which come from triangles of Σ. If we collapse each
edge rectangle in Pi to an edge and each connected component of a vertex polygon to a vertex, we
obtain a complex P ′i which comes with a map pi : P ′i → Σ. The boundary curves of Pi correspond
to simplicial curves in P ′i , and with these boundary curves, P ′i forms a combinatorial pair of pants.
Furthermore, gluing the P ′i along these boundary curves reconstructs the original surface Σ, making
them a combinatorial pants decomposition of Σ. The boundary curves of this pants decomposition
are λi := p(β′′i ); as required, λi is homotopic to αi, and since it has minimal combinatorial length,
its length is no more than a constant factor larger than that of αi. �

Let Σ be a genus g surface and let P1, . . . , P2g−2 be the pants in a combinatorial pants decom-
position of Σ. We can view a combinatorial pair of pants P as a collection of clusters connected by
strands; indeed, we will construct a graph G whose vertices correspond to clusters of P and whose
edges correspond to strands. We construct this graph as follows (see Fig. 2):

(1) For all vertices v ∈ P , if the link of v has d connected components and more than one is an
interval, replace v by a star with d edges.

(2) Shrink paths of edges to single edges.
(3) Shrink groups of triangles which are glued along edges to single vertices.

Each vertex of G corresponds to a group of triangles (indeed, a submanifold of P with boundary)
or a single point; we call these clusters. We will call a single-point cluster degenerate. Each edge
corresponds to a path of stranded edges of P (possibly a path of length zero); we call these strands.
Since each cluster corresponds to a vertex of G, we can define the degree of a cluster to be the
degree of the corresponding vertex.



12 L. GUTH, H. PARLIER, AND R. YOUNG

A

B
C

D

A

B

C

D

Figure 2. The cluster graph. This pair of pants has four disk-type clusters, one of
which (C) is degenerate and two of which (B, D) are loose disks.

The interior of a cluster can be homeomorphic to a disk, a cylinder or a three holed sphere, and
we call it disk-type, cylinder-type, or three-holed-sphere-type accordingly. If a cluster is a single
point, we say it is disk-type. If the pants decomposition was minimal, then a disk-type cluster can
have degree two, three, or four. A cylinder-type cluster has degree one or two, and a three-holed-
sphere-type cluster has degree zero. A pair of pants P is called tight if none of its disk-type clusters
have degree 2. Such a cluster will be called a loose disk. A minimal length pants decomposition is
called tight if all of its pants are tight, i.e., do not contain any loose disks.

Figure 3. A pair of pants with a annulus-type cluster

We are now able to introduce the main result of this section.

Lemma 6. Any combinatorial surface Σ admits a minimal length tight pants decomposition.

Proof. We need to show that if a minimal pants decomposition has pants with loose disks we can
isotope the curves to remove the disk from the pair of pants without increasing length. We further
need to make sure that by doing so we are not just moving a loose disk somewhere else, and that
in fact we will have reduced the number of loose disks.

The key technique in this proof is sliding a loose disk from one pair of pants to another. Let D
be a loose disk which is part of a pair of pants P in a minimal pants decomposition, and say that
P has boundary curves γa : Sa → P , a = 1, 2, 3. Since D is a loose disk, there are two strands
which enter D, say at vertices x1 and x2. These two vertices divide the boundary of D into two
paths, and since the boundary curves of P have minimal length, the two paths have equal length.
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Figure 4. Removing a loose disk to get a tight pair of pants

We denote them c, c′ : [0, `]→ P , and we can choose n and n′ so that c is a subsegment of γn and
c′ is a subsegment of γn′ . If P is glued to Q along γn, then we can slide that common boundary
curve over D to transfer D from P to Q. This has the effect of cutting D out of P (leaving c′) and
gluing it on to Q along c, and it produces a new pants decomposition of Σ. We call this process
sliding c to c′. Furthermore, since c and c′ must have equal lengths, the lengths of the boundary
curves are unchanged and the new pants decomposition is also minimal.

After such a slide, the pants decomposition differs from the original only around D. All the
clusters of the original decomposition have counterparts in the new one, except possibly for clusters
in P and Q; the move deleted one cluster from P and added at most one to Q, depending on whether
D was glued to a cluster or to a strand. If D was glued to a cluster, then the move reduced the
number of loose disks by one. Otherwise, the slide glues D to a strand of Q. In this case, after the
slide D becomes a loose disc in Q bounded by segments c1 and c′1.

We will inductively define a sequence X0, X1, . . . , Xk of pants decompositions which all differ
by slides. Each Xi except Xk will have a loose disk Di in a pair of pants Pi. This disk will be
isomorphic to D and which is bounded by two curves ci : [0, `] → Pi and c′i : [0, `] → Pi. Recall
that Σ is a quotient of the pairs of pants in Xi; let µi : Pi → Σ be the restriction of the quotient
map to Pi. We will require that µi ◦ ci : [0, `]→ Σ be the same curve for all i < k and likewise for
µi ◦ c′i : [0, `]→ Σ, and we will define f := µi ◦ ci and f ′ := µi ◦ c′i.

Let X0 be the original decomposition of Σ; this has a loose disk D0
∼= D bounded by c0 := c and

c′0 := c′. We construct Xi+1 from Xi by sliding ci to c′i. If this reduces the number of loose disks,
we stop, letting k = i+ 1; otherwise, Di corresponds to a loose disk of Xi+1, bounded by ci+1 and
c′i+1, and we continue. We claim that this process eventually stops.

By way of contradiction, say that the process does not stop. Sliding ci to c′i affects the boundary
curves of Xi by replacing an occurrence of f by f ′. If the process does not stop, then we can
replace f by f ′ infinitely many times. In particular, each edge of Σ occurs as many times in f as
it does in f ′, so each edge of Σ occurs an even number of times in µ(∂D) (indeed, either 0 or 2).
Consequently, µ(D) = Σ. Since µ is injective on the interior of D, this means that we can obtain
Σ by gluing the edges of D together.

If w = c(0) or w = c(`), we call w an endpoint of D0. We claim that for all v ∈ Σ, µ−1(v)
contains at most 2 non-endpoint vertices of D. Say v is such that {w1, w2, w3} ⊂ µ−1(v) for some
3 distinct non-endpoint vertices w1, w2, w3 ∈ D. The link of v is a circle, and it contains 3 intervals
corresponding to the links of the wi. Let S ⊂ link v be the complement of the interiors of these
intervals; this consists of three connected components, S1, S2, and S3. If a length-2 segment of
a boundary curve of X passes through v, there are j and k such that it approaches v from the
direction of Sj and leaves v in the direction of Sk. We call this a jk-segment. Note that the only
jk-segments of ∂D with j 6= k are those centered at the wi. Since D and the Sa’s are unaffected
by repeatedly sliding c to c′, we can discuss jk-segments of the boundary curves of the Xi too.
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One of the wi is in the image of c; say w1 = c(x), so that f passes through v at x, and number
the Si so that this is a 12-segment. Replacing f by f ′ deletes this segment, and we claim that
replacing f by f ′ decreases the number of 12-segments by one. The path f ′ has no 12-segments,
so it only remains to check that replacing f by f ′ can’t introduce new 12-segments centered at the
endpoints of D. But if f(0) = f ′(0) = v or f(`) = f ′(`) = v, then f and f ′ both leave v in the
direction of the same Si, so a jk-segment centered at an endpoint remains a jk-segment when f is
replaced by f ′. Since the number of 12-segments in X is finite, the process terminates after a finite
number of slides.

Thus, Σ can be obtained by gluing a disc to itself along its edges; the resulting gluing has one
face, namely D, ` edges, and at least (`− 1) vertices. Thus, if the process does not terminate, then
Σ has genus at most 1, which is a contradiction. �

3.3. Counting tight pants decompositions. The goal of this part is to count the number of
tight pants decompositions of bounded length.

Main Estimate. There is a c > 0 such that the number of triangulated surfaces in CombN with
genus g and (tight) pants decompositions of total length at most L is ≤ exp(cN)gg(L/g)6g.

First we will count the number of different tight pairs of pants with boundary curves of controlled
length. Next we will count the number of ways of gluing these pants together into a surface.

Lemma 7. There is a c0 > 0 such that the number of tight pairs of pants with boundary curves of
lengths l1, l2, and l3 and with A triangles is ≤ c0e

c0A.

Proof. A tight pair of pants consists of some clusters (which may be collections of triangles or may
be single points) joined by some strands. There are several combinatorial types, including:

(1) One annulus-type cluster, joined to itself with one strand.
(2) Two disk-type clusters, joined by three strands running between them.
(3) One disk-type cluster, joined to itself by two strands.

What matters to us is that there are only a finite number of combinatorial types. To see this, we
begin by observing that each cluster of triangles has to be a subsurface with genus 0 and at most
3 boundary components, so there are finitely many types of cluster. If c is the number of clusters,
s is the number of strands, and b is the total of the first Betti numbers of the clusters in a pair of
pants P , then the first Betti number of P , β1(P ) is given by β1(P ) = b + s − c + 1. If P is tight,
each disk-type cluster has degree at least 3, so each cluster contributes at least 1/2 to β1(P ). As
such, there can be at most 2 clusters in a tight pair of pants and at most 3 strands, so there are at
most, say, 100 types of pairs of pants.

We can now prove that for each combinatorial type, there are - eA tight pairs of pants with A
triangles. Since there are a finite number of combinatorial types, this will imply the lemma.

By Lemma 4, there is a c > 0 such that there are at most ecA discs or annuli or three-holed
spheres with A triangles. Now to build a tight pair of pants, we have to add strands to the
triangulated surfaces. We have to choose the attaching points. There are at most six attaching
points, and each attaching point has at most 3A choices, and so there are ≤ (3A)6 choices of
attaching points. Once we have chosen where to attach each strand, the lengths of the strands are
determined by the lengths l1, l2, and l3 of the three boundary circles. Thus the total number of
tight pants with fixed boundary lengths, a fixed combinatorial type, and A triangles is bounded by
100e2cA(3A)6 - eA. �

Remark. In hyperbolic geometry, there is a unique hyperbolic pair of pants for every choice of
boundary lengths l1, l2, and l3. The closest combinatorial analogue of this phenomenon is the fact
that tight pairs of pants with no triangles are determined by their boundary lengths. For every
triple of lengths, l1, l2, l3 ∈ Z, there is a unique triangle-less pair of pants with the given lengths.
If the lengths obey the triangle inequality, the graph looks like θ and if not the graph looks like a
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pair of glasses, that is, two circles connected by a line. If we are not careful when we add triangles,
the number of pairs of pants explodes: if we add one triangle, we have ≈ l1 + l2 + l3 different edges
where we can put it, so we get many different pairs of pants. For this reason, we introduced tight
pairs of pants; tightness restricts the possible places that a triangle can go. The number of tight
pairs of pants with fixed boundary lengths is bounded by exp(A), with constant independent of the
chosen boundary lengths. The exp(A) factor is fairly harmless, so tight pairs of pants are a good
analogue of hyperbolic pairs of pants.

Recall that a combinatorial pants decomposition consisted of a collection of pants and some
gluing information. Next we consider combinatorial analogues of length and twist parameters (i.e.,
Fenchel-Nielsen coordinates) and bound the number of possible ways to glue pants.

Lemma 8. There is a C such that the number of genus g combinatorial pants decompositions with
total pants length ≤ L and total area ≤ N is bounded by ≤ Cgg(L/g)6gexp(CN).

Proof. In this proof, we will write f(g, L,N) . h(g, L,N) to mean that there is some c such that
f(g, L,N) ≤ cecNh(g, L,N) for all applicable g, L,N . Note that we may assume that g ≤ N/4,
and so eg . 1 as usual.

As with hyperbolic pants decompositions, a genus-g combinatorial pants decomposition has a
topological type. By Lemma 1, the number of topological types of genus g is ≈ gg.

Now we count tight pants decompositions with a fixed topological type. We first have to choose
the lengths of the 3g − 3 boundary curves in the pants decomposition. How many ways can we
choose positive integers l1, ..., l3g−3 so that

∑
li ≤ L? This number is less than the volume of the

set xi ≥ 0,
∑
xi ≤ L. The volume of that simplex can be computed by induction on the dimension;

it has volume 1
(3g−3)!L

3g−3 . (L/g)3g.

For each choice of lengths, we next have to choose how many triangles to put in each pair of
pants. Here we have to choose A1, ..., A2g−2 ≥ 0 with

∑
Ai = N . The number of ways to choose

Ai is exactly
(
N+2g−3

2g−3

)
≤ 2N+2g−3 ≤ 4N . (Since g ≤ N/4.) So the number of ways of choosing Ai

is . 1.
Next we have to choose a tight pants structure for each pair of pants with the given area Ai and

the given boundary lengths. If c0 is the constant from Lemma 4, then the number of ways to do
this is at most

∏
i c0exp(c0Ai) . 1.

Now we count the number of possible gluings. Since we already chose the topological type, a
gluing is determined by its twist parameters. For each of the 3g − 3 curves, the twist parameter is
an integer in the range 0 ≤ ti ≤ li − 1. The number of choices for the twist parameters is

3g−3∏
j=1

lj ≤ (
L

3g − 3
)3g−3 . (L/g)3g.

Multiplying all of these together, we find that the number of possible pants decompositions is

. gg
(
L

g

)3g(L
g

)3g

. gg
(
L

g

)6g

,

as desired. �

In particular, the number of underlying surfaces (up to simplicial isomorphism) is . (L/g)6ggg.
This proves the main estimate.

The total number of combinatorial surfaces in CombN is ≈ NN/2. If N is sufficiently large and
L = N7/6−ε, then the number of surfaces in CombN with genus ≥ 2 and total pants length at most
L is

.
(N+2)/4∑

i=2

ecN (L/i)6iii . ecNN ( 1
6
−ε)· 6N

4 (N/4)
N
4 ≈ NN/2−3ε/2.
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The number of surfaces in CombN with genus < 2 is . 1 by Lemma 4, so for large N , most surfaces
in CombN have no pants decomposition of total length ≤ L. This finishes the proof of Theorem 2.
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