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Abstract. This article is about the graph genus of certain well studied graphs in surface

theory: the curve, pants and flip graphs. We study both the genus of these graphs and the

genus of their quotients by the mapping class group. The full graphs, except for in some low

complexity cases, all have infinite genus. The curve graph once quotiented by the mapping

class group has the genus of a complete graph so its genus is well known by a theorem of

Ringel and Youngs. For the other two graphs we are able to identify the precise growth rate

of the graph genus in terms of the genus of the underlying surface. The lower bounds are

shown using probabilistic methods.

1. Introduction

A certain number of simplicial complexes and graphs have been very useful in the study

of Teichmüller spaces, mapping class groups and hyperbolic 3-manifolds. These include the

curve, pants, and arc complexes and the related curve, pants and flip graphs. Viewed as

metric spaces, the large scale geometry of these spaces has been extensively investigated.

They all have (with the exception of some low complexity examples) the mapping class

group as set of simplicial automorphisms but their geometries are very different. We’ll be

interested in a topological property: the graph genus of the three graphs as well as the genus

of their quotients by the mapping class group.

The curve graph records the isotopy classes of curves on a fixed surface and their intersection

properties. Curve graphs have played a key role in the understanding of the geometry of

Teichmüller space, hyperbolic 3-manifolds and mapping class groups (see for example [Min99],

[Min10], [Raf05], [Ham07], [BMM10], [BCY12] and [MM00]). The geometry of the curve

graph in particular has been studied in detail - it is a Gromov hyperbolic metric space

and quasi-isometric to an electrified version of Teichmüller space [MM00]. More recently it

was proved independently by Aougab in [Aou13], Bowditch in [Bow14], and Clay, Rafi and

Schleimer [CRS13] that the hyperbolicity constant is in fact uniform (independent of the

topology). In [HPW13], Hensel, Webb and Przytycki prove that the constant is at most 17.

The mapping class group of a surface acts naturally on the corresponding curve graph through

its action on isotopy classes of curves. The quotient graph under the action of the mapping

class group is what we will call the modular curve graph. It essentially follows from the

classification of finite type surfaces that, at least for closed surfaces, this is a complete graph
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with additional loops attached to vertices. With this observation, the graph genus of the

modular curve graph is equivalent to a well-known theorem of Ringel and Youngs [RY68]

about the genus of the complete graph. In some sense this is one of our starting points; for

the other two graphs we consider the question does not boil down to a well known theorem.

Pants graphs have pants decompositions as vertices and have edges between vertices if the

two corresponding pants decompositions can be related by a so-called elementary move.

Although related to the curve graph, the pants graph has a very different geometry and

is only Gromov hyperbolic in a few low complexity cases, as proved by Brock and Farb in

[BF06]. Brock also proved that it is quasi-isometric to Teichmüller space with the Weil-

Petersson metric. The mapping class group acts on the pants graph as well and the quotient

of this action, the modular pants graph, has a purely graph theoretic interpretation. Vertices

are homeomorphism types of pants decompositions and so can be encoded by isomorphism

types of trivalent graphs. Elementary moves on pants decompositions then correspond to

natural transformation of these graphs (sometimes called L-moves or Whitehead moves).

The final type of graphs that we consider is formed by the flip graphs. These are graphs of

triangulations of punctured surfaces, which share an edge if they are related by a so called

flip (or equivalently if they differ in a single arc). These graphs are related to a number of

different topics including cell decompositions of decorated Teichmüller space (see for example

[Pen87] [Pen92]). Again, the mapping class group is generally the full automorphism group

of the graph, a result of Korkmaz and Papadopoulos [KP12] recently extended to injective

maps between different flip graphs by Aramayona, the first author and Koberda in [AKP14].

In the particular case where the surface is a polygon with n sides, the geometry of these

flip graphs was investigated by Sleator, Tarjan and Thurston in [STT88]. They proved that

the diameter of these graphs was 2n − 10 for large enough n (this was recently found to

be true for n ≥ 12 by Pournin [Pou14]). The quotient of this graph by the mapping class

group - the modular flip graph - is finite and every vertex in the flip graph has finite degree.

The Švarc-Milnor lemma then implies that the flip graph is a coarse model for studying the

geometry of the mapping class group.

When describing these three graphs, a first example is often the torus with a marked point

or puncture. The pants graph and the curve graph coincide in this case and isomorphic to

a Farey graph. Via the relationship between curves and arcs on a once punctured torus, it

is not too difficult to see that the corresponding flip graph is the dual graph to the Farey

graph (with its usual disk embedding). This dual graph is an infinite trivalent tree. So in all

three cases, the graphs are planar. Our first observation is that in general these graphs are

far from being planar.

Theorem A. Except for in a limited number of exceptional cases, the curve graph, the pants

graph and the flip graph all have infinite genus.

We treat the graphs separately so the above theorem is a combination of Theorems 5.2, 6.1

and 7.1.
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Once we quotient the graphs by their automorphisms, the resulting graphs are finite so they

have finite genus. Let Σg be a closed genus g surface and Σg,1 be a surface of genus g with

a single marked point. As mentioned above, the theorem of Ringel and Youngs about the

genus of complete graphs and some simple observations about topological types of curves

imply that implies that the genus of the modular curve graph is exactly

γ(MC (Σg)) =

⌈
(
⌊g

2

⌋
− 2)(

⌊g
2

⌋
− 3)

12

⌉
.

We’re able to identify how the genus grows in function of the topology of the underlying

surface for the other two graphs.

Theorem B. The genus of the modular pants graph of Σg grows like

1√
2g − 2

·
(

6g − 6

4e

)g
for g →∞.

The genus of the modular flip graph of Σg,1 grows like

1

(4g − 2)3/2

(
12g − 6

e

)2g

.

for g →∞.

In fact, what we prove is precise estimates on the growth rates with explicit constants. The

more precise statements are those of Theorems 6.2 and 7.2. The upper bounds are obtained

using standard techniques to bound the genus of a graph. The lower bounds are much more

difficult and we use probabilistic arguments in both cases. To do so, we need to adapt results

about the probability that a random graph has an automorphism. As a by-product of what

we need to prove, we end up counting the number of isomorphism classes of cubic multigraphs

(by multigraph we mean a graph where one is allowed multiple edges between vertices and

loops). We give the result here as it may be of independent interest.

Theorem C. Let IN denote the number of isomorphism classes of cubic multigraphs on N

vertices. Then:

IN ∼
e7/18

√
πN

(
3N

4e

)N/2
for N →∞.

The techniques in the proof of this theorem generalize to higher bounded degree, but because

we need the result only in the case of degree 3, we restrict to this case.

The article is organized as follows. We begin with a preliminary section where we recall

definitions and basic results about the genus of a graph and the three graphs we’ll be interested

in. We then have a section about random graphs where we recall some of the tools we need

and where we prove others including Theorem C above. In Section 4 we discuss random

triangulations; in particular we explain and adapt previous results of the second author
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and other known results. The subsequent sections are dedicated, in order, to our results

concerning the curve graph, the pants graph and the flip graph.

2. Preliminaries

In this section we describe the three types of graphs we consider and recall the definition of

the genus of a graph. We begin with the graph genus.

2.1. The genus of a graph. The genus of a graph is a measure of its topological complexity

and is defined as follows:

Definition 2.1. Let Γ be a graph. The genus of Γ is given by:

γ(Γ) = min {g; there exists a continuous injection f : Γ→ Σg}

where the minimum of the empty set is ∞.

The main tool we will use to get bounds on the genera of graphs is the following proposition.

The lower bound is due to Beineke and Harary and the upper bound is a well known fact

that essentially bounds the genus of a graph in terms of its Betti number (or cycle rank):

Proposition 2.1. [BH165] Let Γ be a connected graph with p vertices, q edges and girth h

then:

1 +
1

2
(1− 2

h
)q − 1

2
p ≤ γ(Γ) ≤ 1

2
+

1

2
q − 1

2
p

The proof of the lower bound uses a classical theorem by Youngs (Theorem 4.3 in [You63])

which says that every minimal genus embedding Γ ↪→ Σγ is such that Σγ\Γ is disjoint

union of open 2-cells. The upper bound follows from constructing an explicit embedding.

Furthermore, both bounds are sharp. The sharpness of the lower bound can for instance be

seen from the n-cube skeleton (cf. [Rin55], [BH265]) and that of the upper bound can be

seen from the set of trees.

The main consequence of Proposition 2.1 that we are interested in is that if we have a sequence

of graphs {Γn}n∈N such that:

p(Γn)

q(Γn)
→ 0 for n→∞

and h(Γn) ≥ h ≥ 3 for all n ∈ N then:

(
1

2
− 1

h
)q(Γn) . γ(Γn) .

1

2
q(Γn) for n→∞

In other words, just by knowing the number of edges and vertices, we can determine the

asymptotic behaviour of the genus of our sequence up to a multiplicative constant.
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2.2. The curve graph. In what follows Σg,n will denote an orientable topological surface

of genus g with n punctures. We set Σg := Σg,0.

A pants decomposition P of Σg,n is a set of isotopy classes of curves on Σg,n such that Σg,n\P
is a disjoint union of three-holed spheres (pairs of pants). The complexity κ(Σg,n) of Σg,n is

the number of curves in a pants decomposition of Σg,n. Depending on g and n there may not

be any pants decompositions so we will suppose that

κ(Σg,n) = 3g − 3 + n > 0.

When κ(Σg,n) ≥ 2 we can define the curve graph of Σg,n as follows:

Definition 2.2. The curve graph C (Σg,n) is the graph with:

vertices: isotopy classes of simple closed curves on Σg,n.

edges: vertices α and β share an edge if and only if they can be realized disjointly on Σg,n.

(When κ(Σg,n) = 1 the curve graph is defined analogously to the pants graph which we define

in the sequel.)

We will also be interested in the modular versions of the above graphs. These are the graphs

where only the homeomorphism type of the of the objects matter. Specifically:

Definition 2.3. The modular curve graph MC (Σg,n) is the graph with:

vertices: homeomorphism types of simple closed curves on Σg,n.

edges: vertices α and β share an edge if and only if they can be realized disjointly on Σg,n.

One can obtainMC (Σg,n) as a quotient of C (Σg,n) by the action of the (extended) mapping

class group Mod (Σg,n) defined as follows:

Mod (Σg,n) =
Homeo (Σg,n)

Homeo0 (Σg,n)

In particular we note that we are allowing orientation reversing homeomorphisms and home-

omorphisms that permute punctures. Except for in a few low complexity cases, the auto-

morphism group of the curve graph is exactly the (extended) mapping class group so this

amounts to looking at the curve graph up to simplicial automorphism.

For Σg, the graph MC (Σg) is particularly simple. There are exactly⌊g
2

⌋
+ 1

homeomorphism types of simple closed curves on a closed surface of genus g: there is one

non-separating type and
⌊g

2

⌋
separating types depending on how much genus they leave on

either side (see Figure 1 for examples in genus 4 and 5).
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Figure 1. Topological types of curves on surfaces of genus 4 and 5

It is not difficult to see that they can be realized disjointly so MC (Σg) contains a complete

graph on
⌊g

2

⌋
+ 1 vertices. In addition there are loops at vertices corresponding to curves

that can be realized by two different disjoint isotopy class of curve simultaneously. For odd g

this is every curve and for even genus this is every curve except for the separating curve that

separates the surface into two parts of genus g
2 . So the modular curve graph is quite simple

and computing its genus is paramount to Ringel and Youngs’ computation of the genus of a

complete graph.

2.3. The pants graph. On a Σg,n with κ(Σg,n) ≥ 1, the pants graph P (Σg,n) is a graph on

isotopy classes of pants decompositions of Σg,n. An elementary move on an (internal) curve

in a pants decomposition is one of the following:

- If the curve is a boundary curve of two distinct pairs of pants then an elementary move

on this curve consists of replacing it with a curve that intersects it twice.

- If the curve is a boundary curve of one pair of pants then an elementary move means

replacing it with a curve that intersects it once.

The figures below illustrate the types of elementary move. Elementary moves 1 and 2

correspond to the first type and elementary move 3 to the second type.

Figure 2. Elementary move 1. The black closed curves are either part of the

pants decomposition or boundary components.
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Figure 3. Elementary move 2. The black closed curves are either part of the

pants decomposition or boundary components.

Figure 4. Elementary move 3. The black closed curve is either part of the

pants decomposition or a boundary component.

If we start with a pants decomposition and perform an elementary move on one of its curves,

the resulting set of curves will again be a pants decomposition of the surface. Elementary

moves will allow us to define edges in the pants graph which we formally define as follows.

Definition 2.4. The pants graph P (Σg,n) is the graph with:

vertices: pants decompositions of Σg,n.

edges: vertices P and P ′ share an edge if P ′ can be obtained from P by performing an

elementary move on one of its curves.

As before, we define the modular pants graph as the graph defined on these objects up to

homeomorphism.

Definition 2.5. The moduli pants graph MP (Σg,n) is the graph with:

vertices: homeomorphism types of pants decompositions of Σg,n.

edges: vertices P and P ′ share an edge if and only if P ′ can be obtained from P by

performing an elementary move on one of its curves.

We again have an action of Mod (Σg,n) y P (Σg,n) through the action on curves and

MP (Σg,n) =
P (Σg,n)

Mod (Σg,n)

As before, except for some complexity cases, the mapping class group is the automorphism

group of the pants graph [Mar04].
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2.4. The flip graph. The final type of graphs we will be interested in is flip graphs. These

are graphs of (isotopy classes) of triangulations of Σg,n with vertices that lie in the punctures

(and thus we suppose n > 0). More precisely, by a triangulation we mean a maximal collection

of isotopy classes of arcs, disjoint in their interior. These maximal multi-arcs cut the surface

into triangles, but are not necessarily proper triangulations as for instance a triangle may be

glued to itself. (We refer to arcs of the triangulation as opposed to edges as to distinguish

them from the edges of the flip graph itself.)

Given such a triangulation, a flip in one of the arcs of the triangulation consists of replacing

this edge with its ‘opposite diagonal’. Phrased otherwise, a flip is the removal of an arc and

its replacement with the only other possible arc that can complete the resulting multi-arc

into a triangulation. Note that if an arc only belongs to one triangle, it is impossible to flip

it. A flip is illustrated in Figure 5.

Figure 5. A flip.

We can now define the flip graph:

Definition 2.6. Let n > 0. The flip graph F (Σg,n) is the graph with:

vertices: isotopy types of triangulations of Σg,n with vertices in the punctures.

edges: vertices T and T ′ share an edge if and only if T ′ can be obtained from T by

performing a flip on one of the arcs of T .

The modular version of the flip graph is defined as follows.

Definition 2.7. Let n > 0.The modular flip graph MF (Σg,n) is the graph with:

vertices: homeomorphism types of triangulations of Σg,n.

edges: vertices T and T ′ share an edge if and only if T ′ can be obtained from T by

performing a flip on one of the edges of T .

Again, it is the quotient of the flip graph by the mapping class group or, except for in some

low complexity cases, the quotient of the flip graph by its automorphisms [KP12].

3. Random regular graphs

Both pants decompositions and triangulations can be described using cubic (or trivalent)

graphs. This means that we can use results from the theory of random regular graphs to

count certain ‘problematic’ pants decompositions and triangulations. In this section we will

recall the results we will use from this theory, we will restrict to the cubic case.

We begin with the definition of the set of random cubic graphs:
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Definition 3.1. Let N ∈ 2N then we define the set:

ΩN = {partitions of {1, 2, . . . , 3N} into pairs}

An element ω ∈ ΩN corresponds to a cubic graph Γ(ω) with vertex set {1, . . . , N} in the

following way: for every element in k ∈ {1, . . . , 3N} we create a half edge with label k. We

group these half edges in the sets {1, 2, 3}, {4, 5, 6},..., {3N − 2, 3N − 1, 3N} corresponding

to vertices 1, 2,...,N . Gluing these half edges into edges according to ω gives Γ(ω).

To turn ΩN into a probability space we define a probability measure:

PN : 2ΩN → R

by:

PN [A] =
# (A)

# (ΩN )
for all A ⊂ ΩN

where 2ΩN denotes the power set of ΩN .

3.1. Counting cubic graphs. The first result we will need does not directly sound like a

result on random graphs, but it follows from counting the number of labeled cubic graphs,

which was done by Bender and Canfield in [BC78] and then considering the probability that

such a graph carries a non-trivial automorphism, which was done independently by Bollobás

in [Bol82] and McKay and Wormald in [MW82]. A simple graph is a graph without loops

and without multiple edges.

Theorem 3.1. [BC78], [Bol82], [MW82] Let I∗N denote the number of isomorphism classes

of simple cubic graphs on N vertices. Then:

I∗N ∼
1

e2
√
πN

(
3N

4e

)N/2
for N →∞.

We will also use the result on automorphisms, so we state it separately. Aut(Γ) will denote

the automorphism group of the graph Γ.

Theorem 3.2. [Bol82], [MW82] We have:

lim
N→∞

PN [Aut 6= {e}] = 0

We will also need to control is the distribution of the number of circuits of k edges (or k-

circuits, where by a circuit we mean a cycle that traverses every edge at most once). Note that

a 1-circuit is a loop and a 2-circuit is a multiple edge. We begin by defining the corresponding

set of random variables. We let:

XN,k : ΩN → N
denote the random variable that counts the number of k-circuits for all k ∈ N.

We will use the following theorem by Bollobás:
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Theorem 3.3. [Bol80] Let m ∈ N. Then:

XN,i → Xi in distribution for N →∞ for all i = 1, . . . ,m

where:

- Xi is a Poisson distributed random variable with mean λi = 2i/2i.

- The random variables X1, . . . , Xm are mutually independent.

In the proof of the theorem above, one uses the fact that fixed graphs that are not circuits

appear with probability tending to 0. We will need this fact and state it as a theorem:

Theorem 3.4. [Bol80] Let H be a graph that is not a circuit. Then:

EN [number of copies of H in Γ] = O
(
N−1

)
for N →∞.

Finally, most graphs we will consider will actually be multigraphs, which means that we need

to know the cardinality of the set of multigraphs with a fixed number of vertices as well. We

have the following theorem:

Theorem 3.5. Let IN denote the number of isomorphism classes of cubic multigraphs on N

vertices. Then:

IN ∼
e7/18

√
πN

(
3N

4e

)N/2
for N →∞.

Proof. To prove this, we define the following two sets:

GN = {Cubic multigraphs with vertex set {1, . . . , N}}

UN = {Isomorphism classes of cubic multigraphs on N vertices}

We have IN = # (UN ). We will use the two natural forgetful maps:

ΩN
π1−→ GN

π2−→ UN

If Γ ∈ UN and G ∈ GN have k 1-circuits and l 2-circuits, then we have:

#
(
π−1

1 (G)
)

=
6N

2k2l
and #

(
π−1

2 (Γ)
)

=
N !

# (Aut(Γ))

We know # (ΩN ). We will first count # (GN ) using π1 and after that we will use π2 to count

IN .
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Because X1(ω) ≤ N and X2(ω) ≤ N for all ω ∈ ΩN we have:

# (GN ) =
# (ΩN )

6N

N∑
k,l=0

2k2lPN [X1 = k, X2 = l]

=
# (ΩN )

6N
EN
[
2X1+X2

]
=

# (ΩN )

6N
EN

[
X1+X2∑
k=0

(
X1 +X2

k

)]

Because X1 +X2 ≤ 2N we have that:(
X1 +X2

k

)
= 0 for all k > 2N

So we obtain:

# (GN ) =
# (ΩN )

6N
EN

[
2N∑
k=0

(
X1 +X2

k

)]

=
# (ΩN )

6N

2N∑
k=0

1

k!
EN [(X1 +X2)k]

where (X1 +X2)k = (X1 +X2)(X1 +X2− 1) · · · (X1 +X2− k+ 1). This number of equal to

the number of ordered k-tuples of 1- and 2-circuits. We define the set:

Ck = {k-tuples of 1- and 2-circuits, with half edges labeled with labels in {1, . . . , 3N}}

and:

Ck,i = {c ∈ Ck; c contains i 1-circuits}

So we get:

# (GN ) =
# (ΩN )

6N

2N∑
k=0

1

k!
· 1

# (ΩN )

∑
ω∈ΩN

k∑
i=0

∑
c∈Ck,i

χc(ω)

where:

χc(ω) =

{
1 if c ⊂ ω as partitions

0 otherwise

So:

# (GN ) =
# (ΩN )

6N

2N∑
k=0

1

k!

k∑
i=0

∑
c∈Ck,i

PN [c ⊂ ω]
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Because PN [c ⊂ ω] depends only on the number of edges in c, it is constant on Ck,i. So we

fix ck,i ∈ Ck,i and write:

# (GN ) =
# (ΩN )

6N

2N∑
k=0

1

k!

k∑
i=0

# (Ck,i) · PN [ck,i ⊂ ω]

=
# (ΩN )

6N

2N∑
k=0

1

k!

k∑
i=0

k!

i!(k − i)!2k−i
N(N − 1) · · · (N − (i+ 2(k − i)) + 1)

(3N − 1)(3N − 3) · · · (3N − 2(i+ 2(k − i)) + 1)

We have:
N −m

3N − 2m− 1
≤ N

3N − 1
for all m = 0, . . . 2k − i

So, using dominated convergence, we obtain:

# (GN ) ∼ # (ΩN )

6N

2N∑
k=0

1

k!

k∑
i=0

k!

i!(k − i)!
1

2k−i
1

32k−i

=
# (ΩN )

6N

2N∑
k=0

1

k!

(
7

18

)k
∼ e7/18 # (ΩN )

6N

for N →∞.

We will now use this, combined with π2 to compute IN . In particular, we will show that we

can ignore graphs with automorphisms. We have:

# ({G ∈ GN ; Aut(G) 6= {e}})
# (GN )

=

∑
k,l

2k+lPN [X1 = k,X2 = l,Aut 6= {e}]

6N
# (ΩN )

# (GN )

Theorem 3.3 tells us that there exists a C > 0 such that for all k, l ∈ N:

2k+lPN [X1 = k,X2 = l,Aut 6= {e}] ≤ 2k+lPN [X1 = k,X2 = l] ≤ C · 2k+lλ
k
1e
−λ1λl2e

−λ2

k! l!

which is summable and does not depend on N . Hence by the dominated convergence theorem

we can take the limits of the terms to compute the limit of the sum. We have:

lim
N→∞

PN [X1 = k,X2 = l,Aut 6= {e}] ≤ lim
N→∞

PN [Aut 6= {e}] = 0

by Theorem 3.2. So we obtain that:

lim
N→∞

# ({G ∈ GN ; Aut(G) 6= {e}})
# (GN )

= 0

and:
# (GN )

# (UN )
∼ N !

for N → ∞. Combining the above and applying Stirling’s approximation now gives the

theorem. �
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3.2. Maps with a small defect. We will also need to control the number of graphs that

carry a map which distorts the adjacency structure at at most a fixed number of edges. This

is a slight generalization of an automorphism of a graph. In Theorem 3.2 we have already

seen that the probability that a random cubic graph carries a non-trivial automorphism tends

to 0 for n→∞ (cf. also [KSV02], [Wor86]). In particular, in [KSV02], Kim, Sudakov and Vu

also consider maps of small distortion, but for regular graphs with growing vertex degrees.

We note that the set of bijections of the vertex set V of a graph can be identified with the

symmetric group SV . The distortion we were speaking about is the edge defect defined below:

Definition 3.2. Let Γ = (V,E) be a graph and π ∈ SV . The edge defect of π on Γ is the

number:

EDπ(Γ) = # ({e ∈ E;π(e) /∈ E})

This definition is similar to, but different from, the definition of the defect of a permutation

by Kim, Sudakov and Vu in [KSV02].

We will also need to consider the action of an element π ∈ Sn on the edges Kn, the complete

graph on n vertices. From hereon an edge orbit of an element π ∈ Sn will mean the orbit of

an edge in Kn under π.

We want to bound the probability that a cubic graph carries a non-trivial map with edge

defect ≤ k for a fixed k ∈ N. To do this, we will adapt the proof of Wormald in [Wor86] of the

fact that a random regular graph asymptotically almost surely carries no automorphisms to

our situation. The key ingredient is the following lemma (Equations 2.3 and 2.7 in [Wor86]):

Lemma 3.6. [Wor86] There exists a constant C > 0 such that: given N ∈ N, a ∈ N, si ∈ N
for i = 2, . . . , 6 such that 2s2 + 3s3 + . . . 6s6 ≤ N and e1 ∈ N such that e1 ≤ s2 and f ∈ N.

Let HN (a, s1, . . . , s6, e1, f, k) be the set of pairs (π,H) such that:

- π ∈ SN , H a graph on {1, . . . , N}.
- π 6= id and π has si i-cycles for i = 2, . . . 6.

- The support of π is A, # (A) = a and π fixes H as a graph.

- degH(x) = 3 for all x ∈ A.

- At least one end of every edge in H is moved by π.

- The subgraph of H induced by A can be written as the union of f edge-orbits of π and f

is minimal in this respect.

- e1 edges of H are fixed edge-wise by π.

- The subgraph of H induced by A has k edges.

Then: ∑
(π,H)∈HN (a,s1,...,s6,e1,f)

PN [H ⊂ Γ] ≤ CaN−a/2a3a/8

Using this, we can prove the following:
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Proposition 3.7. Let n, k ∈ N. There exists a C > 0 such that:

PN
[
∃ id 6= π1, . . . , πn ∈ SN such that EDπi(Γ) ≤ k ∀i = 1, . . . , n

and Γ has < Cn circuits of length ≤ 8k

]
→ 0

for N →∞.

Proof. The idea of the proof is as follows: we consider a set of graphs H′N such that any

graph with no circuits of less than 8k edges that carries a map π ∈ SN with edge defect ≤ k
contains at least one graph in the set H′N as a subgraph. If we can then prove that:∑

H′∈H′N

PN
[
H ′ ⊂ Γ

]
→ 0

for N →∞, then we have proved the proposition, because every circuit adds at most a finite

number of maps with a bounded edge defect, which is where the constant C comes from.

We will construct a part of H′N out of the set HN , which is the set of subgraphs out of which

a graph with a non-trivial automorphism must contain at least one. This last set is given by:

HN =
⋃
π∈Sn
π 6=id

HN (π)

where:

HN (π) =

{
H graph on {1, . . . , N};

every edge in H has at least on end in A
degH(x) = 3 ∀x ∈ A

πH = H

}
where A is the support of π. The condition πH = H is equivalent to the fact that H can be

written as a union of edge-orbits of π.

We are interested in graphs that carry a non-trivial ‘almost-automorphism’. Suppose we

have a graph Γ for which the map π ∈ Sn with support A ⊂ {1, . . . , N} is such an almost-

automorphism. We consider the graph H ⊂ Γ that consists of all edges that have at least

one end in A. All but k images of the edges of H (seen as a subgraph of KN ) under π should

be edges in Γ again. This means that H can be written as a union of edge orbits of π out

of which k edges have been removed and replaced by different edges. We are not interested

in these replacement edges and consider the graph H ′ that consists of H minus these edges.

We define:

H′N (π) =

{
H ′ graph on {1, . . . , N}; ∃H ∈ H(π) such that H\H ′ has k edges

H ′ contains no circuits of length ≤ 8k

}
What we have argued is that for π ∈ SN :

Γ has no circuits of length ≤ 8k and EDπ(Γ) ≤ k ⇒ ∃H ′ ∈ H′N (π) with H ′ ⊂ Γ

We now want to apply Lemma 3.6. This means that we need relate the cardinalities of

HN (π) and H′N (π) and the probabilities PN [H ⊂ Γ] and PN [H ′ ⊂ Γ], where H ′ is the graph

obtained from H ∈ HN (π) by removing two edges.
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Because a graph in HN (π) has at most 3a/2 edges we get:

#
(
H′(π)

)
≤ 1

2

(
3a

2

)k
·# (HN (π))

and because H ′ contains k edges fewer than H, we have:

PN
[
H ′ ⊂ Γ

]
≤ C ′Nk · PN [H ⊂ Γ]

where C ′ > 0 is independent of H,H ′ and N .

It turns out that the bounds above in combination with Lemma 3.6 are only small enough

when the support of π is large enough, i.e. when it contains at least 2k + 1 elements. This

means that we need to cut the sum over subgraphs into two pieces. We write a(π) for the

number of elements in the support A(π) of π ∈ SN and define:

T1(N) =
∑
π∈SN

a(π)≤2k,π 6=id

∑
H′∈H′N (π)

PN
[
H ′ ⊂ Γ

]

T2(N) =
∑
π∈Sn

a(π)>2k

∑
H′∈H′N (π)

PN
[
H ′ ⊂ Γ

]
So now we need to prove that both T1(N) and T2(N) tend to 0 for N →∞.

We start with T2(N). We have:

T2(N) ≤
∑
π∈SN
a(π)>2k

C ′′ · a(π)2Nk
∑

H∈HN (π)

PN [H ⊂ Γ]

≤
∑

a,s1,...,s6
e1,f

C ′′ · a2Nk
∑

(π,H)∈HN (a,s1,...,s6,e1,f)

PN [H ⊂ Γ]

≤
N∑

a=2k+1

(C ′′′)aN−a/2+k

for some constants C ′′, C ′′′ > 0 independent of a and N , where we have used Lemma 3.6 and

the fact that the number of choices for the variables other than a is polynomial in a in the

last step. The final expression tends to 0 for N →∞.

To prove that T1(N) also tends to 0 we will need to use the assumption on short circuits.

Recall that we are summing over all permutations π ∈ SN with a(π) ≤ 2k. We first note that

the set of isomorphism classes of graphs we are summing over is finite (they are graphs of

bounded degree on at most 8k vertices). Because none of these are circuits by assumption,

Theorem 3.4 tells us that these have asymptotic probability 0 of appearing in the graph. This

means that also:

T1(N)→ 0

for N →∞. �
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4. Random oriented graphs and random triangulated surfaces

Random cubic graphs also naturally come with an orientation: a cyclic ordering at each

vertex of the half edges emanating from this vertex. We simply declare the cyclic order to be

the same as the cyclic order of the labels on the half edges. Such an orientation gives rise to

a triangulated surface. We glue a triangle over every vertex of the graph and glue the sides

of triangles together according to the edges of the graph, which we do in such a way that

the orientation at every vertex corresponds to an outward orientation on the triangle via the

right hand rule. This means that a random cubic graph gives rise to a notion of a random

surface, which we will denote by S(ω) for ω ∈ ΩN .

These random surfaces were for example investigated in [BM04], [PS06] and [Pet14]. In

particular, in [Pet14], the second author developed techniques for restricting to surfaces of

a fixed topology. We will use these results to study the genus of the flip graph of Σg,1. It

follows from an Euler characteristic argument that in this case the number of vertices of the

corresponding graph will need to be 4g − 2.

Again, we start with a cardinality result (Theorem B of [Pen92]):

Theorem 4.1. [Pen92] We have:

# ({ω ∈ ΩN ;S(ω) has 1 puncture}) ∼ 2
√

2

3N

(
3N

e

)3N/2

for N →∞.

It follows from Theorem B in [Pet14] that:

Proposition 4.2. Let m ∈ N. There exists a set of mutually independent random variables

X ′i : N→ N for i = 1, . . . ,m such that when we restrict to surfaces with 1 puncture:

XN,i → X ′i in distribution for N →∞ and i = 1, . . . ,m

where the limit has to be taken over N ∈ 4N.

Proof. This follows from the fact that the random variables are sums of a finite number of

converging random variables. �

It also follows from the results of [Pet14] (Lemma 6.3 there) that if a labeled oriented graph

H contains no left hand turn cycle (a cycle of the graph that turns in the direction dictated

by the cyclic order at every vertex) then we still have:

PN [H ⊂ Γ | S has 1 punture] ≤ CN−#(E(H))

where C > 0 does not depend on H or N . This means that all the arguments in the proof

of Proposition 3.7 still work in the case where we restrict to surfaces with 1 puncture. So we

obtain:
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Proposition 4.3. Let n, k ∈ N. There exists a C > 0 such that:

PN
[
∃ id 6= π1, . . . , πn ∈ SN such that EDπi(Γ) ≤ k ∀i = 1, . . . , n

and Γ has < Cn circuits of length ≤ 8k
| S has 1 punture

]
→ 0

for N →∞.

In particular, the analogous theorem to Theorem 3.2 also holds in this setting: asymptotically

almost surely 1-vertex triangulations have no automorphisms.

This means that we also have the following:

Theorem 4.4. [Pen92]. Let Ig,1 denote the number of isomorphism classes of triangulations

of Σg,1. We have:

Ig,1 ∼
2

3
√
π (4g − 2)3/2

(
12g − 6

e

)2g−1

for g →∞.

Proof. We can run the same proof as for Theorem 3.5. The difference however is that we

do not need to worry about 1- or 2-circuits: there will not be any 1-circuits and because of

the orientation 2-circuits no longer add a factor 2. Furthermore, asymptotically there are no

automorphisms. So we get:

Ig,1 ∼
1

34g−2(4g − 2)!
·# ({ω ∈ Ω4g−2;S(ω) has 1 puncture})

Filling in Theorem 4.1 and using Stirling’s approximation gives the result. �

5. The genus of the (modular) curve graph

Fro the curve graphs we will not need the random graph approach. Instead we rely on two

classical theorems by Ringel and Ringel-Youngs. The first one is about the bipartite complete

graph Km,n. This is the graph with vertices {x1, . . . , xm, y1, . . . , yn} and edges {xi, yj} for

all i = 1, . . .m, j = 1, . . . , n.

Theorem 5.1. [Rin65] Let m,n ∈ N. We have:

γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
Using this we can compute the genus of the curve graph.

Theorem 5.2. Let g ≥ 2. We have:

γ(C (Σg)) =∞

Proof. We need to prove that there exists no finite genus surface Σg. We will do this by

embedding Km,m into C (Σg) for arbitrarily large m. We consider curves α1, β1, α2 and β2

on Σg,n such that:

i(αi, βj) = δij , i(α1, α2) = 0 and i(β1, β2) = 0
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Curves with the properties of α1, β1, α2 and β2 exist because of the assumption on the genus.

Now let Dβi denote the Dehn twist around βi for i = 1, 2. Then the vertices:{
α1, Dβ1α1, . . . , D

m−1
β1

α1, α2, Dβ2α2, . . . D
m−1
β2

α2

}
induce a Km,m. �

We have already noted that the modular curve graph of a closed surface is a complete graph

with loops added to all or all but one of the vertices. These loops do no change the genus of a

graph, so we can ignore them. The genus of the complete graph is known through a classical

theorem of Ringel and Youngs:

Theorem 5.3. [RY68] Let n ∈ N. We have:

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
In the case of the modular curve graph we need to compute its number of vertices. This is

given by the number of homeomorphism types of curves on Σg which is equal to⌊g
2

⌋
+ 1

Thus as a corollary to the Ringel-Youngs theorem, we obtain an exact formula for the genus

of the modular curve graph.

Corollary 5.4. Let g ∈ N. Then:

γ(MC (Σg)) =

⌈
(
⌊g

2

⌋
− 2)(

⌊g
2

⌋
− 3)

12

⌉

6. The genus of the (modular) pants graph

For the pants graph we have:

Theorem 6.1. Let g ≥ 2, then:

γ(P (Σg)) =∞

Proof. We will prove this by constructing a subgaph Zm ⊂ P (Σg) with γ(Zm) & m2/6 for

arbitrarily large m. We consider a pants decomposition P of Σg that contains two curves

that cut off distinct one holed tori. So P has two curves, which we denote α1 and α2, that

are found inside these one holed tori (the curves look like those in Figure 4). We choose two

curves β1 and β2 that also lie entirely in the one holed tori and that satisfy

i(βi, αj) = δij

Let m ∈ N. We look at the set of pairs of curves:

{α1, β1, Dα1β1, . . . , D
m
α1
β1} × {α2, β2, Dα2β2, . . . , D

m
α2
β2}
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Each pair (a1, a2) in this set corresponds to a pants decomposition P (a1, a2) by replacing

α1 in P with a1 and α2 in P with a2. We will identify this set of pairs of curves with the

corresponding set of pants decompositions and consider the subgraph Zm ⊂ P (Σg) it induces.

We have:

p(Zm) = (m+ 2)2

Furthermore:

deg
(
α1, D

k
α2
β2

)
= deg

(
Dk
α1
β1, α2

)
= m+ 4

and

deg
(
Dk
α1
β1, D

l
α2
β2

)
= 6 for k, l = 1, . . . ,m− 1

This means that:

q(Zm) ≥ 1

2

(
2(m− 1)(m+ 4) + 6(m− 1)2

)
≥ 4m2 − 1

Finally, we have h(Zm) = 3. Proposition 2.1 now gives the desired result. �

To compute the genus of the modular pants graph, we will use the random graph tools from

the previous two sections. The reason we can use these results is that pants decompositions of

Σg are in one to one correspondence with cubic graphs on 2g−2 vertices. The correspondence

is given by the dual graph to a pants decomposition. This is the graph with the pairs of pants

as vertices and an edge between every pair of pairs of pants per curve they share. Note that

this dual graph can in fact be a multigraph; it can contain loops corresponding to pairs of

pants like the one in Figure 4 and it can contain a 2-cycle when two distinct pairs of pants

share two curves.

So, the vertices of MP (Σg) can be seen as homeomorphism types of cubic multigraphs.

When counting the edges ofMP (Σg), we only need to consider elementary moves that make

a difference on the graph level. On the graph level the elementary moves in Figures 2, 3 and

4 look as follows:

Figure 6. Elementary move 1. Half edges a,b,c and d represent pants curves.

Figure 7. Elementary move 2. Half edges a,b,c and d represent pants curves.
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Figure 8. Elementary move 3. Half edge a represents a pants curve.

The labels in Figures 7 and 8 are meant to indicate the difference between the two corre-

sponding moves. Also note that move 3 does not do anything to the homeomorphism type

of the pants decomposition. This means that the corresponding edge in P (Σg) projects to a

loop in MP (Σg).

Before we state out theorem, we define the following notation.

Definition 6.1. Let f, g : N→ N and c1, c2 > 0. If

lim inf
n→∞

f(n)

g(n)
≥ c1 and lim sup

n→∞

f(n)

g(n)
≤ c2

we write

f(n) ∼c1,c2 g(n) for n→∞

We can now state our theorem.

Theorem 6.2. We have:

γ (MP (Σg)) ∼c1,c2
1√

2g − 2
·
(

6g − 6

4e

)g
for g →∞, where c1 = 1

3e
√
π

and c2 = e25/18√
π

.

Proof. We start with the upper bound. In every pants decomposition P there are 3g − 3

curves on which we can at most perform 2 elementary moves that make a difference and are

distinct on the graph level (those of Figures 6 and 7). This means that in MP (Σg):

deg(P ) ≤ 6g − 6

The upper bound now follows directly by applying Theorem 3.5 and Proposition 2.1.

The lower bound is more difficult to obtain. What we need is a lower bound on the number

of edges emanating from a ‘generic’ pants decomposition in MP (Σg). More precicely, given

m ∈ N we want to understand the ratio:

# ({P ∈MP (Σg) ; deg(P ) ≥ 6g − 6−m})
# (MP (Σg))

To do this we will use the results from random cubic graphs from Section 3. We define the

following two sets:

G2g−2 = {Cubic graphs with vertex set {1, . . . , 2g − 2}}

U2g−2 = {Isomorphism classes of cubic graphs on 2g − 2 vertices}



THE GENUS OF CURVE, PANTS AND FLIP GRAPHS 21

U2g−2 can be identified with the vertex set of MP (Σg) and we have two forgetful maps:

Ω2g−2
π1−→ G2g−2

π2−→ U2g−2

Furthermore, if Γ ∈ U2g−2 and G ∈ G2g−2 have k 1-circuits and l 2-circuits, then we have:

#
(
π−1

1 (G)
)

=
62g−2

2k2l
and #

(
π−1

2 (Γ)
)

=
(2g − 2)!

# (Aut(Γ))

We want to relate probabilities in Ω2g−2 to probabilities in U2g−2. From the two equations

above we see that 1-circuits, 2-circuits and automorphisms cause trouble when relating these

probabilities. To avoid this, we will consider only graphs in U2g−2 that don’t have any such

circuits. We define:

U∗2g−2 := {Γ ∈ U2g−2; Γ carries no non-trivial automorphisms and has no 1- and 2-circuits}

If A ⊂ U∗2g−2 then:

# (A)

#
(
U∗2g−2

) =
#
(
π−1

1 ◦ π
−1
2 (A)

)
#
(
π−1

1 ◦ π
−1
2 (U∗2g−2)

)
≥

#
(
π−1

1 ◦ π
−1
2 (A)

)
# (Ω2g−2)

= P2g−2

[
π−1

1 ◦ π
−1
2 (A)

]
So what remains is to translate the statement ‘deg(P ) ≥ 6g − 6 −m’ into the language of

graphs. More precisely, we need to find a necessary condition for a vertex in MP (Σg) to

have less than 6g− 6−m edges and this condition needs to be phrased in terms of the graph

dual to the pants decomposition of that vertex. There are essentially two ways in which a

pants decomposition P can ‘lose’ an outgoing edge:

(i) P shares an edge with a pants decomposition P ′ that is isomorphic to P .

(ii) P shares edges with two pants decompositions P1 and P2 that are isomorphic to each

other.

We start with situation (i). The first possibility in this case is that P contains a curve on

which no elementary move makes a difference in the local adjacency structure. This means

that it comes from a loop in the dual graph, which we will exclude by considering U∗2g−2. If

this is not the case, we proceed as follows. We label the pairs of pants in P and P ′ with the

labels 1,2,...,2g − 2 consistently (i.e. the pairs of pants that are ‘the same’ in P and P ′ get

the same label) and consider the map

F : P → P ′

that sends vertex i to vertex i for all i = 1, ..., 2g − 2. Because P and P ′ are related by an

elementary move, F preserves the adjacency structure everywhere except around the curve

on which the move was performed. Here F changes 2 edges. By assumption we have an

isomorphism ϕ : P ′ → P . Because the adjacency structure around the curve on which the
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move is performed is different in P and P ′, the map ϕ acts non-trivially on the labels. This

means that the map:

ϕ ◦ F : P → P

is a non-trivial element in S2g−2 with:

EDϕ◦F (P ) ≤ 2

This is the graph theoretic description we need.

In situation (ii) we exclude loops again and we consider the maps F1 : P → P1 and F2 : P →
P2 and the isomorphism ϕ : P1 → P2. The map:

F−1
2 ◦ ϕ ◦ F1 : P → P

is now a non-trivial map with edge defect:

EDF−1
2 ◦ϕ◦F1

(P ) ≤ 4

Conversely, every such map collapses at most 1 of the 6g − 6 edges. So we get that:

P2g−2 [deg(P ) ≥ 6g − 6−m] ≥ 1− P2g−2

 ∃π1, . . . , πm ∈ S2g−2\{id}
such that: EDπi ≤ 4 ∀i = 1, . . . ,m

and X2g−2,1 = X2g−2,1 = 0
and Aut(Γ) = {e}


where, with a slight abuse of notation, we have identified a subset of U∗2g−2 with its inverse

image under π2 ◦ π1. We now use Proposition 3.7 that tells us that there exists a C > 0

independent of m such that:

P2g−2

 ∃π1, . . . , πm ∈ S2g−2\{id}
such that: EDπi ≤ 4 ∀i = 1, . . . ,m

and X2g−2,1 = X2g−2,1 = 0
and Aut(Γ) = {e}

 . P2g−2

X2g−2,1 = X2g−2,1 = 0

and
32∑
i=3

X2g−2,i ≥ Cm


for g →∞. If we now apply Theorem 3.3 we get:

P2g−2

X2g−2,1 = X2g−2,1 = 0

and
32∑
i=3

X2g−2,i < Cm

 ∼ 1

e2
· P2g−2

[
32∑
i=3

X2g−2,i ≥ Cm

]

for g →∞. Using Theorem 3.3 again, the limit of this last probability can be made arbitrarily

small by increasing m. This means that we have proved that for every δ > 0 there exists an

mδ independent of g such that for all g large enough there exists at least:

(1− δ) ·#
(
U∗2g−2

)
vertices of degree 6g − 6 − mδ in MP (Σg). If we apply Theorem 3.1 then we get the

theorem. �
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7. The genus of the (modular) flip graph

For the flip graph we have the same result as for the curve graph and the pants graph:

Theorem 7.1. Let g ≥ 2 and n > 0. We have:

γ(F (Σg,n)) =∞

Proof. We will proof this by embedding a graph with vertex set Z2 × {0, 1} and edges:

x ∼ y ⇔ |x− y| = 1

We first consider the triangulation T0 of the cylinder given in the first image of Figure 9

below:

Figure 9. T0, FrT1 and T1.

Let Fr denote the flip in the red curve and Fb the flip in the blue curve. We now define the

sequence of triangulations: {Ti}i∈Z inductively by:

Ti+1 = FbFrTi and Ti−1 = FrFbTi

This means that given a triangulation of Σg,1 that contains a cylinder, we obtain a copy of

Z in the flip graph.

We choose a triangulation T of Σg,1 that contains two copies of T0, with red and blue arcs

r1, r2 and b1, b2 respectively and a quadrilateral. Such a triangulation T exists because of our

condition on g. The quadrilateral has flip graph K2. This means that we get a set of vertices

which we can label by {(Ti, Tj , k)}(i,j,k)∈Z2×{0,1}. These induce the graph above, which has

infinite genus (this follows from Proposition 2.1). �

For the modular flip graph we will focus on 1-vertex triangulations. We have the following

theorem:

Theorem 7.2. We have:

γ (MF (Σg,1)) ∼c1,c2
1

(4g − 2)3/2

(
12g − 6

e

)2g

for g →∞, where c1 = e
18
√
π

and c2 = e
6
√
π

.
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Proof. We will use the results on random triangulated surfaces from Section 4. The proof is

analogous to the proof for the modular pants graph. The main thing we need to control is

the degree of the vertices of MF (Σg,1).

For the upper bound we use the fact that every triangulation T ∈MF (Σg,1) contains 6g− 3

arcs, all of which can be flipped. This means that deg(T ) ≤ 6g − 3. Combining this with

Theorem 4.1 and Proposition 2.1 gives the upper bound.

For the lower bound we again study the ratio of degree ≥ 6g − 3 −m vertices for m ∈ N.

In this case we do not need to worry about loops in the dual graph, because a 1-vertex

triangulation cannot contain such loops. We define the sets:

Og = {Triangulations of Σg,1 with triangles labeled {1, . . . , 4g − 2}}

Wg = {Isomorphism classes of triangulations of Σg,1}
So W4g−2 is the vertex set of MF (Σg,1) and we again have forgetful maps:

{ω ∈ Ω4g−2;S(ω) ' Σg,1}
π1−→ G2g−2

π2−→ U2g−2

where ‘'’ denotes homeomorphism. We also define the set:

W∗g = {T ∈ Wg; The dual graph to T carries no non-trivial automorphism}

Note that because in this case 2-circuits no longer add a factor 2 (like in the proof of Theorem

4.4), we no longer need to add conditions on 2 circuits in the definition of W∗g . Again we

obtain:
# (A)

#
(
W∗g
) ≥ P4g−2

[
π−1

1 ◦ π
−1
2 (A) | S ' Σg,1

]
for all A ⊂ W∗g

Applying the same reasoning as in the proof for MP (Σg) (but now using Proposition 4.3),

we obtain that there exists a constant C > 0 independent of m such that:

P4g−2 [deg(T ) ≥ 6g − 3−m | S ' Σg,1] ≥ 1− P4g−2

[
32∑
i=2

X2g−2,i ≥ Cm | S ' Σg,1

]
where we have abused notation slightly, by identifying π−1

1 ◦ π
−1
2 (W∗g ) with W∗g . The proba-

bility on the right hand side can be made arbitrarily small by increasing m. This, combined

with Theorem 4.4 and Proposition 2.1 implies the lower bound. �
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