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Abstract. The space of topological decompositions into triangulations of a surface has a

natural graph structure where two triangulations share an edge if they are related by a

so-called flip. This space is a sort of combinatorial Teichmüller space and is quasi-isometric

to the underlying mapping class group. We study this space in two main directions. We first

show that strata corresponding to triangulations containing a same multiarc are strongly

convex within the whole space and use this result to deduce properties about the mapping

class group. We then focus on the quotient of this space by the mapping class group to

obtain a type of combinatorial moduli space. In particular, we are able to identity how

the diameters of the resulting spaces grow in terms of the complexity of the underlying

surfaces.

1. INTRODUCTION

The many relationships between curves, arcs and homeomorphisms of surfaces have

provided numerous, rich and fruitful insights into the study of Teichmüller spaces and

mapping class groups. In particular, combinatorial structures such as curve, arc and pants

complexes have been shown to be closely related to metric structures on Teichmüller spaces

and in particular all share the mapping class group as an automorphism group.

Flip graphs are an example of one of these natural combinatorial structures. For a given

topological surface with a prescribed set of points, the vertex set of the associated flip graph

is the set of maximal multiarcs (which begin and terminate in the prescribed points). Just

like the other combinatorial objects, the multiarcs are considered up to isotopy (which

preserve the prescribed set of points). As they are maximal, they decompose the surface

into triangles and thus we refer to them as triangulations (although they may not be

triangulations in the usual sense). Two triangulations share an edge in the flip graph if they
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are related by a flip - so if they differ by at most one arc. Provided the surface is complicated

enough, flip graphs are infinite objects but are always locally finite connected graphs.

Flip graphs can be thought of (and this is the point of view we take in this article) as

metric objects by associating length 1 to every edge. As metric spaces they describe how

different triangulations are from one another and are a sort of combinatorial analogue

of Teichmüller space. With a few exceptions, the mapping class group is again the full

automorphism group [1616] and as such the finite quotient, which we call a modular flip graph,

becomes a combinatorial analogue of a moduli space. In contrast to some of the other

spaces mentioned before, the action of the mapping class group is proper and, via the

Švarc-Milnor lemma, the flip graph is a quasi-isometric model of the mapping class group

which makes it an ideal tool for studying its geometry. Mosher [2020] implicitly uses the flip

graph to study the mapping class group from the combinatorial point of view. This point

of view has recently been exploited by Rafi and Tao [2929].

Flip graphs of surfaces also appear in a number of other contexts. As hinted at above,

flip graphs naturally appear in Teichmüller theory. They appear for instance in Penner’s

decorated Teichmüller space [2525] and in the work of Fomin, Shapiro and D. Thurston ([1212]

and [1313]) in their study of cluster algebras related to bordered surfaces. Flip graphs and

some slight variations have been studied in combinatorics and computational geometry by

a variety of authors, for instance Negami [2222], Bose [66] and De Loera-Rambau-Santos [1717].

One of the simplest and most studied flip graphs is the flip graph of a polygon, which

turns out to be the 1-skeleton of a polytope called the associahedron [3232, 3333]. It is a finite

graph with a number of remarkable properties including being the graph of a polytope.

The celebrated result of Sleator, Tarjan and W. Thurston [3030] about the diameter of the asso-

ciahedron, and proved using 3-dimensional hyperbolic polyhedra, was recently extended

by Pournin [2626] who also provided a purely combinatorial proof. The diameter of this

graph is exactly 2n− 10 for all n > 12. Sleator, Tarjan, and W. Thurston [3131] also studied

triangulations of spheres up to homeomorphism, which essentially amounts to studying

the diameter of a modular flip graph. In this case, they show that the diameter grows like

n log n where n is the number of labelled points on the sphere.

In this article, we study both the geometry of flip graphs and of modular flip graphs. One

of the main motivations we have in mind is the study of the mapping class group.

We begin by studying the geometry of flip graphs. Our first main result comes from a

very natural question about two triangulations that have an arc a in common. Given

any two such triangulations, there is at least one minimal path between them: do all the
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triangulations of any minimal path contain the arc a? The answer is yes.

Theorem 1.1. For every multiarc A, the stratum FA is strongly convex.

In the above result, for any given flip graph, we’ve denoted FA the set of triangulations

which contained a prescribed multiarc A. We note that this result for flip graphs of polygons

was previously known and an essential tool in [3131] and in [2626].

We observe that the same question can be asked for the pants graph (where multicurves

play the part of multiarcs). For the pants graph, this is known to be true for certain types of

multicurves but is in general completely open [44, 55, 33, 3434].

We give two applications of this result. It is a recent result of the second author together with

Aramayona and Koberda that, under certain conditions, simplicial embeddings between

flip graphs only arise naturally [22]. By naturally, we mean that the injective simplical map

comes from an embedding between the two surfaces. The conditions are on the underlying

surface of the flip graph found in the domain. This surface is required to be non-exceptional

(or “sufficiently complicated”, see Section 3.23.2 for a precise definition). Now together with

the above theorem, this implies the following.

Corollary 1.2. Suppose Σ is non-exceptional, and let F (Σ) → F (Σ′) be an injective simplicial
map. Then F (Σ) is strongly convex inside of F (Σ′).

As geometric properties of flip graphs translate into quasi properties for mapping class

groups, we also obtain the following result for mapping class groups. This result also

follows by results of Masur-Minsky [1818] and Hamenstädt [1414].

Corollary 1.3. For every vertex T ∈ FA, there is a commutative diagram:

FA
� � // F (Σ)

Stab(A)

ωT |

OO

� � // Mod(Σ)

ωT

OO

where the inclusion FA ↪→ F (Σ) is an isometry and the orbit map ωT : Mod(Σ) → F (Σ)
restricts to a quasi-isometry ωT | : Stab(A)→ FA. Moreover, the inclusion Stab(A) ↪→ Mod(Σ)

is a quasi-isometric embedding.

After these results about the geometry of flip graphs and mapping class groups, we shift

our focus to the quotient of the former by the latter, namely the geometry of modular flip

graphsMF (Σ). In particular, we study their diameter and how it grows in function of the
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topology of the base surface. Our main results are upper and lower bounds that have the

same growth rates in terms of the number of punctures and genus. We summarize them in

the following theorem.

Theorem 1.4. There exist constants L > 0 and U > 0 such that if Σ is a surface of genus g with n
labelled punctures then

L (g log(g + 1) + n log(n + 1)) ≤ diam (MF (Σ)) ≤ U (g log(g + 1) + n log(n + 1)) .

The above result is a combination of results (namely Theorems 4.34.3, 4.84.8 and Corollary 4.174.17)

from which the constants L, U can be made explicit. When the punctures are not labeled,

we obtain similar results and this time the growth rate is linear in n (Theorem 4.114.11 and

Corollary 4.194.19).

We note that this result is a generalization of the result of Sleator, Tarjan and W. Thurston

mentioned above about the diameters of modular flip graphs of punctured spheres and

in fact our lower bounds are obtained using a counting argument and one of their results.

Our result also provides a lower bound on the diameters of some slight refinements of

the flip graph used in computational geometry and combinatorics. Indeed, it follows that

the distance between any two simple triangulations (i.e. not containing multiple edges or

loops) of a surface with labelled punctures grows at least like

n log(n) + g log(g).

This can be compared with results of Negami [2121, 2222] and Cortes et al. [1010].

These growth rates are reminiscent of the growth rates of a type of combinatorial moduli

space related to cubic graphs. More precisely, one can endow the set of isomorphism types

of cubic graphs with m vertices with a metric where one counts the minimal number of

Whitehead moves (or S̃-transformations in the language of [3535]). We refer the reader to [88] or

[2828] for the definitions of these terms. With this metric, the diameter of this space is also of

rough growth m log m (Cavendish [88], Cavendish-Parlier [99] and Rafi-Tao [2828]).

Dual to a triangulation is a cubic graph and flips correspond to specific types of Whitehead

moves. One might think in first instance that the two results are in fact the same, but one

does not seem to imply the other. On the one hand, flipping only allows for certain moves

so the result on flip graphs certainly seems stronger. However, given two cubic graphs

with the same number of vertices, there is no guarantee that they are both the dual graph

triangulations that lie in the same flip graph.

This article is organized as follows.
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In the preliminary section, we provide detailed descriptions of the objects we study and

some known results. We also prove a number of preliminary results including for instance

a new algorithm to reach a stratum with distance bounded by the intersection number.

In particular this provides a new proof that intersection number bounds the flip distance

between two triangulations. We also provide a lower bound on distance in terms of

intersection number. We conclude the section with two results that are somewhat parallel

to the rest of the paper about the mapping class group and flip graphs. As far as we know,

although both are known, our proofs are new. We provide these results to illustrate the

point that flip graphs can be used to effectively study the mapping class group.

In the third section, we prove Theorem 1.11.1 stated above. We then provide two applications

of this result. The first is about projections to strata and the second is to the large scale

geometry of the mapping class group as discussed above.

The final section is about the diameters of modular flip graphs. We begin with upper

bounds - first in terms of genus and then in terms of the number of punctures - and we end

with the lower bounds.
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2. PRELIMINARIES

In this section we describe in some detail the objects we are interested in and introduce

tools we use in the sequel. Most of the results we state are already known, although some

of the proofs we provide are new (or at least we did not find them in the literature). In

particular, at the end of this section we give two quick examples of results one can prove

using flip graphs. Neither are essential in the sequel and are just provided for illustrative

purposes.
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2.1. Definitions and setup

We begin with the basic setup which starts with a topological orientable connected surface

Σ and finite set of marked points on it. Unless specifically stated, Σ will be assumed to be

triangulable. It is of finite type, has boundary which can consist of marked points, and

boundary curves, and each boundary curve must have at least one marked point on it. We

make the distinction between labelled and unlabelled marked points when we look at how

homeomorphisms are allowed to act on Σ - this will made explicit in what follows.

Sometimes marked points that do not lie on a boundary curve will be referred to as

punctures.

To such a Σ one can associate its arc complex A(Σ), a simplicial complex where vertices are

isotopy classes of simple arcs based at the marked points of Σ. Simplices are spanned by

multiarcs (unions of isotopy classes of arcs disjoint in their interior). We won’t explicitly use

this complex so we won’t describe it in full detail, but we will be interested in the graph

which is the 1-skeleton of the cellular complex dual to A(Σ): the flip graph of Σ.

The flip graph F (Σ) can be described differently as follows. Vertices of this graph are

maximal multiarcs so they decompose Σ into triangles. We refer to these multiarcs as

triangulations (although they are not always proper triangulations in the usual sense - we

apologize any confusion which incurs from this by now quite common terminology).

Two vertices of F (Σ) share an edge if they differ by a so-called flip. If a is an arc of a

triangulation T which belongs to two triangles which form a quadrilateral, a flip is the

operation which consists of replacing a by the other diagonal arc a′ of the quadrilateral.

Figure 1: A local picture of a flip

Note that certain arcs are not flippable - this occurs exactly when an arc is contained in a

punctured disc surrounded by another arc.

We denote by κ = κ(Σ) the number of arcs in (any) triangulation of Σ and by κ̃ = κ̃(Σ) the

number of triangles in the complement of any triangulation of Σ. Via an Euler characteristic

argument, one obtains κ̃(Σ) = 4g + 4b + 2s + p− 6 and κ(Σ) = 6g + 3b + 3s + p− 6, where
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Figure 2: The central arc is unflippable

g is the genus of Σ, s is the number of punctures, b is the number of boundary components

and p is the number of points on the boundary curves of Σ.

Some flip graphs are finite - such as the flip graph of a polygon - but provided the underlying

surface has enough topology, F (Σ) is infinite. A simple example of an infinite flip graph is

given by the flip graph of a cylinder with a single marked point on each boundary curve. By

the above formula, vertices of F (Σ) are of degree 2, and as it is both infinite and connected,

it is isomorphic to the infinite line graph.

Associated to a multiarc A is a stratum FA(Σ) which is the flip graph of triangulations of

Σ which contain the multiarc A. We say that a stratum is strongly convex if any geodesic

between two of its points is entirely contained in the stratum (sometimes this property is

referred to as being totally geodesic).

Naturally, if A is not separating, FA(Σ) is isomorphic to the flip graph of Σ \ A (the surface

cut along the multiarc A). There is something to be said here - we think of the result of the

operation of cutting not as being the deletion of the arcs but by doubling the arcs and then

separating them. For instance, if you cut a once punctured torus along an arc, the result

is a cylinder with a marked point on each boundary curve. If A is separating, FA(Σ) is

isomorphic to the product of the product of the flip graphs of the connected components of

Σ \ A. In the rest of the paper we will denote by |A| the number of arcs in A.

As arcs are thought of as isotopy classes of arcs, the intersection i(a, b) between arcs a and b
is defined to be the minimum number of intersection points between their representatives.

Generally we assume arcs and multiarcs to be realized in minimal position. If A and B are

multiarcs, their intersection number is defined as

i(A, B) = ∑
b∈B

∑
a∈A

i(a, b).

In terms of intersection, two triangulations T, T′ are related by a flip if they satisfy

i(T, T′) = 1.

The flip graph is known to enjoy a number of properties.
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First of all, for any topological type of Σ, F (Σ) is a connected graph. There are several

different proofs of this fact (see for instance Hatcher [1515]). We will consider the edges of

the flip graph of length 1 and we will endow the flip graph with its shortest path distance.

The distance between two triangulations is then equal to the minimum number of flips

required to pass from one to the other. In particular there is the following quantitative

version relating distance and intersection number which can be deduced from an algorithm

described by Mosher in [1919] and Penner in [2424].

Lemma 2.1. For any triangulation S, T ∈ F (Σ) we have d(S, T) ≤ i(T, S).

We will give an alternative proof of this lemma in Section 2.2.12.2.1.

The homeomorphisms of Σ considered here always fix pointwise the labelled points of Σ

and setwise the unlabelled. Permutations of the unlabelled points are allowed. The mapping
class group Mod(Σ) of Σ is the group of orientation preserving homeomorphisms of Σ up

to isotopy. Isotopies here always fix pointwise the set of the marked points of Σ. The

group Mod(Σ) acts simplicially by automorphisms on F (Σ). It is a result of Korkmaz and

Papadopoulos [1616] that except for some low complexity cases, the automorphism group of

F (Σ) is exactly the extended mapping class group of Σ - i.e. the group of homeomorphisms

up to isotopy (orientation reversing homeomorphisms are also allowed). Related to this

result, is a result about subgraphs of flip graphs that are graph isomorphic to other flip

graphs. Except for some complexity cases again, such subgraphs only arise in the natural

way - as strata associated to a certain multiarc [22].

We will be interested in the geometry of the flip graph as a metric space. We recall a few

notions of metric geometry that we will use later in the paper.

Let (X, dX) and (Y, dY) be two metric spaces. A map

f : (X, dX)→ (Y, dY)

is a (λ, ε)-quasi-isometric embedding if for all x, x′ ∈ X we have

1
λ

dX(x, x′)− ε ≤ dY( f (x), f (x′)) ≤ λdX(x, x′) + ε.

We say that a quasi-isometric embedding f is a quasi-isometry if there exists R ≥ 0 such

that the image of f is R-dense in Y. Equivalently, f is a quasi-isometry if there exists a

quasi-isometric embedding g : Y → X and a constant K ≥ 0 such that for all x ∈ X and

for all y ∈ Y we have dX(g ◦ f (x), x) ≤ K and dY( f ◦ g(y), y) ≤ K. We say that g is a

quasi-inverse of f .

The following lemma is a classic result in geometric group theory.

8



Lemma 2.2 (Švarc-Milnor). Let G be a group acting on a metric space (X, dX) properly and
cocompactly by isometries. Then G is finitely generated and for every x ∈ X the orbit map

ωX : G → X

g 7→ g(x)

is a quasi-isometry.

The mapping class group acts on the flip graph by isometries. The Švarc-Milnor lemma

applies directly to the flip graph and the mapping class group, and of course is only

interesting when F (Σ) is of infinite diameter.

Lemma 2.3. For every triangulation T ∈ Mod(Σ) the orbit map

ωT : Mod(Σ)→ F (Σ)

g 7→ g(T)

is a quasi-isometry.

Proof. We will use the Švarc-Milnor Lemma. The action of Mod(Σ) on F (Σ) is cocompact

since there is only a finite number of ways to glue κ̃ triangles to get a surface homeomorphic

to Σ. For a triangulation T ∈ F (Σ), we denote by Stab(T) its stabilizer in Mod(Σ) (the

group of mapping classes that fix T setwise). We will prove that for every T the stabilizer

Stab(T) is finite and this suffices to prove that the action of Mod(Σ) on F (Σ) is proper.

Indeed, every mapping class in Stab(T) induces a permutation of the arcs in T, and there is

a short sequence of groups

1→ Stab(T)→ Sκ

where Sκ is the symmetric group on κ elements. The sequence is exact since a mapping

class that fixes every arc of a triangulation is the identity by the Alexander lemma (see for

instance [1111]).

The last assertion follows directly from the Švarc-Milnor lemma. �

We define the modular flip graphMF (Σ) as the quotient ofF (Σ) under the action of Mod(Σ).

We remark that points inMF (Σ) are triangulations of Σ up to homeomorphisms. By the

above lemmaMF (Σ) is a connected finite graph that inherits a well-defined distance from

F (Σ). We note that an orbit map in Lemma 2.32.3 is diam (MF (Σ))-dense in F (Σ) by the

Švarc-Milnor Lemma. We will later investigate the diameter ofMF (Σ).
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The following result will be a helpful tool in our computation (see Section 4.24.2). This result

was first proved by Sleator-Tarjan-Thuston [3030] provided that n is large enough. Recently

Pournin [2626] provided a combinatorial proof and proved the lower bounds for all n > 12.

Theorem 2.4. If Σ is a disk with n > 12 labelled points on the boundary then F (Σ) has diameter
2n− 10.

We finally note that an orbit map in Lemma 2.32.3 is diam(MF (Σ))-dense in F (Σ) by the

Švarc-Milnor Lemma.

2.2. Intersection number and distances

2.2.1. An upper bound

In this section we describe an algorithm to get from a triangulation T to a stratum asso-

ciated to a multiarc A. To do this, we prove that there exists an arc in T that intersects A
maximally and such that its flip reduces the number of intersections with A. This provides

an alternative proof of Lemma 2.12.1 above.

Definition 2.5. Let ∆ be a triangle in Σ \ T and A a multiarc. We say that ∆ is terminal for

A if there exists a ∈ A such that ∆ is the first or the last triangle crossed by a (see Figure 33

for an example).

a

Figure 3: A terminal triangle for a

Definition 2.6. Let T be a triangulation and A a multiarc. Let t ∈ T be a flippable edge

and T′ the triangulation obtained by the flip of t. We say that flipping t is convenient if

i(T′, A) < i(T, A) and flipping t is neutral if i(T′, A) = i(T, A).

Denote by t′ the arc obtained by flipping t. Note that flipping t is convenient if and only if

i(t′, A) < i(t, A). Similarly, flipping t is neutral if and only if i(t′, A) = i(t, A). Also note

that flipping an arc may be neither convenient nor neutral.
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Lemma 2.7. Assume i(h, A) > 0. If h ∈ T is an arc such that i(h, A) = maxt∈T i(t, A), then h
is flippable in T.

Proof. If h is not flippable then there exists an arc h? ∈ T that surrounds h and bounds a

once-punctured disk. Hence i(h?, A) ≥ 2i(h, A) in contradiction with our condition on

h. �

Lemma 2.8. Assume i(T, A) > 0. Let h ∈ T be an arc such that i(h, A) = maxt∈T i(t, A). Let Q
be the quadrilateral containing h as a diagonal. If Q contains a terminal triangle for A then flipping
h is convenient.

Proof. Let a ∈ A be an arc that terminates on Q. We begin by observing that if h is not the

first arc of T that a crosses from its terminal point, h is not maximal. Indeed, if h̃ ∈ T is the

first arc crossed, then any arc in A that crosses h is forced to cross h̃ and it has

i(h̃, A) ≥ i(h, A) + 1,

in contradiction with the maximality of h (see Figure 44).

h

h̃

Figure 4: If h is not the first arc of T crossed by a, it cannot be maximal

We now prove that if h is the first (or the last) edge crossed by an arc in A (as in Figure

55), then flipping h is convenient. Let h′ be the arc obtained from flipping h. Let us now

compute i(h′, A)− i(h, A).

Up to possible symmetries, we may assume that A contains at least an arc that crosses z
and h and terminates in the top vertex of Q. Up to isotopy, only three configurations of A
and Q are possible, and these are described in Figure 55. We will use the following notation:

ε is the number of arcs in A ∩Q that terminate in the top vertex of Q, crossing z and

h. Under our assumption, ε ≥ 1.

ε′ is the number of those that terminate in the top vertex of Q, crossing w and h;
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ε′′ is the number of those that terminate in the bottom vertex of Q, crossing h and y;

α is the number of arcs in A ∩Q that wrap around the left endpoint of h crossing z, h
and x;

β is the number of arcs in A ∩Q that wrap around the right endpoint of h crossing

w, h and y;

γ is the number of arcs in A ∩Q that wrap around the bottom vertex of Q, crossing z,

h and w;

η is the number of arcs that cross z, h and y.

x

y

z
w

hα β

γ

η

ε

x

y

z
w

hα β

ε′′
η

ε

x

y

z w

hα β

γ

ε′
ε

Figure 5: The three possible configurations of arcs

We remark that in Figure 55 - (1) we have ε′ = ε′′ = 0, in Figure 55 - (2) we have γ = 0, in

Figure 55 - (3) we have η = 0. Moreover, in each configuration in Figure 55 the following

holds:

i(h, A) = α + β + ε + η + ε′ + ε′′

i(h′, A) = γ + η

i(z, A) = α + η + γ + ε = α + ε + i(h′, A)

By definition of h, we have i(z, A) ≤ i(h, A). It follows:

α + ε + i(h′, A) ≤ i(h, A)

i(h′, A)− i(h, A) ≤ −α− ε ≤ −1.

We conclude that flipping h is convenient. �

Lemma 2.9. Assume i(T, A) > 0. Let h ∈ T be an arc such that i(h, A) = maxt∈T i(t, A).
Let Q be the quadrilateral containing h as a diagonal, and assume that Q does not contain a
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terminal triangle for A. Then flipping h is neutral if and only if, according the notation of Figure 66,
i(h, A) = i(y, A) = i(z, A).

Moreover, if i(h, A) , i(y, A) or i(h, A) , i(z, A) then flipping h is convenient.

Proof. We will compute i(h′, A)− i(h, A). Since Q is not terminal for A, A and Q look like

in Figure 66, up to isotopy.

x
y

z
w

hα β

γ

η

δ

Figure 6: Configuration of arcs

Denote by δ the number of arcs in A ∩ Q that wrap around the top corner of Q. In the

notation of the proof of Lemma 2.82.8 we have:

i(h, A) = α + η + β

i(z, A) = α + η + γ

i(y, A) = η + β + δ

i(h′, A) = γ + δ + η

i(h′, A)− i(h, A) = (γ− β) + (δ− α).

By hypothesis on h, we have i(z, A) ≤ i(h, A), so γ− β ≤ 0. Similarly, i(y, A) ≤ i(h, A),

so δ− α ≤ 0. It follows that i(h′, A)− i(h, A) = 0 if and only if γ = β and δ = α, that is,

if and only if i(z, A) = i(h, A) and i(y, A) = i(h, A). We remark that in all the other cases

i(h′, A)− i(h, A) < 0, and flipping h is convenient. �

Lemma 2.10. If i(T, A) > 0, then there exists an arc h ∈ T such that i(h, A) = maxt∈T i(t, A)

and flipping h is convenient.

Proof. We will describe a procedure to find h. First pick an arc m such that i(m, A) =

maxt∈T i(t, A) . By Lemma 2.72.7 m is flippable. If flipping m is convenient, we set h = m
and we are done. Otherwise, by Lemma 2.92.9 the quadrilateral containing m as a diagonal
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contains two more edges, y and z, such that i(y, A) = i(z, A) = i(m, A) = maxt∈T i(t, A).

Now set m = y or m = z, and repeat this procedure. Lemma 2.82.8 ensures that the algorithm

terminates. Indeed, if the quadrilateral containing m as a diagonal also contains a terminal

triangle for A then flipping m is convenient. �

This now allows to describe a path from T to FA.

Theorem 2.11. Let T be a triangulation and A a multiarc. There is a sequence of triangulations
T = T0 → . . .→ Ti+1 → . . . iteratively constructed as follows:

1. If i(Ti, A) > 0, choose hi ∈ Ti as in Lemma 2.102.10. Denote by Ti+1 the triangulation obtained
by flipping hi.

2. If i(Ti, A) = 0, terminate.

Any such sequence constructed this way has at most i(T, A) elements, and if Tn is the terminal
triangulation then Tn ∈ FA.

Moreover, the above sequence satisfies maxt∈Ti+1 i(t, A) ≤ maxt∈Ti i(t, A) for every i = 0, . . . , n.

Proof. By Lemma 2.102.10 flipping hi is convenient, so

i(Ti+1, A) ≤ i(Ti, A)− 1.

After at most i(T, A) steps, we have i(Tn, A) = 0, that is, Tn ∈ FA. �

From this the following corollary is immediate.

Corollary 2.12. For every triangulation T ∈ F (Σ) and for every multiarc A, we have

d(T,FA) ≤ i(T, A).

We remark that if S is a triangulation, FS = S and the path described in Theorem 2.112.11 is a

path joining T and S. As such we also have the following corollary.

Corollary 2.13. The flip graph F (Σ) is connected, and for any two triangulations T, S ∈ F (Σ)
we have d(T, S) ≤ i(T, S).

Our construction also enjoys the following properties.

Corollary 2.14. The path from T to FA described in Theorem 2.112.11 has the following properties:
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1. If there exists a ∈ A such that a ∈ Ti then a ∈ Tj for all j ≥ i;

2. If t ∈ Ti is such that i(t, A) = 0 then t ∈ Tj for all j ≥ i.

We will see later that all the geodesic paths between a triangulation and the stratum of a

multiarc also have these properties. We use this corollary to deduce the following.

Corollary 2.15. For every multiarc A, the stratum FA is arcwise connected.

Proof. Let S, T ∈ FA be two triangulations, and consider the path from T to FS = S
described in Theorem 2.112.11. We remark that for all a ∈ A we have a ∈ T and i(a, S) = 0. By

Corollary 2.142.14, for all a ∈ A we have a ∈ Ti, so Ti ∈ FA for all i = 0, . . . , n. We conclude

that the path described is contained in FA. �

2.2.2. A lower bound on distances

As a complement to our upper bound on distance in terms of intersection number, we

now show how intersection also provides a lower bound on distance. We begin with the

following observation.

Lemma 2.16. Let T and T′ be two triangulations in Σ that differ by one flip, and let A be a multiarc
with |A| components. Then we have:

i(T′, A) ≥ 2 ·max
t∈T

i(t, A)− 2 · |A|.

Proof. Assume that T and T′ differ by a flip on t, we set T′ = T \ {t} ∪ {t′}. Let h ∈ T be

an arc such that i(h, A) = maxt∈T i(t, A). We have:

i(T′, A) = i(T, A)− i(t, A) + i(t′, A) ≥ i(T, A)− i(t, A)

≥ i(T, A)− i(h, A)
(1)

By Lemma 2.72.7 the arc h is flippable. In the notation of Lemma 2.82.8 , we have

i(h, A) = α + η + β + δ + ε + ε′ + ε′′

i(x, A) = α + δ

i(y, A) = η + β + δ + ε′′

i(w, A) = β + ε′

i(z, A) = α + η + ε

(2)
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Remark that ε + ε′ + ε′′′ is the total number of arcs that terminates in the quadrilateral

containing h, therefore ε + ε′ + ε′′′ ≤ 2|A|. Combining Equations 22, we have:

i(T′, A) ≥ i(T, A)− i(h, A)

≥ (i(x, A) + i(y, A) + i(w, A) + i(z, A) + i(h, A))− i(h, A)

= (α + δ) + (η + β + δ + ε′′) + (β + ε′) + (α + η + ε)

= 2i(h, A)− (ε + ε′ + ε′′)

≥ 2i(h, A)− 2 · |A|

(3)

�

Theorem 2.17. If T is a triangulation and A is a multiarc such that maxt∈T i(t, A) ≥ 2|A|, then

d(T,FA) ≥
⌊

log(i(T, A))− log(2|A| − 1)
log(κ)

⌋
− 2.

Proof. Let h ∈ T be an arc such that i(h, A) = maxt∈T i(t, A). We have:

i(h, A) ≥ i(T, A)

κ
. (4)

Let T′ be a triangulation that differs from T by one flip. By Lemma 2.162.16 the following holds

when i(h, A) ≥ 2|A| :

i(T′, A) ≥ 2i(h, A)− 2 · |A|

≥ i(h, A)

≥ i(T, A)

κ
.

(5)

We note that the case i(h, A) ≤ 2|A| is not very interesting because in this case T is not too

far from FA. Indeed, by Lemma 2.122.12 we have: d(T,FA) ≤ 2κ · i(h, A) ≤ 2κ · |A|.

Let d = d(T,FA), and let T = T0 → . . . → Td ∈ FA be a geodesic path from T to FA. Let

m ≤ d be the smallest integer such that maxt∈Tm+1 i(t, A) ≤ 2|A| − 1 and for every j ≤ m
we have maxt∈Tj i(t, A) ≥ 2|A|. We have:

i(Tm+1, A) ≤ (2|A| − 1) · κ. (6)

By Lemma 55 and the above remark, we also have:

i(Tm+1, A) ≥ i(Tm, A)

κ
≥ . . . ≥ i(T0, A)

κm+1
(7)
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We have the following inequality that we solve for m:

(2|A| − 1) · κ ≥ i(T0, A)

κm+1

κm+2 ≥ i(T, A)

2|A| − 1

m ≥ log i(T, A)− log(2|A| − 1)
log(κ)

− 2.

(8)

We conclude:

d(T,FA) = d ≥ m ≥ log i(T, A)− log(2|A| − 1)
log(κ)

− 2.

�

We remark that if maxt∈T i(t, A) ≤ 2|A| − 1 then by Lemma 2.122.12

d(T,FA) ≤ i(T, A) ≤ (2|A| − 1) · κ.

Corollary 2.18. If T and S are two triangulations, then

d(T, S) ≥
⌊

log(i(T, S))
log(κ)

⌋
− 4.

2.3. Examples of the relationship between flip graphs and the mapping class group

In this section, we provide two examples of how one can use the flip graph to study the

mapping class group. They are completely independent from the rest of the paper but are

provided to illustrate the variety of ways in which the quasi-isometry between the two

objects can be used.

2.3.1. Mapping tori and pseudo-Anosov homeomorphisms

The following proposition follows from a standard construction in 3-dimensional topology

known as the layered triangulation of the mapping torus of a pseudo-Anosov homeomor-

phism.

Proposition 2.19. For every pseudo-Anosov φ ∈ Mod(Σ) and for every triangulation T ∈ F (Σ)
we have:

d(T, φ(T)) ≥
vol(Mφ)

π
,

where vol(Mφ) is the volume of the mapping torus Mφ of φ.
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Proof. Consider a geodesic path of flips T → . . . → φ(T). The number of hyperbolic

tetrahedra in the layered triangulation of Mφ associated to this path is equal to d(T, φ(T)).
For details on the layered triangulation of a mapping torus, we refer to [11]. �

Our second application is the following.

Corollary 2.20. For every pseudo-Anosov φ ∈ Mod(Σ) the cyclic subgroup 〈φ〉 is undistorted in
Mod(Σ).

Proof. We first prove that for every triangulation T and for every φ we have:

n · vol(Mφ)

π
≤ d(T, φn(T)) ≤ n · d(T, φ(T)).

By Lemma 2.32.3 this suffices to prove the corollary.

The upper bound follows immediately by the triangle inequality. For the lower bound we

use Proposition 2.192.19. We remark that since Mφn is a finite cover of degree n of Mφ then

vol(Mφn) = n · vol(Mφ).

It follows

d(T, φn(T)) ≥
vol(Mφn)

π
=

n · vol(Mφ)

π
.

�

2.3.2. The cone construction

Fix a complete finite-area hyperbolic metric M on Σ and a homeomorphism ϕ between M
and Σ. Let P = {p1, . . . , pn} be the set of punctures of Σ. It is a classical result of Birman and

Series that the set of all simple geodesics on M is nowhere dense on M. We choose a point

on the complement of the closure of all the simple geodesics of M and consider its image

by ϕ on Σ. We denote this point pn+1 (on both Σ and M). We now set P′ = P ∪ {pn+1} and

let Σ′ be the punctured surface Σ with an extra marked point at pn+1. This construction is

known as puncturing (see [2727]). Let T be a triangulation of Σ, denote by GM(T) the unique

M-geodesic representative in its isotopy class (it is an ideal triangulation as the marked

points become punctures). Then pn+1 is contained in a unique triangle of Σ \ GM(T). We

then cone the triangle in pn+1: by this we mean add arcs between pn+1 and the three vertices

of the triangle to obtain a triangulation of Σ′ that we denote by T̂. We will also refer to the

arcs going to pn+1 as the cone on pn+1. In the following we will denote by d the flip distance

on F (Σ) and by d′ the flip distance on F (Σ′).
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Lemma 2.21. The cone map

coneM : F (Σ)→ F (Σ′)

T 7→ T̂

is well-defined and 2-Lipschitz.

Proof. If T′ is a triangulation of Σ isotopic to T, then GM(T′) = GM(T), so T̂′ = T̂. Figure 77

shows that if two triangulations differ by one flip, their images by the cone map differ by at

most 2 flips.

Figure 7: A flip and a corresponding two flip move in the coned triangulation

�

We will now prove that coneM is a quasi-isometric embedding. Fix a triangulation H ∈
F (Σ). Denote by ωH : Mod(Σ) → F (Σ) the orbit map of H under Mod(Σ) as in Lemma

2.32.3. Similarly, denote by ωĤ : Mod(Σ′) → F (Σ′) the orbit map of Ĥ under Mod(Σ′).

Recall that Mod(Σ) and Mod(Σ′) are related by the Birman exact sequence, where the map

f : Mod(Σ′)→ Mod(Σ) is the forgetful map:

1→ π1(Σ, pn+1)→ Mod(Σ′)
f→ Mod(Σ)→ 1

Lemma 2.22. Let f : Mod(Σ′)→ Mod(Σ) be the forgetful map. Let ω−1
Ĥ

: F (Σ′)→ Mod(Σ′)

be a quasi-inverse of ωĤ. The following map is quasi-Lipschitz.

F : F (Σ′)→ F (Σ)

T 7→ ωH ◦ f ◦ω−1
Ĥ
(T)
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For all ψ′ ∈ Mod(Σ′) we have F(ψ′(Ĥ)) = f (ψ′)(H).

Proof. It is immediate to see that f is 1-Lipschitz with respect to the Humphreis generators

of Mod(Σ). The assertion follows by composition with the two quasi-isometries. �

We remark that the quasi-Lipschitz constants of F depend on the diameter ofMF (Σ) and

a choice of generators for Mod(Σ) and Mod(Σ′).

Lemma 2.23. For every ψ ∈ Mod(Σ) there exists φ′ ∈ f−1(ψ) ⊂ Mod(Σ′) such that

d′(ψ̂H, φ′(Ĥ)) ≤ 2κ̃

Proof. Fix ψ ∈ Mod(Σ) and choose ψ′ ∈ Mod(Σ′) such that f (ψ′) = ψ, that is, ψ and ψ′ are

homeomorphisms of Σ isotopic rel P . Let us first compare ψ̂(H) and ψ′(Ĥ).

To construct ψ′(Ĥ) we proceed as follows. Set Σ \ GM(H) =
⋃

∆i where ∆i is a triangle.

We assume pn+1 ∈ ∆1, so that Ĥ is obtained by H coning ∆1 and φ′(Ĥ) is obtained coning

ψ′(∆1). To construct ψ̂(H) we proceed as follows. Set Σ \ GM(ψ(H)) =
⋃

∆′i, where ∆′i is a

triangle. Since ψ′ ∈ f−1(ψ), we can assume (up to reordering) that ∆′i is isotopic to ψ′(∆i)

relative to P. We have two cases:

1. pn+1 ∈ ∆′1;

2. pn+1 < ∆′1.

In case (1), we can glue the homeomorphisms ∆′i → ψ′(∆i) in order to construct a home-

omorphism θ : Σ → Σ that also fixes pn+1. By construction, θ is an element of Mod(Σ′)

isotopic to the identity rel P, that is, θ belongs to the kernel of the forgetful map f , and

we obtain θ(ψ̂H) = ψ′(Ĥ). Consider the mapping class φ′ = θ−1 ◦ ψ′ ∈ Mod(Σ′), by

construction

f (θ−1 ◦ ψ′) = f (ψ′) = ψ and ψ̂H = φ′(Ĥ),

and we are done.

In case (2), assume pn+1 ∈ ∆′j with j , 1. We will now see that using at most 2κ̃ flips we can

move the cone on pn+1 inside a triangle isotopic to ∆′1. More precisely, a sequence of two

flips as in Figure 88 moves the cone in a triangle adjacent to ∆′j. Note that this sequence of

flips does not change the isotopy class relative to P of the arcs not connected to pn+1. The

final triangulation T1 we obtain has the following properties:

T1 has a cone on pn+1;
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T1 agrees with ψ̂H outside the quadrilateral in Figure 88;

the arcs of ψ̂H and T1 that are not connected to pn+1 are pairwise isotopic relative P.

If the triangle of T1 containing the cone on pn+1 is isotopic to ∆′1 relative to P, then we can

proceed as in case (1). Indeed, we construct an homeomorphism θ : Σ′ → Σ′ such that

θ(T1) = ψ′(Ĥ) and θ is isotopic to the identity relative to P. We then set φ′ = θ−1 ◦ ψ′, and

we have T1 = φ′(Ĥ). Otherwise, if the triangle of T1 containing pn+1 is not isotopic to ∆′1,

we keep on performing sequences of flips like in Figure 88 in order to move the cone on pn+1.

After at most κ̃ sequences of flips, we get to a triangulation Tκ̃ whose cone on pn+1 lies

inside a triangle isotopic to ∆′1. Arguing as above, we get a homeomorphism θ : Σ′ → Σ′,

isotopic relative to P to the identity, such that θ(Tκ̃) = ψ′(Ĥ). We then set φ′ = θ−1 ◦ ψ′, we

have Tκ̃ = φ′(Ĥ). We conclude as follows:

d′(ψ̂(H), φ′(Ĥ)) ≤ d′(ψ̂(H), Tκ̃) + d′(Tκ̃, φ′(Ĥ))

≤ 2 · κ̃.

Figure 8: Passing from ψ̂H to T1

�

Theorem 2.24. coneM : F (Σ)→ F (Σ′) is a quasi-isometric embedding.

Proof. By Lemma 2.212.21, coneM is 2-Lipschitz. We will now prove that there exists some

universal constants A′, B′ > 0 such that for any S, T ∈ F (Σ) we have d(S, T) ≤ A′ ·
d′(Ŝ, T̂) + B′. Set R = diamMF (Σ). Since the orbit of H under Mod(Σ) is R-dense, we

can find ψ, φ ∈ Mod(Σ) such that

d(S, ψH) ≤ R and d(T, φH) ≤ R (9)

By Lemma 2.212.21 we have:

d′(Ŝ, ψ̂H) ≤ 2R and d′(T̂, φ̂H) ≤ 2R (10)
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Finally fix ψ′, φ′ ∈ Mod(Σ′) as in Lemma 2.232.23. We use the notation a ≺ b to mean a ≤ kb+ h
for constants k and h.

With this notation:

d(S, T) ≤ d(ψH, φH) + 2R by 99

= d(F(ψ′(Ĥ)), F(φ′(Ĥ))) + 2R

≺ d′(ψ′(Ĥ), φ′(Ĥ)) by Remark 2.222.22

≺ d′(ψ′(Ĥ), ψ̂H) + d′(ψ̂H, φ̂H) + d′(φ′(Ĥ), φ̂H)

≺ d′(ψ̂H, φ̂H) + 4 · κ̃ by Lemma 2.232.23

≺ d′(ψ̂H, Ŝ) + d′(Ŝ, T̂) + d′(φ̂H, T̂)

≺ d′(Ŝ, T̂) + 4R by Equation 1010

For F is (A, B) quasi-Lipschitz, and if we keep track of the constants in the above inequali-

ties, we have:

d(S, T) ≤ A′ · d′(Ŝ, T̂) + B′,

where A′ = A and B′ = 4AR + 4Aκ̃ + B + 2R. �

The following result was already proved by Mosher [2020] using a different method, and

stated by Rafi-Schleimer [2727] using the marking graph as a large scale model for Mod(Σ).

Corollary 2.25. There is a quasi-isometric embedding Mod(Σ) ↪→ Mod(Σ′).

Proof. Consider the following commutative diagram:

F (Σ) coneM // F (Σ′)

Mod(Σ)

ωH |

OO

// Mod(Σ′)

ωĤ

OO

By Lemma 2.32.3 both ωH and ωĤ are quasi-isometries. The assertion then follows from the

above theorem. �

3. CONVEXITY OF STRATA AND APPLICATIONS

As we saw previously, for any multiarc A the stratum FA is connected. We denote by

dA the shortest path distance on FA. In this section we prove that the natural inclusion

(FA, dA) ↪→ (F , d) is an isometric embedding. Furthermore, we prove that FA is strongly

convex in F (Σ). The main ingredient in our proof is a 1-Lipschitz retraction of F (Σ) on

FA.
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3.1. The projection theorem

Let a and t be two arcs. Choose an orientation on a, denote by a+ the oriented arc, and let

pusha+(t) be the multiarc defined as follows:

if i(a, t) = 0 then pusha+(t) = t;

if i(a, t) , 0 then pusha+(t) is the multiarc obtained by “combing” t following the

orientation of a as in Figure 99. Each arc in pusha+(t) (provided i(a, t) , 0) has at least

one endpoint that coincides with the final endpoint of a.

Figure 9: Combing along an oriented arc

The following lemma follows immediately by the above construction.

Lemma 3.1. If s and t are arcs, then i(pusha+(s), pusha+(t)) ≤ i(s, t).

If T = (t1, . . . , tκ) is a triangulation of Σ, we denote by pusha+(T) the multiarc obtained col-

lecting the isotopy classes of all the arcs pusha+(ti): pusha+(T) = [pusha+(t1), . . . , pusha+(tκ)].

We remark that the set {pusha+(ti)}may contain isotopic arcs.

Lemma 3.2. The map

πa+ : F (Σ)→ Fa

T 7→ (pusha+(T), a)

is a 1-Lipschitz retraction on (Fa, da).

Proof. We first prove that πa+(T) is also a triangulation of Σ. If a is one of the arcs in T, the

assertion is trivial. Suppose a ∩ T , ∅.

We consider a parametrization of a : [0, 1]→ Σ following the orientation of a+. We suppose

that a intersects T minimally and all intersections are transversal so we denote

τ0 = 0 < τ1 < . . . < τN+1 = 1
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the values of τ for which a(τ) ∈ T. Note that N = i(a, T).

For each τ′ ∈ [0, 1], we consider the following decomposition Dτ′ of Σ constructed as

follows. To begin, Dτ′ contains all arcs of T that do not cross a|τ′τ=0, contains all vertices of

T and has one extra vertex a(τ′). Furthermore, it also contains the arc a|τ′τ=0. We add arcs

iteratively as follows. For each τi, i = 1, . . . , N − 2, the point a(τi) will cut a preexisting arc,

say bi, into two subarcs b′i and b′′i . We add these to the decomposition and they continue to

belong to the decomposition for τ′ > τi by concatenating them with the arc a|τ′τ=τi
in the

obvious way. At parameter τ′ we denote the resulting arcs b′i(τ
′) and b′′i (τ

′). Dτ′ is the

union of all these arcs up to isotopy fixing the vertices (so any isotopy class is only counted

once).

We want to show that DτN+1 is a triangulation of Σ with the same vertex set as T. Before

showing this we claim that for 0 ≤ i < N + 1, Dτi is a set of arcs decomposing Σ into

triangles and into one quadrilateral which is simply a triangle with an additional vertex

a(τi).

We prove our claim by analyzing the decomposition as τ varies. The key point is that the

decomposition only changes for the values τi.

For i = 1 as all we have added is an arc and a point that splits the first triangle traversed

by a into two triangles. As we have added a vertex in a(τ1), the following triangle of T
traversed by a is now a quadrilateral (see Figure 1010).

a(0)

a(τ1)

Figure 10: When the second triangle becomes a quadrilateral

Now suppose by induction that at parameter τi with i < N the decomposition Dτi is as

claimed and we now analyze Dτi+1 .

To obtain Dτi+1 from Dτi we have a continuous family Dτ with τ ∈ [τi, τi+1]. Note that

a|τi+1
τ=τi is a simple path crossing the only quadrilateral of Σ \ Dτi . While τ′ ∈ [τi, τi+1[, Dτ is
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just obtained by pushing a(τ) along the path a|τ′τ=τi
and thus (up to homeomorphism) is a

carbon copy of Dτi .

a(τi+1)

a(τi)

Figure 11: The general step

We need to analyse what happens at τ = τi+1. Two of the arcs of the quadrilateral become

one and as such the quadrilateral collapses to a triangle. More precisely, the point a(τi+1)

lies on an arc of Dτi so divides this arc into two arcs in Dτi+1 ; adding this vertex turns the

“next” triangle into a quadrilateral. This proves the general step. The above process is

illustrated in Figure 1111.

What remains to be seen is the final step, when τ ∈ [τN , τN+1]. This final step is very similar

to what happens before with the notable difference that the point a(τN+1) was already a

vertex of the decompositions Dτ. So instead of splitting a previous arc into two parts, the

quadrilateral containing a(τ) for τ ∈ [τN , τN+1[ collapses completely leaving only triangles

in DτN+1 (see Figure 1212).

a(τN+1)

a(τN)

Figure 12: The final step

This concludes the proof that πa+(T) is a triangulation.

It is straightforward to see that πa+ is a retraction. In fact, the restriction of πa+ to Fa is the

identity and πa+ is onto by construction.

Let us now prove that πa+ is 1-Lipschitz. Recall that T1, T2 ∈ F (Σ) differ by a flip if and

only if i(T1, T2) = 1. By Lemma 3.13.1 we have i(πa+(T1), πa+(T2)) ≤ 1. We deduce that
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either πa+(T1) and πa+(T2) also differ by a flip or they coincide. Let T and T′ be two

vertices in F (Σ) and γ : T = T0 . . . Tm = T′ is a geodesic path in F (Σ) joining them. By

the above argument, πa+(γ) : πa+(T) . . . πa+(T′) is a path in Fa of length at most m, so

d(πa+(T), πa+(T′)) ≤ d(T, T′) and πa+ is 1-Lipschitz. �

Lemma 3.3. Let A be a multiarc and T be a triangulation. If there exists t ∈ T such that i(t, A) = 0

then every geodesic path from T to FA is contained in Ft.

Proof. Let γ : T = T0 . . . Tn be a shortest path from T0 to FA. We shall prove that for all

i, Ti ∈ Ft. We begin by choosing an orientation on t. Observe that pt+(Tn) ∈ FA and

T0 = πt+(T0) by construction, so πt+(γ) is also a path from T0 to FA. We now argue by

contradiction. Let i ≥ 0 the smallest integer such that t ∈ Ti and t < Ti+1 (that is, the arc t is

flipped). Necessarily we have i(t, Ti+1) = 1 and by construction

πt+(Ti) = πt+(Ti+1) = Ti

so the length of πt+(γ) is at most n − 1. This implies that πt+(γ) is shorter than γ, in

contradiction with the assumption that γ is geodesic. �

Theorem 3.4. For every arc a, the stratum Fa is strongly convex.

Proof. Let T0 and Tm be two vertices in Fa and let γ : T0 . . . Tm be a geodesic path in F (Σ)
joining them. By Lemma 3.23.2 πa+(γ) is a path in Fa with endpoints T0 and Tm and we

have da(T0, Tm) ≤ m = d(T0, Tm). It follows that the inclusion Fa ↪→ F (Σ) is an isometric

embedding. The strong convexity of Fa follows from Lemma 3.33.3 with A = a and t = a: for

all i = 0, . . . , m we have Ti ∈ Fa. �

Theorem 3.5. Let Aσ = (a+1 , . . . , a+m) be a multiarc whose m components are enumerated and
oriented. The map πAσ = πa+m ◦ . . . ◦ πa+1

: F (Σ) → FA is well-defined and a 1-Lipschitz
retraction.

Proof. Since the arcs in A are all disjoint, by Lemma 3.33.3 we have

πAσ(F (Σ)) = Fa1 ∩ . . . ∩ Fam = FA.

By Lemma 3.23.2 the map πAσ is 1-Lipschitz and a retraction. �

We remark that the map πAσ does depend on the choice of the orientation and enumeration

of the arcs in A. We will study this dependence later.

Theorem 3.6. For every multiarc A, the stratum FA is strongly convex.
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Proof. This is a direct corollary of Theorem 3.43.4. Note thatFA =
⋂

a∈A Fa and the intersection

of strongly convex subspaces is strongly convex.

�

3.2. Applications

We now focus on some applications of the above results and in particular of Theorem 3.63.6.

3.2.1. Projections and distances

We begin by looking at some immediate consequences on distances and projection distances

to strata.

The following proposition is essentially the definition of distance on FA combined with

Theorem 3.63.6.

Proposition 3.7. Assume that A is a multiarc such that Σ \ A =
⋃h

i=1 Σi where Σi is a connected
surface with boundary. Denote by di the distance on F (Σi). For every T ∈ FA denote by Ti the
triangulation of Σi induced by T. Then the map

FA −→ F (Σ1)× . . .×F (Σh)

T 7→ (T1, . . . , Th)

is an isometry between (FA, d) and (F (Σ1)× . . .×F (Σh) , d1 + . . . + dh)

Proof. By definition of FA, the map is an isometry from (FA, dA). By Theorem 3.53.5 d = dA

and the assertion follows. �

Proposition 3.8. Let A be a multiarc. For every choice σ of enumeration and orientation of the
arcs in A, we have: d(πAσ(T), πAσ(S)) ≤ i(T, S).

Proof. It is a straightforward application of Lemmas 2.122.12 and 3.13.1. �

Proposition 3.9. Let A be a multiarc. For every choice σ of enumeration and orientation of the
arcs in A, we have d(T,FA) ≤ d(T, πAσ(T)) ≤ 2 · d(T,FA).

Proof. Let S be a triangulation in FA at minimal distance from T, so that d(T, S) = d(T,FA).
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By Theorem 3.53.5 πAσ(S) = S, it follows:

d(T, πAσ(T)) ≤ d(T, S) + d(S, πAσ(T))

≤ d(T, S) + d(πAσ(S), πAσ(T))

≤ d(T, S) + d(S, T)

= 2d(T,FA).

�

Corollary 3.10. Let A be a multiarc. For every choice σ, ε of enumeration and orientations of the
arcs in A, we have d(πAσ(T), πAε(T)) ≤ d(T,FA).

Proof. It follows immediately by Proposition 3.93.9. �

The next consequence will use a result by Aramayona, Koberda and the second author

about simplicial maps between flip graphs. To state the result we require the following

notation: we say that a surface Σ is exceptional if it is an essential subsurface of (and

possibly equal to) a torus with at most two marked points, or a sphere with at most four

marked points. In [22], it is proved that, for surfaces Σ, Σ′ with Σ non-exceptional, all

injective simplicial maps

φ : F (Σ)→ F (Σ′)

come from embeddings Σ → Σ′ (that is Σ is homeomorphic to a subsurface of Σ′). Note

that it’s obvious that you can construct simplicial maps this way; what’s more surprising is

that this is, provided your base surface is complicated enough, the only way such maps

appear. Together with Theorem 3.63.6, the following is then immediate.

Corollary 3.11. Suppose Σ is non-exceptional, and let F (Σ)→ F (Σ′) be an injective simplicial
map. Then F (Σ) is strongly convex inside of F (Σ′).

3.2.2. On the large scale geometry of the mapping class group

We now turn our attention to the large scale geometry of the mapping class group.

Lemma 3.12. Let A be a multiarc and Stab(A) be the subgroup of Mod(Σ) that fixes the isotopy
class of each arc in A. Then Stab(A) has a finite index subgroup isomorphic to Mod(Σ \ A).

Proof. Assume that A has m connected components. Fix an orientation on each arc of A.

It is immediate to see that the subgroup Stab+(A) < Stab(A) consisting of the mapping
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classes that also fix the orientation of every arc in A is isomorphic to Mod(Σ \ A), that is,

the subgroup of the surface obtained cutting Σ along A. The assertion follows from the

exactness of the short sequence:

1→ Stab+(A)→ Stab(A)→ Zm
2 → 1.

�

We can now prove the following.

Theorem 3.13. For every vertex T ∈ FA, there is a commutative diagram:

FA
� � // F (Σ)

Stab(A)

ωT |

OO

� � // Mod(Σ)

ωT

OO

where the inclusion FA ↪→ F (Σ) is an isometry and the orbit map ωT : Mod(Σ) → F (Σ)
restricts to a quasi-isometry ωT | : Stab(A)→ FA. Moreover, the inclusion Stab(A) ↪→ Mod(Σ)

is a quasi-isometric embedding.

Proof. The inclusion FA ↪→ F (Σ) is an isometry by Theorem 3.63.6. By Proposition 3.73.7 FA

is isomorphic and isometric to F (Σ \ A). Since the action of Mod(Σ \ A) on F (Σ \ A) is

cocompact, so it is the action of Stab(A) on FA by Lemma 3.123.12. By the Švarc-Milnor lemma

the orbit map Mod(Σ) 3 ψ 7→ ψT ∈ FA is a quasi-isometry. By composition the inclusion

Stab(A) ↪→ Mod(Σ) is a quasi-isometric embedding. �

4. THE DIAMETERS OF THE MODULAR FLIP GRAPHS

The goal of this section is to prove upper and lower bounds on the diameters of modular flip

graphs in terms of the topology of the surface (namely Theorem 1.41.4 from the introduction).

Let Σ be a surface of genus g with n labelled points. We assume g ≥ 1 and n ≥ 2 (for the

case n = 1 see Theorem 4.74.7 and Remark 4.64.6, for the case g = 0 see Theorem 4.134.13). The case

where the points are unlabelled is slightly easier and it will also be treated separately - see

Remark 4.104.10.

We begin with a general observation which allows us to break bounds onMF (Σ) into

different parts. The idea is to work with the punctures on one side and genus on the other.

To do this we consider triangulations that contain an arc which separates the genus from

the punctures: more precisely an arc a which forms a loop based in a puncture and such
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that Σ \ a = Ω ∪ Γ where Ω is a disk with n− 1 punctures and one labelled point on the

boundary and Γ is of genus g with a boundary component with a single marked point.

Such a loop we call puncture separating.

For any choice of puncture on Σ, it is clear that (infinitely many) such loops based in this

point exist but up to homeomorphism there is only one such loop (see Figure 1313).

Figure 13: A puncture cutting loop

From this we can make the following observation: any two triangulations which are distinct

up homeomorphism and both contain a puncture separating loop must be either distinct

on Γ or Ω. As such:

card (MF (Σ)) > card(MF (Γ)) card(MF (Ω)). (11)

We will use this for our lower bounds in Section 4.34.3.

For our upper bounds the following lemma will allow us to introduce a puncture separating

arc in a minimal amount of flips.

Lemma 4.1. For any T ∈ MF (Σ) and any marked point p of Σ, there exists a puncture separating
loop a based in p with

i(a, T) ≤ 2(κ − n + 1)

Proof. We think of T as a graph embedded on Σ and consider a spanning tree of this graph.

A regular neighborhood of this tree is a simple closed curve γ which satisfies

i(γ, T) ≤ 2(κ − (n− 1))

as it intersects only half edges that do not belong to the tree and the tree has n− 1 edges -

see Figure 1414. (The above inequality is in fact an equality but it is the inequality that we

need.)

From γ and given a marked point p, we shall construct an arc as follows: as γ surrounds all

punctures, it must pass through a triangle that has p as a vertex. We consider a simple arc

c in the triangle between γ and p. Choosing an orientation on c and γ, the concatenation
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Figure 14: The curve Γ

of cγc−1 gives an isotopy class of arc which is the arc a we are looking for. Notice that by

construction it intersects T in at most as many points as γ and we have

i(a, T) ≤ 2(κ − n + 1)

as desired.

γ
c a

Figure 15: The curve γ, the path c and the arc a

�

Using this lemma and the upper bound on flip distance in terms of intersection number,

we can establish the following.

Lemma 4.2. For Σ, Ω and Γ as above:

diam (MF (Σ)) ≤ diam (MF (Ω)) + diam (MF (Γ)) + 2(κ − n + 1).

The above inequality will allow us to treat the upper bounds by treating diam (MF (Γ))
and diam (MF (Ω)) separately. We begin with the former.

4.1. Upper bounds in terms of genus

As above, Γ is a genus g ≥ 1 surface with a single boundary curve and a single marked

point on the boundary. Our goal here is to show the following result.
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Theorem 4.3. The diameter of the modular flip graph of Γ satisfies

diam (MF (Γ)) < Ag log(g + 1)

where A can be taken to be 1000.

Before proving the theorem we’ll need two topological lemmas.

Lemma 4.4. Let T be a triangulation of Λ, a genus g ≥ 1 surface with a single boundary curve
and all k marked points on the boundary. Then there exists a ∈ T such that Λ \ a is connected and
of genus g− 1.

Proof. Observe that for an arc a ∈ T, Λ \ a being connected and of genus g− 1 is equivalent

(cutting along a separating arc does not reduce genus). We now claim that T always

contains a non-separating arc. As Λ \ T is a collection of triangles, it is of genus 0. Now as

g(Λ) ≥ 1, one of the arcs of T must be non-separating, otherwise Λ \ T would still have

positive genus. �

Lemma 4.5. Let T be a triangulation of Λ, a genus g ≥ 0 surface with two boundary curves, both
with marked points, and all marked points on the boundary. Then there exists a ∈ T such that Λ \ a
has only one boundary component.

Proof. All marked points are on the boundary so it is impossible to triangulate Λ without

a triangle that has vertices on both boundary components. To see this we can argue by

contradiction. If this is not the case, then we can split the triangles into two non-empty

groups depending on whether they have all of vertices on one or the other boundary curve.

But as the surface is connected, there must be a triangle of the first group which shares an

arc with a triangle of the second. Thus, they must also share vertices, a contradiction. �

We now proceed to the proof of Theorem 4.34.3.

Proof of Theorem 4.34.3. Let T be any triangulation of Γ. Denote by a0 the arc that forms the

boundary of Γ.

The first step will be to divide the surface along an arc that has equal genus (or close to

equal) on both parts. By Lemma 4.44.4, there is an arc a1 ∈ T such that Γ \ a1 is of genus g− 1.

The resulting surface Γ1 := Γ \ a1 now has two boundary components, one consisting of

two arcs and the other of a single arc. Now by Lemma 4.54.5, there exists a2 ∈ T such that

Γ2 := Γ1 \ a2 has a single boundary curve consisting of 5 arcs. In short, we found two arcs

of T such that cutting along these arcs produces a surface of genus g − 1 with a single
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boundary component with 4 more arcs than the original surface Γ. We can iterate the above

process at total of b g
2 c times to obtain a collection of 2b g

2 c arcs such that cutting along these

arcs results in a genus g− b g
2 c surface Γ with a single boundary curve formed by 1 + 4b g

2 c
arcs. One of these is a0.

Denote p0 and p′0 the two vertices of a0 on Γ. We denote b the unique loop based in p0

homotopic to the boundary of Γ and b′ the arc from p′0 to p0 which forms a triangle with a0

and b (see Figure 1616).

p0 p′0a0

b
b′

Figure 16: Γ

Both b and b′ have a nice property: they don’t intersect T too much. More precisely, as there

are parallel to the boundary of Γ which is formed by arcs of T, they intersect each of the the

remaining arcs at most twice. Thus

i(x, T) ≤ 2(κ(Γ)− 2
⌊ g

2

⌋
), x = b, b′.

Now κ(Γ) = 6g− 2 so we can deduce that

i(b, T) + i(b′, T) ≤ 20g− 4.

Now using the upper bound on the distance to a stratum in function of intersection number,

we can introduce the arcs b and b′ in at most 20g− 4 flips.

The reason one might want to do this is that these arcs separate the surface into three

canonical surfaces: a triangle containing a0 and two surfaces with a single boundary curve

and of genus b g
2 c and g− b g

2 c. As such, up to homeomorphism, the pair of arcs b and b′ are

unique (see Figure 1717).

With this in hand, we will prove the bound by induction. We begin by checking the result

for g = 1. Here we need to check that the diameter is at most 1000 log(2) > 693 > 5. But

there are at most 5 different possible triangulations. Indeed such a triangulated surface is

obtained by pasting four sides of a triangulated 5-gon together. There are C3 = 5 different

possible triangulations of the 5-gon and only one to paste together the 5-gon to get a one

holed torus.
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p0

a0

b b′

Figure 17: The arcs b and b′

We now suppose g(Γ) ≥ 2.

Given two different triangulations S and T inMF (Γ), we flip both triangulations to obtain

triangulations S′ and T′ with arcs as above. These triangulations now both belong to a

stratum of MF (Γb,b′) where b and b′ are as above. We denote Γ1 and Γ2 the two non-

triangular surfaces in Γ \ {b ∪ b′}. Denote (for k = 1, 2) S′k, resp. T′k, the restrictions of

S′, resp. T′, to Γk. We shall now flip S′k and T′k inside MF (Γk) for k = 1, 2. Once the

triangulations coincide on both Γ1 and Γ2. they will coincide on Γ.

By induction for k = 1, 2:

d(S′k, T′k) ≤ diam(MF (Γk)) ≤ A
g + 1

2
log

g + 3
2

.

By induction (here we take into account that g can be odd in the bound of g− b g
2 c):

d(S′1, T′1) ≤ diam(MF (Γ1)) ≤ A
g
2

log
g + 2

2

and

d(S′2, T′2) ≤ diam(MF (Γ2)) ≤ A
g + 1

2
log

g + 3
2

.

Putting this all together:

d(S, T) ≤ d(S, S′) + d(T, T′) + d(S′1, T′1) + d(S′2, T′2)

≤ 40g− 8 + A
g
2

log
g + 2

2
+ A

g + 1
2

log
g + 3

2
≤ A g log(g + 1).
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The last inequality can be checked via a computation using A = 1000 and g ≥ 2. �

Remark 4.6. In light of Lemma 4.24.2, in the above theorem we’ve treated the case where the

boundary of Γ is a loop. The above proof however applies verbatim to the case where Γ has

a single puncture and no other boundary. The resulting theorem is the following.

Theorem 4.7. If Γ is a surface with genus g and one puncture, then the diameter of the modular
flip graph of Γ satisfies

diam(MF (Γ)) < Ag log(g + 1)

where A can be taken to be 1000.

4.2. Upper bounds in terms of number of punctures

We now focus our attention on the flip graph of Ω, a disk with n− 1 interior punctures and

one marked point on the unique boundary curve of Ω. Our goal is to prove the following

upper bound which is very similar to the upper bound for Γ.

Theorem 4.8. If Ω has n− 1 labelled punctures then the diameter of the modular flip graph of Ω

satisfies
diam (MF (Ω)) < An log(n + 1)

where A can be taken equal to 400.

Before proceeding to the proof, we state a preliminary lemma.

Lemma 4.9. Let T be a triangulation of Λ, a m ≥ 1-punctured disk with k ≥ 1 marked points
on the boundary. Then T contains an arc a between an interior puncture and marked point on the
boundary.

Proof. If not, then a simple curve parallel to boundary does not intersect T and hence Λ \ T
contains an embedded annulus. �

With that observation in hand, we now proceed to the proof of Theorem 4.84.8.

Proof of Theorem 4.84.8. Let T be a triangulation of Ω where we suppose that n ≥ 2 (if n = 1

then there the flip graph has a single triangulation). We denote the boundary arc of Ω

a0, the boundary marked point p0 and the remaining punctures pj, j = 1, . . . , n. Our goal

will be to flip our triangulation to a canonical triangulation and argue by induction on the

distance to this canonical triangulation. The upper bound on distance between arbitrary
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p0

p1
a0

a1

ak

pk

pn−2

pn−1

an−2

Figure 18: The canonical triangulation

triangulations is then at most twice this distance. Our canonical triangulation S is the

following.

The triangulated surface is formed of layers. Each layer except for the last one is a cylinder

with two boundary arcs ak−1 and ak with punctures pk−1 ∈ ak−1 and pk ∈ ak for k =

1, . . . , n− 1. The cylinders all contain a single interior arc from the triangulation as in the

figure. The last layer is a disk with boundary an−1 and puncture pn−1 ∈ an−1 and interior

puncture pn. There is an arc in the triangulation between pn−1 and pn.

To reach this triangulation from T we proceed as follows. We begin by finding arcs that

will divide the surface into punctured disks with the same (or close to the same) number

of punctures in each disk. By Lemma 4.94.9, there is an arc c ∈ T such that Ω \ c is a disk

with 3 boundary arcs: the arc a0 and the two copies of c. We reiterate the above process

b n
2 c times cutting along b n

2 c arcs to obtain a disk Ω with 1 + 2b n
2 c boundary arcs. On this

boundary, a0 joins two vertices: p′0 and another, say p′′0 , both copies of p0. Consider the arc

b which forms a loop in p′0 parallel to the boundary of Ω. Similarly, consider b′ which forms

a triangle with a0 and b: b′ is an arc between p′0 and p′′0 which runs parallel to the boundary

of Ω.
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Both b and b′ have a nice property: they don’t intersect T too much. More precisely, as there

are parallel to the boundary of Ω which is formed by arcs of T, they intersect each of the

the remaining arcs at most twice. Thus

i(x, T) ≤ 2(κ(Ω)−
⌊n

2

⌋
), x = b, b′.

Now κ(Ω) = 3n− 2 and −2b n
2 c ≤ −n + 1 so we can deduce that

i(b, T) + i(b′, T) ≤ 10n− 10.

Now using the upper bound on the distance to a stratum in function of intersection number,

we can introduce the arcs b and b′ in at most 10n− 10 flips.

The resulting triangulation now has an arc surrounding b n
2 c punctures, another surrounding

n−b n
2 c punctures and the two arcs form a triangle with a0 (see Figure 1919). We now argue by

p0

a0

b b′

Figure 19: The arcs b and b′

induction on the two subsurfaces Ωb and Ωb′ surrounded by b and b′ to flip them towards

their canonical triangulations. We have no control over which punctures are found in Ωb

and Ωb′ but the punctures do inherit an order from Ω and their canonical triangulations are

meant with respect to that order. The number of flips inside each of the two subsurfaces, by

induction, is at most

A(
⌊n

2

⌋
+ 1) log(

⌊n
2

⌋
+ 2).

Denote the resulting triangulation T′. We now need to merge the two subtriangulations

of T′ to obtain the canonical one. To do this we proceed by steps where each step in the

process will be to add a cylinder bounded by arcs ak−1 and ak with punctures pk−1 and pk.
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We begin with the first step. Puncture p1 is either found in Ωb (the lefthand subsurface)

or in Ωb′ (the righthand subsurfaces). In either event it shares an arc with p0 as both sub

triangulations are canonical (and thus ordered). If p1 on the left, we flip as in Figure 2020, and

similarly if p1 is on the right. As illustrated in the figures, the process takes 6 flips. We’ve

constructed the first ring of the canonical triangulation. This ring surrounds a divided

subsurface and we are in the same situation as above, where p1 and a1 play the part of

p0 and a0 and with one less interior puncture. We can iterate the process a total of n− 1

times (the last step is automatic) and arguing by induction we have reached the canonical

triangulation in 6(n− 1) steps from T′.

Figure 20: Merging step

Putting this all together we have that for any T ∈ MF (Ω)

d(T, S) ≤ 10n− 10 + A(
⌊n

2

⌋
+ 1) log(

⌊n
2

⌋
+ 2) + 6(n− 1).

Arguing like in the genus case (see the proof of Theorem 4.34.3) we obtain that

d(T, S) ≤ An log(n + 1).

This shows that any two triangulations are at distance at most 2An log(n + 1) where A can

be taken equal to 200. �

Remark 4.10. The upper bound onMF (Ω) is much easier if the punctures are unlabelled.

Indeed, given a vertex p, if a triangulation contains arcs that are not incident to p, you can

always find a flip that increases the incidence in p. Let S and T be two triangulations. After
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at most 4κ − 2n valence-increasing flips, both T and S look like in Figure 2121, that is, up to

homeomorphisms they differ only in the shaded area. The shaded area can be thought as a

triangulated n-agon. By Theorem 2.42.4 T and S differ by at most 4κ − 2n + 2n = 4κ flips.

p

Figure 21: The shaded area is triangulated.

Theorem 4.11. If Ω has n− 1 unlabelled punctures then the diameter of the modular flip graph of
Ω satisfies

diam(MF (Ω)) < An

where A can be taken equal to 12.

Remark 4.12. The above proof however applies verbatim to the case where Ω is a punctured

sphere (in this case the arcs b and b′ in Figure 1919 coincide.)We thus have the following.

Theorem 4.13. If Ω is a sphere with n labelled punctures then

diam(MF (Ω)) < An log(n)

where A can be taken equal to 410.

Theorem 4.14. If Ω is a sphere with n unlabelled punctures then

diam(MF (Ω)) < An

where A can be taken equal to 22.

4.3. Lower bounds via counting arguments

We now focus on lower bounds. They will essentially follow from a theorem of Sleator,

Tarjan and Thurston [3131] and a counting argument.

We begin with the following general lemma which follows from a theorem on grammars

on graphs [3131].

Lemma 4.15. Let Λ be a surface with n punctures andMF (Λ) its modular flip graph.

Then for a fixed triangulation Tµ ∈ MF (Λ) we have:

card{T ∈ MF (Λ) | d(T, Tµ) ≤ m} ≤ 410m4κ̃(Λ).
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Proof. This is a direct consequence of Theorem 2.3 of [3131] and the discussion in Section 5 in

[3131]. For any triangulation T one can construct its dual graph G(T) (see Figure 2222).

Figure 22: The graph dual to a triangulation

The graph G(T) is a trivalent graph that has exactly κ̃(Λ) vertices. We consider the three

half-edges incident to a vertex labelled by the integers 1, 2, 3 in clockwise order. Changing

T by one flip is equivalent to evolve G(T) according the grammar in Figure 2323.

1

3 2

3

2 1

3
2
1

3 1
2

3

21

3

12

Figure 23: The grammar of a flip

This grammar has two productions: one for doing the flip and the other for preparing the

half-edges labels to allow the flip. Indeed, one flip on T corresponds to perform at most 5

productions on G(T): two to prepare the half-edge labels on the first vertex, two to prepare

the half-edge labels on the second vertex, and one for the flip. It follows that the number

of triangulations that can be obtained from Tµ in at most m flips is bounded above by the

number of graphs that can be derived by G(Tµ) with at most 10m productions. The latter is

bounded above by 410m4 ˜κ(Λ) by a straightforward application of Theorem 2.3 [3131] to the

grammar we described. The same proof works verbatim for Tν. �

Remark 4.16. Setting m = diam (MF (Σ)) in the lemma above, and then solving for m
using Inequality 44, one obtains the following result:

Corollary 4.17. Let Σ be a surface of genus g with n marked points, Γ be a surface of genus g with
one boundary component and exactly one marked point on it, and Ω be a disk with n− 1 interior
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punctures. We have:

diam (MF (Σ)) > log(card(MF (Γ))) + log(card(MF (Ω)))− κ̃(Σ) log(4)
10 log(4)

We now count vertices of our combinatorial moduli spaces.

Lemma 4.18. Let Γ be a surface of genus g ≥ 2 with a single boundary loop and one marked point
on the boundary. Let Ω be a disk with a single boundary component with a marked point on the
boundary and with n− 1 interior labelled points. Then

card{MF (Γ)} ≥ g− 1
2

(g− 1)! (12)

card{MF (Ω)} ≥ Cn−2 (n− 1)! (13)

where Ck is the k-th Catalan number.

Proof. We begin with Inequality 1212. For a given triangulation T ∈ MF (Γ), if we collapse

the triangle which contains the boundary arc by cutting the triangle and pasting the two

loose arcs together, we obtain a triangulated surface of genus g with a single marked point.

If you perform this on two triangulations S, T ∈ MF (Γ) and obtain different triangulations

up to homeomorphism, then the triangulations we necessarily different to begin with. As

such, there are at least as many triangulations inMF (Γ) then triangulations of a genus g
surface with a single marked point. It is a result of Penner [2323] that there are at least

g− 1
2

(g− 1)!

such triangulations and so the inequality is proved.

For Inequality 1313 we argue as follows. Denote by p0 the marked point on the boundary

curve and a0 the boundary loop. We begin by considering only triangulations where each

interior puncture is surrounded by a single loop based at p0 (see Figure 2121).

For two triangulations to be the same, they must coincide on the exterior of these loops.

Cutting along the loops, one obtains an n-gon with one privileged side a0. As such, we

are in the classical case of counting triangulations of a polygon with an order on the sides

and there are Cn−2 such triangulations. Any permutation of the vertex labelling gives a

different polygon and thus we obtain the stronger lower bound

(n− 1)! Cn−2.

�
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From this we obtain the following lower bound.

Corollary 4.19. Let Σ be a surface with n labelled punctures. We have

diam (MF (Σ)) > B (n log(n + 1) + g log(g + 1)) ,

where B can be taken equal to 2 · 10−5.

Proof. We will use the following inequalities:

1. log(Cn) > n;

2. log n! > n log(n)− n.

Assume n ≥ 3 and g ≥ 3. From Lemma 4.184.18 we get:

log(card(MF (Γ))) > log(g− 1)! > (g− 1) log(g− 1)− g (14)

log(card(MF (Ω))) > log(n− 1)! > (n− 1) log(n− 1)− n (15)

Assume that the punctures of Σ are labelled. Plugging in the inequality in Corollary 4.174.17

we have:

diam (MF (Σ)) > (g− 1) log(g− 1)− g + (n− 1) log(n− 1)− n− κ̃(Σ) log(4)
10 log(4)

>
(g− 1) log(g− 1)− g + (n− 1) log(n− 1)− n− (4g + 2n− 6) log(4)

10 log(4)

>
(g− 1) log(g− 1)− (4 log(4) + 1)g

10 log(4)
+

(n− 1) log(n− 1)− (2 log(4) + 1)n
10 log(4)

> B (g log(g + 1) + n log(n + 1))

where B can be taken to be 2 · 10−5 and for g ≥ 705 and n ≥ 50. It is immediate to verify

that

diam (MF (Σ)) > B (g log(g + 1) + n log(n + 1))

also holds in the remaining cases (g ≤ 704 or n ≤ 49). �

We note that we can improve the constant B by conditioning g and n (giving them both

lower bounds) but our principle interest is in the order of growth.

We obtain a similar result on lower bounds for unlabeled marked points.

Corollary 4.20. If Σ has n ≥ 511 unlabelled punctures and is of genus g then

diam (MF (Σ)) > B(g log(g + 1) + n)

where B can be taken to be 10−3 .
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Proof. The graph grammar described in Lemma 4.154.15 can be refined (see [3131] for details) so

that

cardMF (Σ) ≤ 3κ̃(Σ)8m.

We have:

m ≥ log(card(MF (Σ))− κ̃(Σ) log(3)
log(8)

.

Let Ω̃ be a disk with a single boundary component with a marked point on the boundary

and with n− 1 interior unlabelled points. As in Lemma 4.154.15 we have

cardMF (Σ) ≥ cardMF (Γ) cardMF (Ω̃).

Now we use a result of Brown [77] that provides lower bounds on the cardinality ofMF (Ω̃):

cardMF (Ω̃) >
2(4n− 7)!

(n− 1)!(3n− 4)!
.

An explicit computation shows that, for n ≥ 511, the following holds:

cardMF (Ω̃) > (9.1)n > 32n.

From this we can conclude that

diam (MF (Σ)) > (g− 1) log(g− 1)− g− κ̃(Σ) log(3)
log(8)

>
(g− 1) log(g− 1)− g + log(9.1)n− (4g + 2n− 6) log(3)

log(8)

>
(g− 1) log(g− 1)− (4 log(3) + 1)g

log(8)
+

log(9.1)n− log(9)n
log(8)

> B(g log(g + 1) + n)

where the latter inequality holds for g ≥ 705 and B can be taken to be equal to 10−3. The

final assertion can be checked directly for the cases g < 705. �

As before, we note that by putting lower bounds on g and n, the constant B can be improved.
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[14] HAMENSTÄDT, U. Geometry of the mapping class group II: A biautomatic structure.

Preprint (2009).

[15] HATCHER, A. On triangulations of surfaces. Topology Appl. 40, 2 (1991), 189–194.

[16] KORKMAZ, M., AND PAPADOPOULOS, A. On the ideal triangulation graph of a

punctured surface. Ann. Inst. Fourier 4, 62 (2012), 1367–1382.

44



[17] LOERA, J. A. D., RAMBAU, J., AND SANTOS, F. Triangulations: structures for algorithms
and applications. No. 20 in Algorithms and Computation in Mathematics. Springer,

2010.

[18] MASUR, H. A., AND MINSKY, Y. N. Geometry of the complex of curves. II. Hierarchical

structure. Geom. Funct. Anal. 10, 4 (2000), 902–974.

[19] MOSHER, L. Tiling the projective foliation space of a punctured surface. Trans. Amer.
Math. Soc. 306, 1 (1988), 1–70.

[20] MOSHER, L. Mapping class groups are automatic. Annals of Mathematics 142, 2 (1995),

pp. 303–384.

[21] NEGAMI, S. Diagonal flips in triangulations on closed surfaces, estimating upper

bounds. Yokohama Mathematical Journal 45 (1998), 113–124.

[22] NEGAMI, S. Diagonal flips in pseudo-triangulations on closed surfaces. Discrete Math.
240 (2001), 187–196.

[23] PENNER, R. C. Weil-petersson volumes. J. Differential Geom. 35 (1992), 559–608.

[24] PENNER, R. C. Universal constructions in Teichmüller theory. Adv. Math. 98, 2 (1993),

143–215.

[25] PENNER, R. C. Decorated Teichmüller theory. Eur. Math. Soc., Zürich, 2012.
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