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Abstract. The lengths of geodesics on hyperbolic surfaces satisfy intriguing equations, known

as identities, relating these lengths to geometric quantities of the surface. This paper is about

a large family of identities that relate lengths of closed geodesics and orthogeodesics to

boundary lengths or number of cusps. These include, as particular cases, identities due to

Basmajian, to McShane and to Mirzakhani and Tan-Wong-Zhang. In stark contrast to previous

identities, the identities presented here include the lengths taken among all closed geodesics.

1. Introduction

The relationship between lengths of closed geodesics, hyperbolic surfaces, and their underly-

ing moduli spaces is intriguing and has been studied from many different perspectives. One

exciting feature appeared in the work of Basmajian [11] and McShane [2020] who discovered two

different identities which relate infinite sums, where the terms depend on lengths of geodesics,

to geometric quantities. In the case of Basmajian, the geometric quantity is the boundary

length of the surface and in the original McShane identity, it is the length of a horocycle

surrounding a cusp. Both of these identities have been generalized in multiple contexts, most

famously perhaps being the generalization of the McShane identity by Mirzakhani who then

showed how to use the identity to compute volumes of moduli spaces [2121].

The exact statements of these original identities will be given below (and indeed scrutinized

carefully), and although they seem at first glance to be unrelated, they share an aesthetic

feature of simplicity. The Basmajian identity is a sum over all orthogeodesics of terms

log(coth(`/2)) that depend naturally on the length ` of the orthogeodesic. The sum gives the

boundary length. The original McShane identity is on a one cusped torus, and is a sum over

all simple closed geodesics of terms 1
e`+1 depending only on the length ` of the simple closed

geodesic. The sum is equal to 1/2. Their many successors have plenty of redeeming features,

but are no match in terms of simplicity of the statement. One of the goals of the present paper

is to show how these identities are related, and are in fact part of a family of identities that

involve both lengths of closed geodesics and orthogeodesics.
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The identities will be for orientable hyperbolic surfaces (of finite type) with non-empty

boundary. Points in the moduli space M(Σ) of hyperbolic surfaces X homeomorphic to

fixed given topological surface Σ with be denotedM(X). A hyperbolic surface X will be

required to have either simple closed geodesics or cusps as boundary. Non-empty boundary

means that π1(Σ) is a free group, and conjugacy classes of elements in π1(Σ) correspond to

(free) homotopy classes of closed curves C(Σ), which it turn corresponds to G(X), the set of

oriented closed geodesics of X. G(X) will be the set of oriented closed geodesics of X, and can

thus be viewed from an algebraic, topological or geometric viewpoint. In particular, if you

move X in its moduli space, then G(X) remains the same from the algebraic or topological

viewpoint. Similarly, we use O = O(X) for the set of all oriented orthogeodesics of X: these

are geodesic segments with endpoints on and orthogonal to ∂X. If one of the endpoints is a

cusp c, an orthogeodesic that leaves or returns to or from c is of infinite length so the term

orthogonal refers to it being orthogonal to a (or any) horocyclic boundary of c.

The identities are all given by a choice of subset M ⊂ C(Σ) which is coherent, by which

it is meant that M must satisfy a property which we now outline. An element in M is a

closed curve, and if it is not simple and primitive, it might contain proper subloops. Being

coherent means that if γ ∈ M, then none of the subloops of γ belong to M (see Section 2.12.1

for a more detailed definition). Note that orthogeodesics can also contain subloops, and if an

orthogeodesic has a subloop freely homotopic to an element γ ∈ C(Σ), we say that it supports
γ.

Some immediate examples of coherent markings are when M is empty or M is any single

curve. Any coherent marking (finite or infinite) can be obtained as follows: take any curve

γ and add it to M, now add any other curve that is not homotopic to a subloop of a curve

in M and that does not contain an element of M as a subloop, and so forth. Note that there

is no requirement that if γ ∈ M, then γ−1 also lie in M. A perhaps less obvious example: M
is the set of all simple primitive closed geodesics (with both orientations). Or, alternatively,

choose exactly one orientation for each simple closed geodesic, and let M be the set of those.

More generally, any subset of a coherent marking is coherent, and using this fact it is not hard

to convince oneself that for fixed Σ, there are uncountably many coherent markings. Some

of them are mapping class group invariant, but in general they are not. Other examples of

a coherent markings can be obtained by fixing a filling closed curve γ, and taking the full

mapping class group orbit of γ (thus M = ModΣ(γ)).

This allows, given a coherent marking M, for a separation of O into two sets: those that

are supportive of elements of M, and those that are not. Note that, by definition, all simple

orthogeodesics are unsupportive. Among the unsupportive elements of O (denoted OM),

certain are peripheral, meaning that together with a boundary arc they form a homotopy class
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in M. A more detailed definition is given in Section 22, but for now we denote the set of

orthogeodesics peripheral to M by OM and write ∂η 3 α if η is peripheral to α.

The abstract identity is as follows:

Theorem 1.1. Let X be a hyperbolic surface with ∂X 6= ∅ consisting of cusps and/or simple closed
geodesics. Let β be a boundary element, M a coherent marking of C(Σ) and let Oβ be the set of
orthogeodesics leaving from β.

If β is a closed geodesic, then:

`X(β) = ∑
η∈OβM

φ(η) + ∑
α∈M

 ∑
η∈Oβ α

M

ψ(η)


where φ(η) is a measure that depends only on the length of η, and ψ(η) is a measure depending only
the length of η and α (the curve η is peripheral to).

When β is a cusp:

2 = ∑
η∈OβM

φ◦(η) + ∑
α∈M

 ∑
η∈Oβ α

M

ψ�(η)


where φ◦(η) is a measure that depends only on the truncated length of η, and ψ�(η) depends only the
length of doubly truncated length of η and α (the curve η is peripheral to).

The truncated length of an orthogeodesic leaving from a cusp is the restriction of the ortho-

geodesic to the subarc that leaves from the boundary of a standard horocyclic neighborhood of

the cusp. For an orthogeodesic that leaves and returns to the same cusp, the doubly truncated

length is the length of the subarc that leaves from the cusp neighborhood until it returns to

the cusp neighborhood for the last time. (Note that truncated orthogeodesics might return

multiple times to the the horocyclic neighborhood.) The functions (or measures) are often

called gap functions or just gaps because they are measures of segments of the boundary

associated to index terms. They are not only abstract, and can be quantified. Here is a first

quantification.

Theorem 1.2. Let X ∈ M(Σ) be a hyperbolic surface of finite type with ∂X 6= ∅ containing at
least one simple closed geodesic, and M a coherent marking of C(Σ). The lengths of curves and
orthogeodesics of X satisfy

`(∂X) = ∑
η∈OM

log
(

coth2(η/2)
)

+ ∑
α∈M

∑
η∈O α

M

log

cosh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1

sinh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1

 .
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Note that any η ∈ OM appears twice: once in the first sum and once in the second. It would

of course be possible to regroup these terms, but geometrically these terms describe different

phenomena.

The above equation can be expressed in terms of half-traces (that is the hyperbolic cosine of

half-lengths: a = cosh(α/2), b = cosh(β/2), and t = cosh(η/2)). By taking the exponential,

the following product formula appears:

b +
√

b2 − 1 =

(
∏

η

t2

t2 − 1

)
∏

α∈M

(
∏

∂η3α

(
a +
√

a2 + t2 − 1√
a2 − 1 +

√
a2 + t2 − 1

))
(1)

where the first product is taken over all orthogeodesics unsupportive of M, and the last

product is over all orthogeodesics unsupportive of M and peripheral to α.

The first sum (or product in the half-trace formulation) is exactly the same term as the term in

the Basmajian identity [11], and is the projection of a copy of β onto itself (following the reverse

direction of the orthogeodesic). And in fact, when M = ∅, the above identity is the Basmajian

identity: all orthogeodesics are unsupportive, the first sum is empty, and the second sum

sums over all orthogeodesics leaving from β.

When M however is the set of all (primitive) simple closed geodesics, taken with both

possible orientations and including boundary curves, the above identity is an expression

of the McShane identity for surfaces with geodesic boundary due to Mirzakhani [2121] and

Tan-Wong-Zhang [2222]. This is another extremal case of the identity, because it is a sum over

simple orthogeodesics. And simple orthogeodesics are always unsupportive. Hence, the

first sum has the "smallest" possible index set, in contrast with the Basmajian case where

the first sum has the "largest" possible set. The expression of the identity is clearly different

from previous formulations however, and this is due to several factors. The gap functions in

the work of Mirzakhani and Tan-Wong-Zhang are all computed using the boundary curves

of the associated pair of pants. In particular, the length of β plays a part in the function

and the functions depend on two factors. Here the gaps are divided into parts: one part

corresponding the Basmajian type term, which only depends on the associated ortholength,

and two different gaps on each side of the orthogeodesic, which have another dynamical

interpretation to be be discussed later, and which depend on two geometric quantities, the

ortholength and the length of α. This difference in interpretation of the gaps shows how to

express the length of β via a sum of gaps which depend on geometric quantities which do not

involve β, similarly to the original Basmajian identity.

By taking an appropriate geometric limit, the identity can be quantified as follows on a surface

with cusps. Note that one of the sum disappears.

Theorem 1.3. Let X be a hyperbolic surface with ∂X 6= ∅ consisting of n > 0 cusps, and M a

4



coherent marking.

n =
1
2 ∑

α∈M
e−

α
2

 ∑
η∈O α

M

e−
η�
2


When M is the set of all primitive simple closed geodesics, the above expression is a reformu-

lation of the original McShane identity [2020]. This will be explained in Section 4.24.2.

Both quantifications of the identity (Theorems 1.21.2 and 1.31.3) are obtained as sums of a quan-

tification of the abstract identity, which takes into account one boundary component at a

time:

Theorem 1.4. If β is a boundary simple closed geodesic of X, it satisfies:

`(β) = ∑
η∈OβM

log
(

coth2(η/2)
)

+ ∑
α∈M

∑
η∈Oβ α

M

log

cosh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1

sinh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1

 .

If β is a cusp:

2 = 2 ∑
η∈OβM

e−η◦ + ∑
α∈M

 ∑
η∈Oβ α

M

e−
α+η�

2


where η◦ is the truncated length of η and, for orthogeodesics that leave and return to β, η� is the doubly
truncated length.

Organization.

The article is organized as follows. Section 22 contains a lot of the groundwork: after having

introduced a bit of notation, coherent markings are properly introduced and studied, followed

by a detailed computation of the gaps. In Section 33, the abstract identity is proved. In the final

section, the quantified identities are formulated by inserting the previously computed gaps,

and the relationship to existing identities is then discussed.
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2. Background, notation and preliminaries

Let Σ be a topological orientable surface with a non-empty set of marked points and negative

Euler characteristic. Take X to be a hyperbolic surface, homeomorphic to Σ and with either

cusp or geodesic boundary. The moduli spaceM(Σ) is the set of such X up to isometry and

Mod(Σ) is the (full) mapping class group of Σ, that is homeomorphisms up to isotopy.

2.1. Curves, arcs and geodesics

In a bit of somewhat non-standard notation, C(Σ) will designate the set of all curves on Σ,

by which we mean the set of free homotopy classes of oriented closed curves, including

curves peripheral to boundary. Elements of C(Σ) are not parametrized, but are oriented,

and include all non-primitive elements. In particular, there are infinitely many homotopy

classes peripheral to boundary. Because of our condition on X, via the unicity of geodesics in

free homotopy classes, elements of C(Σ) correspond to the set of all closed geodesics G(X),

including those that are not primitive and boundary elements. There is a slight matter of

convention here: if X has cusp boundary, it might not make much sense to consider a cusp

as a boundary geodesic, much less an oriented boundary geodesic or a power of one, but

this slight discrepancy between C(Σ) and G(X) as sets of free homotopy classes is not a

fundamental issue and will be discussed further below.

Similarly, A(Σ) will be the set of topological arcs on Σ with endpoints on the marked points

and up to homotopy preserving the endpoints. Note there is no notion of primitive for

elements ofA(Σ) (said otherwise, all elements ofA(Σ) are primitive). Given X, the geometric

realization of A(Σ) is the set O(X) consisting of orthogeodesics of X: these are geodesic arcs

with endpoints orthogonal to the boundary of X. Again, if X has cusps, the term orthogeodesic

might seem inappropriate for the infinite length geodesics travelling to a cusp, but in fact

these geodesics are, in the a region sufficiently deep in the cusp, orthogonal to the boundary

of any horocylic neighborhood of the cusp.

Before introducing markings, we begin by making some observations about C(Σ) and A(Σ).

Closed curves, arcs and their subloops

Let γ ∈ C(Σ) which we always think of being in minimal position, meaning that minimizes

self-intersection number. For the most part, we will think of closed curves as being realized

topologically in minimal position, and to avoid further confusion, in a way such that all

intersection points are double. Hence in an intersection point, because curves are oriented,

there are exactly two outgoing directions, each associated to an incoming direction. If γ is

primitive, meaning not the power of another curve, then its realization as a closed geodesic

in G(X) (for any X) is in minimal position. There is a subtlety here when γ is not primitive

however: its unique closed geodesic representative will be some number of iterates of the
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associated primitive closed geodesic. While this geometric representative minimizes transver-
sal self-intersection, of course there are infinitely many double points, but of course there are

different ways of getting around this difficulty. In any event, we denote by i(α, α) the minimal

number of double points among topological representations (higher order multiple points

are counted with multiplicities so that minimality is reached by certain representatives with

double points).

Associated to a curve in C(Σ) are (oriented and proper) subloops. Given any curve with

self-intersection points, in each intersection point (which we suppose double) there are exactly

two (not necessarily) distinct subloops, obtained by taking one of the two outgoing paths until

it returns. In any point that is not a self-intersection point, there is a unique loop beginning

and ending given by the curve itself, and so there are no proper subloops in that point.

Hence, any closed curve α, has at most 2i(α, α) proper subloops, each corresponding to (not

necessarily distinct) free homotopy classes of oriented closed curves. Further observe that this

set of elements of C(Σ) associated to a given α does not depend on the choice of representation

of α. Indeed, given an intersection point of a curve, following the associated loops as the

point moves under a free homotopy, it is easy to see that the two free homotopy classes do

not change. Similarly, arcs can have proper subloops, corresponding to homotopy classes of

closed curves. This brings us to the following:

Definition 2.1. Let α and β be curves in C(Σ). We say that β is supported by α if β is freely

homotopic to a proper subloop of α and we write β ↪−→ α.

Similarly, for η ∈ A(Σ), we say β is supported by η if it is freely homotopic to a proper

subloop of η and we write β ↪−→ η.

We now make a few observations about curves, arcs and their proper subloops.

Proposition 2.2. Let β ↪−→ α and suppose β is not prime, meaning β = (β′)k for some natural
number k > 1. Then β′ ↪−→ α. More generally (β′)l ↪−→ α for all l ≤ k.

Proof. As will be detailed in the sequel, for a given hyperbolic structure this is certainly true

for any closed geodesic representative. This comes from the fact that a geodesic only loops k
times around a given geodesic β′ if it belongs to a small enough collar around β′. And the

width of the collar depends only on the length of β′, and is decreasing. In particular, if you

enter the collar for β, you’ve entered the collar for each (β′)k. See Remark 2.42.4 for more details

about the collar.

Although we make no use of this in the sequel, it is interesting to point out that this is really a

topological fact, and does not even depend on having β in minimal position. To see this, the

easiest is probably to look at β in the annular cover corresponding to β′ (this is a finite cover
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where β′ has a lift freely homotopic to a simple primitive loop which generates the annulus).

The curve β has a lift β̃ that is freely homotopic to multiple of generator of the annulus. Now

it is not too difficult to convince oneself that β̃ contains a subloop that is homotopic to the

generator, which doesn’t contain the basepoint (this last point is key, otherwise it won’t project

to the desired loop).

Also observe that α ∈ C(Σ) is simple (and primitive) if and only if it does not support any
curves, and similarly for η ∈ A(Σ). However, if α is a power of a simple curve, then it

supports all lesser powers. More generally, any curve that is a proper power supports all

lesser powers.

More generally, one might hope that its a transitive property (if β ↪−→ α and γ ↪−→ β, then

γ ↪−→ α) but this is not always the case, see Figure 11.

↪−→ ↪−→

Figure 1: The left most curve is not a subloop of the right most curve

We now pass to the geometric counterparts of these notions.

Closed geodesics and orthogeodesics

Now consider X ∈ M(Σ). To any element of C(Σ) that is not peripheral to boundary, there is

a unique geodesic representative. Likewise, any interior element of G(X) corresponds to a

unique element of C(Σ). This is also true for boundary geodesics and their corresponding

peripheral homotopy classes, but not quite to cusps. The cusp is the geometric realization of

all homotopy classes peripheral to it. There is however a complete one to one correspondence

between elements of A(Σ) and those of O(X). Via this correspondence, closed geodesics and

orthogeodesics of X inherit the notion of support.

Convention. Throughout the article, geometric quantities, namely lengths realized on an

underlying hyperbolic surface X, will be denoted by the same symbol as the correspond-

ing homotopy classes in C(Σ) and A(Σ). For example, with this convention the quantity

cosh(α/2) for α ∈ C(Σ), can be thought of as a function of X inM(Σ) which associates to X
the hyperbolic cosine of half of the length of the unique geodesic in the free homotopy class

of α.

Oriented geodesics on X naturally correspond to subset of vectors in T1(X), the unit tangent

bundle of X. To each γ ∈ G(X), we can associate a so-called stable neighborhood [22], but here

it is more relevant to associate another subset of T1(X) to γ.
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To define it, introduce a bit of notation: given v ∈ T1(X), we let geodv be the complete

oriented geodesic on X obtained by exponentiating v forwards and backwards, but only

taking the forwards orientation (given by v).

Definition 2.3. Let γ ∈ C(Σ). The loop set of γ, denoted LX(γ), is the subset of T1(X)

consisting of all vectors belonging to oriented geodesics that form a loop freely homotopic to

γ. Stated differently:

LX(γ) = {v ∈ T1(X) | geodv contains a geodesic loop freely homotopic to γ}.

This is well-defined, even if γ is a homotopy class peripheral to boundary, and even if this

boundary is geometrically realized as a cusp.

Remark 2.4. To γ we can associated a (generally immersed) collar (or stable neighborhood)

which is related to the loop set of γ. If you look at an annular lift of γ (a finite lift where γ is

simple), by an adaptation of the classical collar lemma, see for instance [33], one obtains an

embedded collar of half-width exactly

w(γ) = arcsinh
(

1
sinh(γ/2)

)
where to simply notation, γ also denotes the length of the geodesic in G(X) corresponding to

γ. The stable neighborhood is the projection of this collar to X. By construction, it includes

all points of X distance at most w(γ) from γ. Now if a geodesic comes at least w(γ) close to

γ, it either crosses γ immediately, by which it is meant that the geodesic follows γ until it

intersects γ transversally, or it belongs to LX(γ).

2.2. Coherent markings and peripheral orthogeodesics

We can now introduce markings which are essential to the index sets of the identities.

A marking of a set of curves is a choice of a subset M of C(Σ), which is allowed to be empty.

(Equivalently, one could think of a marking as a map from C(Σ) to Z2, where the image is 1

for all marked curves, and 0 for the others.)

We say that a marking M is coherent if it satisfies the property that if α ∈ M, then all curves

supported by α are not. In other words, if α ∈ M and if β ↪−→ α, then β 6∈ M.

Here are some examples of coherent markings:

1. M = ∅. This example will give rise the index set of the Basmajian identity in the sequel.

2. M = {α} where α ∈ C(Σ) is any choice of curve. Similarly, you can construct finite sets

of curves by taking any finite set, and remove curves one by one that are supported by

other curves. Note that there may be more than one way to do this.
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3. M = {α | α ∈ C(Σ) is simple and primitive.}. Note that this includes curves peripheral

to boundary, and if α ∈ M, then α−1 ∈ M. This example will give rise the index set of

McShane type identities as will be explained in Section 44.

4. M = {φ(α) | φ ∈ Mod(Σ)} for a choice of α ∈ C(Σ). These are the curves obtained in

the mapping class group orbit of a curve. For certain choices of α, it might happen that

φ(α) = φ′(α) for different φ, φ′ ∈ Mod(Σ), but in this case, the curve is not counted

with multiplicity. An example where this doesn’t happen is when α is a filling curve

(its complementary region is a collection of topological disks with at most one marked

point).

Here are some immediate properties of coherent markings.

Property 2.5. Coherent markings satisfy the following:

Any coherent marking can be obtained by taking curves in succession {γ1, γ2, . . .} and verifying
that γk does not support and is not supported by an element of {γ1, . . . , γk−1}.

Any subset M′ ⊂ M of a coherent marking M is a coherent marking.

There are uncountably many coherent markings.

If α ∈ M then for all integers k > 1, αk 6∈ M.

Proof. The first property follows from the fact that the set of elements of C(Σ) is countable.

The second property is immediate, because if a subset of M violates coherency, then so does

M.

For the third property, it suffices to find a marking of infinite cardinality, and then to consider

all subsets of this marking. The examples 33 and 44 above provide such markings.

The last property follows from the definition of a coherent marking and that roots of a

non-primitive curve are subloops.

Given a coherent marking M, A(Σ) naturally splits into two sets: those that support at least

one element of M, and those that don’t. An arc η ∈ A(Σ) is said to be unsupportive if it does

not support any element of M.

Certain arcs have the same starting and ending points. For an associated orthogeodesic, these

are those that leave and return to the same boundary curve. Naturally associated to an arc η,

whose endpoints are both the same marked point p, are two elements of C(Σ). These the two

curves obtained by looking at η on Σ \ {p} as a closed curve, and pushing it slightly away

from p (see Figure 22).
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η
p

Figure 2: The two curves obtained by pushing η slightly away from p

Often these two curves are distinct, but there is one case where they are not. Take Σ to be

a torus with a single marked point, and take η to be a simple arc. Then the two (oriented)

curves are freely homotopic (see Figure 33).

Figure 3: An η with identical curves in ∂η

Given an arc η ∈ A(Σ), we denote the set of these two (not necessarily distinct) curves ∂η,

and if α ∈ ∂η, we say that η is peripheral to α.

With this in hand, for a given coherent marking M, we see that certain unsupportive arcs are

special: we say that an unsupportive arc η is peripheral to M if there exists α ∈ M such that

α ∈ ∂η. If an arc η is peripheral to α, note that via the homotopy on Σ ∪ {p}, η and α bound a
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(possibly) immersed cylinder H on Σ, with p lying on one of its boundaries. Similarly, p and

the two curves in ∂η form the boundary of an immersed thrice punctured sphere (a pair of

pants). The cylinder H we call an immersed half-pants. See Figure 44 for an example.

ηη

α

Figure 4: An arc η and an associated half-pants

2.3. Gaps and their inclusion

Associated to an orthogeodesic are two types of gaps. One of them is the gap that appears

in the Basmajian identity, and the other is a generalization of the type of gap that appears in

McShane type identities.

Type 1: Basmajian type gaps

For completion we describe, and compute, the gap associated to an orthogeodesic following

[11].

Let η be an orthogeodesic between boundary elements β and β′. We begin with the case when

β and β′ are both simple closed geodesics. If we take a lift of η in the universal cover H, it

lies between lifts of β and β′, say β̃ and β̃′. If you take the shortest point projection to β̃ of β̃′,

you obtain a segment b on β̃ of length that only depends on η. The shortest point projection

geodesics, together with the segment b and β̃′, form a quadrilateral in H with two right angles

and two ideal points, as portrayed in Figure 55. By splitting the quadrilateral in two along the

lift of η, we get a Lambert quadrilateral (called a trirectangle in [1010]), which satisfies

sinh(b/2) sinh(η) = 1.

From this:

b = 2 arcsinh
(

1
sinh(η)

)
= 2 log

(
coth

(η

2

))
.

Now b projects to X to a segment along β of the same length, say φ(η).
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φ(η)
2

η

Figure 5: How to compute the Basmajian gap in H

Remark 2.6. If you double the surface X along its boundary, the two copies of η become a

closed geodesic of length 2η. On this doubled surface, this closed geodesic has a collar, as

observed in Remark 2.42.4, which is exactly of width φ(η)/2. This is not, of course, a complete

coincidence.

If the orthogeodesic goes from a cusp and a closed geodesic, the closed geodesic can be

projected onto a horocyclic boundary of the cusp. The gap this time will depend on the

truncated length, by which we mean the length of the orthogeodesic that leaves from the cusp

neighborhood and arrives on the geodesic. Note that the orthogeodesic is allowed to pass

through the cusp neighborhood (as many times as it likes) and that length is still accounted

for in the truncated length. In other words, it is only the initial infinite length segment from

the cusp to the boundary of the neighborhood that is truncated.

φ(η)
2

η◦

Figure 6: Computing the truncated gap in H
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If we denote by η◦ its truncated length, we obtain a gap of size

φ(η) =
2

eη◦

associated to the orthogeodesic η. One way to compute this is by seeing this gap as a limit

of the gap along a collar of β as the length of β goes to 0. Alternatively, one can do a direct

computation using the geometry portrayed in Figure 66.

Note that if we have an orthogeodesic ending in a cusp, we do not consider a type of doubly

truncated orthogeodesic and the gap associated to this orthogeodesic is always 0. As we will

see now, for orthogeodesics that return to the same cusp, the second type of gap will use the

doubly truncated length.

Type 2: McShane type gaps

A slight word of warning: although these are similar to the gaps described in [2121] and

[2222], they are fundamentally different in several ways. First of all, they are associated to an

orthogeodesic, and not an embedded pair of pants. (Of course an embedded pair of pants

is essentially equivalent to a simple unoriented orthogeodesic.) Here the gaps involve any
oriented orthogeodesic, not necessarily simple and they are related to the half-pants alluded

to earlier. We also point out that these only concern orthogeodesics that leave and return to a

same boundary element.

Although most of the discussion is mostly topological, it is sometime convenient to rely on

the underlying geometry. In what follows, β is implicitly a simple closed geodesic. The case

where β is a cusp is of course topologically identical, and can be done geometrically in a near

identical fashion by replacing β by a horocyclic neighborhood around β.

As mentioned before, associated to such an orthogeodesic η, are two curves, the collection

of which is denoted ∂η. These both are homotopic to the concatenation of η with an arc of β

between the endpoints of η (see Figure 77).

η

β

Figure 7: An orthogeodesic η and the curves ∂η near β

Take one of the geodesic realizations of the curve, say α, and observe that it bounds an
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immersed geodesic half-pants H, bounded on one end by α, and on the other by η and the

segment b of β such that b ∗ η is freely homotopic to α. The half-pants is embedded if and

only if η is simple.

Another way of seeing this is purely topological: if η (as an arc) is peripheral to α, then it is

homotopic to a concatenation c ∗ α ∗ c−1 where c is a path from β to α (see Figure 88).

α

η
c

Figure 8: An arc η peripheral to α

The pre-immersed version of the cylinder is obtained by lifting c and α to simple curves c̃ and

α̃. From this we obtain a lift of η to η̃ (see Figure 99).

α̃

η̃
c̃

η

α

c

Figure 9: Lifting η, c and α to H̃ (on the left)

The half-pants H are exactly the image via the immersion of the half-pants H̃ with boundary

curves α̃ on one side, and a piecewise geodesic boundary made of η̃ and a segment of β̃, the

lift of β (see Figure 1010).
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α̃

η̃
β̃

Figure 10: A lift of the geodesic half-pants

The lifts of the immersed half-pants preserve the lengths of curves, and so it suffices to

compute in H̃. For this we consider the simple geodesic orthoray r leaving from β̃ and

wrapping infinitely many times around α̃ (in the same direction as α̃). For those familiar with

the gaps in McShane identities, this allows us to picture a gap in between η̃ and r (see Figure

1111).

η̃

β̃

r̃

Figure 11: The distance between the basepoints of r̃ and η̃ is the sum of ψ(η) and φ(η)/2

The gap we consider here is not this whole gap however. From this gap, we remove the part

of the gap coming from the Basmajian gap associated to η (or η̃) to obtain a gap ψ(η). This is

best illustrated in the universal cover (see Figure 1212 where order not to introduce too much

notation, the lifts of η, α, β and r are also denoted η̃, α̃, β̃ and r̃). The gap ψ(η) associated to η

is the length of the segment as indicated.

There is a dynamic interpretation of the gap: the gap is the set of (basepoints of) orthorays

that lie entirely in H until they make a loop around α. The associated base vectors in T1(X)

all belong to L(α). They might belong to other L(α′) for α′ ∈ M, but they will form a loop

around α before forming a loop around any other curve in M. This will be discussed in detail
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η̃

α̃

β̃

r̃

ψ(η)

Figure 12: The gap ψ(η) viewed in H

in the proofs of the identities.

The gap is bounded by two extremal cases: an orthoray that stays inside H and wraps

infinitely many times around α, and an orthoray that corresponds to, on the completion of

the surface, an ideal geodesic loop that is homotopic to α. Note that, if H is immersed and

not embedded, there might be many (possibly infinitely many) such orthorays. The extremal

ones we are interested in are the projections of the simple ones with this behavior in H̃.

We can now compute ψ(η). Up until now, the discussion has been essentially topological, and

there are really two geometric situations to consider: when β is a closed geodesic or when β

is a cusp. We begin with the first case, and the do the computation in the second case via a

limiting argument.

Computing the gap when β is a closed geodesic

By cutting and unfolding the half-pants, we get a symmetric right-angled hexagon as in

Figure 1313. By putting it in H and unwrapping r, we can compute ψ(η).
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α̃

η̃

h

Figure 13: Cutting and unfolding the (lifted) half-pants

In the following formulas, we use α for the length of α (which is the same as the length of

η̃, and similarly for η. We also abbreviate ψ(η) to ψ and the Basmajian measure φ(η) to φ.

We denote by x the quantity ψ + φ/2 which is the length of the segment in between the base

point of η and the base point of r. And we denote by y the complementary region to x on

the side of the hexagon on which x lies. The quantity h is one of the sides of the hexagon as

indicated on Figures 1313 and 1414.

sinh(h) sinh(ψ) = 1.

x
y

η
2

α
2

h r̃

Figure 14: The pre-immersed pentagon

Now by looking in the right-angled pentagon that forms the left side of the hexagon (see

Figure 1414) and using the pentagon relation, we get

sinh(x + y) sinh (η/2) = cosh(α/2).

Putting this all together by elementary computations:

x = arcsinh
(

cosh(α/2)
sinh(η/2)

)
− y = arcsinh

(
cosh(α/2)
sinh(η/2)

)
− arcsinh

(
1

sinh(h)

)
.
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Now using the formula pentagon formula, sinh(h) = cosh(η/2)/ sinh(α/2) and so

x = arcsinh
(

cosh(α/2)
sinh(η/2)

)
− arcsinh

(
sinh(α/2)
cosh(η/2)

)

= log
(

coth
(η

2

))
+ log

cosh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1

sinh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1


=

φ

2
+ log

cosh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1

sinh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1


and because ψ = x− φ/2, we get

ψ(η) = log

cosh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1

sinh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1

 .

Half-trace notation

It is sometimes convenient to use traces or half-traces of lengths. These are the traces and

half-traces (or absolute value of) the corresponding matrices in PSL2(R). Note that to the

gaps themselves, there is no corresponding surface group element, but there is a trace corre-

sponding to the corresponding translation element in PSL2(R).

We denote the half-traces by

a := cosh(α/2), b := cosh(β/2) and t := cosh(η/2)

and then we can express ψ(η) and φ(η) as follows:

φ(η) = log
(

t2

t2 − 1

)
(2)

ψ(η) = log

(
a +
√

a2 − 1 + t2
√

a2 − 1 +
√

a2 − 1 + t2

)
(3)

β = log(b +
√

b2 − 1) (4)

Limiting to a cusp

To compute the gap in the cusp case (this only concerns gaps of type 2), we use a standard

limiting trick which involves multiplying the measure by a factor that varies in terms of the

length of β. The resulting measure has the additional advantage of varying continuously from

the boundary geodesic case to the cusp case.

To do this, instead of viewing the measure on the boundary geodesic, we project it to the

boundary of the collar of β, where the collar has been described previously in Remark 2.42.4.
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The collar boundary is not geodesic of course, but is a curve of constant curvature. By a

standard computation, the boundary length of the collar of β is β coth(β/2). The collar limits

(continuously) to the standard horocyclic neighborhood of a cusp of boundary length 2 as β

goes to 0.

A segment of length ` on β projects to segment of length ` coth(β/2) on the collar boundary.

We get a new projected gaps given by coth(β/2)ψ(η) and coth(β/2)φ(η), but the latter limits

to 0 as β goes to 0. The former however, even though ψ(η) tends to 0 as β goes to 0, doesn’t

disappear in the limit, and in fact, turns into a very nice expression.

Before computing the limit, we need to know what we are computing the limit of. The length

of the actual orthogeodesic η goes to ∞ as β goes to 0, so we consider the twice truncated

orthogeodesic η�: this is the orthogeodesic to and from the horocyclic neighborhood of the

cusp where the initial and final geodesic segment which goes respectively from and to the cusp

has been removed. This truncated orthogeodesic is the limit of the truncated orthogeodesic to

and from the boundary of the collar of β as the length of β goes to 0 (which we also denote

η�). Note that, as described previously, the doubly truncated orthogeodesic may pass through

the collar again, and in fact only does so if it winds around β, but we won’t make use of that

fact here.

So we have

η = η� + 2 arcsinh
(

1
sinh(β/2)

)
and thus by a standard manipulation and limit argument:

lim
β→0

(
eη�/2 cosh(η/2)

sinh(β/2)

)
= 1.

With this in hand, and using the fact that

lim
β→0

(coth(β/2)ψ(η)) = lim
β→0

(coth(β/2) sinh(ψ(η))) ,

one has

lim
β→0

(coth(β/2)ψ(η)) = lim
β→0

(
coth(β/2)

e−α/2

cosh(η/2)

)
= lim

β→0

(
e−α/2

sinh(β/2) cosh(η/2)

)
= e−α/2 · e−η�/2.

For a surface with a cusp, to an orthogeodesic η of truncated length η� we thus associate the

gap

ψ�(η) = e−
α+η�

2 .
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3. Proof of the identity

We now fix a marking M of C(Σ), and take X ∈ M(Σ). The identity is a way of breaking up a

boundary element of X into gaps that depend on the behavior of the associated orthoray.

We begin with the case when the boundary curve to be partitioned into gaps is a simple closed

geodesic β. To each p ∈ β corresponds an element vp of T1(X), the unique vector orthogonal

to β in p and aiming inwards towards X. There is also the associated orthoray~rp given by

forward exponentiating vp.

We follow~rp from its basepoint until one of three things happen:

It forms a loop around an element in M, in which case we stop and denote the associated

geodesic arc rp.

It hits ∂X, the boundary of X, and is freely homotopic to an orthogeodesic which we

denote ηp.

It wanders forever in X without ever forming a loop around an element of M or hitting

∂X.

We will show in the sequel that the last case only happens for a measure 0 set of points on β.

First case: a loop is made

Let us begin with the first case, where we have an arc rp, which ends exactly after having

formed a loop around an element of M, say α0, for the first time. We can construct a homotopy

class of arc and corresponding orthogeodesic by concatenating rp with the path that follows

rp with the opposite orientation from the endpoint. We denote the corresponding arc and

orthogeodesic by η0.

Key observation: By construction: η0 is peripheral to α0 and p (or ~rp) belongs to the gap

associated to η0.

The latter follows from the dynamics of the behavior of all orthorays in the gap associated to

η0.

However, η0 might not be unsupportive, that is η0 might have a subloop belonging to M. If

this is the case, we consider, following η0 from its basepoint, the first time it forms a loop

around an element of M, say α1, and denote by r1 be the corresponding oriented subpath. We

then construct a new homotopy class of orthogeodesic η1 by following, from the endpoint

of r1, η−1
0 back to β. Similarly to above, the key observation is that the entire gap of η0 is

contained in the gap of η1. And by construction, η1 is peripheral to α1.

We can now repeat the above process: if η1 is not unsupportive, then it forms at least one loop

21



around an element of M. We can then construct η2, containing the gap associated to η1, hence

the gap associated to η0, hence p, and so forth.

It is relatively straightforward to see that his process finishes after a finite number of steps,

which only depend on the number of self-intersections of η0 (but the only thing we really

need is that it finishes). The point p belongs to the gap of the resulting orthogeodesic, say ηp,

which is both peripheral to an element of M, and unsupportive.

Second case:~rp returns to ∂X

In this case, we stop~rp at ∂X to obtain a finite geodesic arc, which in turn corresponds to an

orthogeodesic ηp. We associate p to the gap associated to ηp. Note that if it ends in a cusp,

then the gap is of length 0.

To prove the identity we need to show that the gaps are disjoint, and that the set of for ever

wandering orthorays is a measure 0 subset of β. This latter fact - in the case where β is a

simple closed geodesic - follows from the same limit set argument as in [11], namely because

the set of for ever wandering orthorays is a subset of the for ever wandering rays in the

Basmajian identity. If however, β is (the horocyclic boundary of) a cusp, this requires an

additional argument.

Lemma 3.1. Let X be a surface with a cusp, and let β be a horocyclic neighborhood of a cusp. Suppose
that M 6= ∅ and/or ∂X contains a boundary geodesic. Then the set of points on β which are the
basepoints of orthorays of infinite length that are not supported on M or that do not hit ∂X in finite
time are a subset of measure 0 of β. In other words, the complementary regions of the gaps are of
measure 0.

Proof. If ∂X has boundary curves, then this follows from the same limit set argument as in [11].

Suppose then that ∂X consists only of cusps. In this case, the geodesic flow is ergodic and by

hypothesis M 6= ∅.

Consider p with~rp which is infinitely long and never forms a loop around an element of

M. By ergodicity, arbitrarily close to any orthoray~rp leaving from p ∈ β is a geodesic that

passes through L(α) for any α ∈ M. This is because the latter forms a set of positive measure

in T1(X). That means that arbitrarily close to the orthogonal vector vp corresponding to~rp

a vector v with angle arbitrarily close to π
2 that exponentiates to reach L(α). By continuity

of geodesic behavior, arbitrarily close to p is an orthoray leaving from β belonging to a gap.

Hence p is isolated in β, proving the lemma.

For the following lemma, we denote the gaps βi, indexed by i ∈ I, and think of each gap as

an open subset of β (hence without its endpoints).
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Lemma 3.2. Let βi and β j be two different gaps. Then βi ∩ β j = ∅.

Proof. Suppose that βi and β j are of different type, say type 1 and type 2. Then if p ∈ βi, the

associated orthoray returns to β without forming a loop in M, hence it cannot be of type 2.

Note that two gaps of type 1 are disjoint, as there is a unique orthogeodesic associated to each

homotopy class of arc between boundary elements.

Now suppose that βi and β j are both of type 2.

It suffices to show that for all points of βi, the first loop in M that the associated orthoray forms

is freely homotopic to αi, and that the associated arc constructed above is always homotopic

to ηi.

Consider the boundary point pi of βi corresponding to an ideal orthoray freely homotopic

to αi. By continuity, for all points in βi sufficiently close to pi, the associated orthorays first

form a loop around αi creating an associated arc homotopic to ηi. Note that throughout the

gap, the orthoray will continue to form this loop. We just need to analyse what happens for in

each self-intersection point of the orthoray that occurs before this loop is formed.

Now suppose p′ is the first point in the gap such that the associated orthoray~rp′ forms another

loop , say α′, before looping around αi. By continuity, as this is the first point, it occurs exactly

at a previous intersection point where the associated loop is homotopic to αi. Hence, it is

easy to see that α′ is a subloop of αi. So either it is homotopic to αi, in which we are happy, or

its a proper subloop, in which case its homotopy class cannot belong to M by definition of

a coherent marking. Note that this is exactly the crucial moment where coherent markings

come into play. And further note that this never happens if ηi is simple.

ηi

α′

Figure 15: An example orthogeodesic ηi and subloops that appear along orthorays in the gaps

This was only the first critical point (meaning the first time an extra intersection point ap-

peared). As we continue to push orthorays along the gap, the same process occurs again, and

again, by the same argument, the new loop that appears is freely homotopic to αi or to one of

its subloops. This process is illustrated in Figure 1515.
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Hence the only loops that appear that belong to M are all freely homotopic to αi. Thus there

is no first point of the gap with a different behavior, which proves that two gaps of type 2

cannot overlap.

This proves the (abstract) identities (Theorem 1.11.1), and in the next section, we restate and

discuss the quantified identities, obtained by replacing the measures of the gaps with their

computed values.

4. The full identities and final remarks

Now that the index set has been properly introduced, that gaps have been quantified, and

that the proof that they form a full measure partition of the boundary length is done, we can

state the identities.

4.1. The general identities

We begin with a full identity, which decomposes the actual boundary of X. In particular if ∂X
contains a cusp, it is considered a geodesic of length 0, all orthogeodesics that have at least

one endpoint in it are of infinite length, and contribute nothing to the sum.

We recall the notation: for a given coherent marking M, OM denotes the orthogeodesics

unsupportive of M (for implicit X). And O α
M is the subset of OM which is peripheral to α.

Note that by definition of being peripheral, orthogeodesics in O α
M leave and return to the

same connected component of ∂X.

Theorem 4.1. Let X ∈ M(Σ) be a hyperbolic surface of finite type with ∂X 6= ∅ containing at
least one simple closed geodesic, and M a coherent marking of C(Σ). The lengths of curves and
orthogeodesics of X satisfy

`(∂X) = ∑
η∈OM

log
(

coth2(η/2)
)

+ ∑
α∈M

∑
η∈Oα

M

log

cosh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1

sinh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1

 .

The condition on the boundary containing at least one simple closed geodesic is to avoid the

above identity be a sum of 0s equal to 0.

The above identity is really a sum of identities taken over the connected components of ∂X
that are simple closed geodesics. If we fix a boundary element β, the identity associated to

β takes two forms, which only depends on whether β is realized on X or as a cusp or as a

geodesic.
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For M is a coherent marking, OβM will denote the subset of OM consisting of orthogeodesics

leaving from β. And Oβ α
M is the subset of OβM which is peripheral to α. As before, by

definition, elements of Oβ α
M leave and return to β.

If β is a boundary simple closed geodesic of X, it satisfies:

`(β) = ∑
η∈OβM

log
(

coth2(η/2)
)

+ ∑
α∈M

∑
η∈Oβ α

M

log

cosh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1

sinh(α/2) +
√

cosh2(α/2) + cosh2(η/2)− 1

 .

Note that using the half-trace convention and computations (Equations 22, 33 and 33), the above

becomes Equation 11.

If β is a cusp:

2 = 2 ∑
η∈OβM

e−η◦ + ∑
α∈M

 ∑
η∈Oβ α

M

e−
α+η�

2

 (5)

where η◦ is the truncated length of η and, for orthogeodesics that leave and return to β, η� is

the doubly truncated length. Note that in this case, every element of OβM appears exactly

once. Indeed, an orthogeodesic in OβM returning to β has infinite truncated length, and thus

contributes 0 to the lefthand sum, but does contribute to the right hand sum with its finite

doubly truncated length. If however an orthogeodesic does not return to β, it cannot be

peripheral to an element of M. Rewriting this sum taking this into account, and reorganizing

the last terms, gives us:

1 = ∑
η∈Oβ

np
M

e−η◦ +
1
2 ∑

α∈M
e−

α
2

 ∑
η∈Oβ α

M

e−
η�
2

 (6)

where Oβnp
M is the set of non-peripheral elements of OβM. In particular

OβM = Oβnp
M∪̇ (∪̇α∈MOβ α

M) .

With this viewpoint, Equation 66 gives a nice probability measure on orthogeodesics in OβM.

The measure associated to an orthogeodesic η in Oβnp
M is e−η◦ and to an orthogeodesic η in

Oβ α
M is e−

α+η�
2 /2.

Remark 4.2. There is something to check in as we have inverted (possibly) infinite sums.

To show the sums are indeed the same, it suffices to show that the sum of e−η�/2 for all η

peripheral to α and unsupportive of M converges. Depending on M, the index set for this
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sum is a subset of the set Oβα
α of orthogeodesics peripheral to α and unsupportive of α. Now,

for any α ∈ C(Σ), from 55 with M = {α}:

2 = 2 ∑
η∈Oβ

np
α

e−η◦ + e−
α
2

 ∑
η∈Oβα

α

e−
η�
2

 .

In particular, the sum ∑η∈Oβα
α

e−
η�
2 converges.

If all boundary elements of X are cusps, then the first sum of Equation 66 disappears. In this

case we have

1 =
1
2 ∑

α∈M
e−

α
2

 ∑
η∈Oβ α

M

e−
η�
2

 (7)

This time we can also view Equation 77 as a type of probability measure on elements in M,

where the measure on α is given by

1
2

e−
α
2

 ∑
η∈Oβ α

M

e−
η�
2

 .

If X has n cusps, by adding up the terms of Equation 77, one obtains

n =
1
2 ∑

α∈M
e−

α
2

 ∑
η∈O α

M

e−
η�
2

 (8)

4.2. Relationship to previous identities

The Basmajian identity

When M = ∅, there are no marked curves, hence no peripheral orthogeodesics, and OM = O.

The identity becomes

`(∂X) = ∑
η∈O

2 log (coth(η/2))

which is exactly the identity proved by Basmajian [11]. Note it only has content when ∂X
contains at least one simple closed geodesic, and has no content when ∂X consists solely of

cusps. Note there is a way of making sense of the identity when X only has cusps, or even

cone-points, obtained by regrouping terms: see the results from [33].

Note this is not the same time the Basmajian identity has been linked to another identity.

Bridgeman and Tan [88] showed how the Basmajian identity is linked to moments of the
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Liouville measure. In fact it is the first term of a family of identities that you can derive from

this point of view, where the second term is the Bridgeman identity [66] (and Bridgeman-Kahn

[77] in higher dimensions). Also see [1111].

McShane type identities

When M is the set of all simple closed curves (primitive, with both orientations, including

those peripheral to boundary), OM becomes the set of simple orthogeodesics O0. This is

because any non-simple orthogeodesic supports a closed curve, and as such, supports a

simple closed curve. The last implication follows from the observation that any non-simple

closed curve has a simple (non-trivial) subloop, and hence it supports a simple closed curve.

In McShane type identities, the sums are over embedded pants with either one or two of its

cuffs peripheral to boundary.

Consider an embedded pair of pants P with a single peripheral cuff β and two other cuffs α1

and α2. P There are two simple orthogeodesics η and η−1 leaving from β and contained in P:

they have the same traces but opposite orientations (see Figure 1616). The measure associated

to P is the sum of the measures associated to η and η−1. If β is a geodesic, this constitutes

6 terms: the measures φ(η) and φ(η−1) (the Basmajian type terms), the terms associated to

η and α1, resp. α2, and the terms associated to η−1 and α1, resp. α2. If β is a cusp, then the

Basmajian type terms disappear.

η−1

η

α1 α2

α

β
β

β′

η

η−1

η′

Figure 16: The pairs of pants P on the left and Q on the right.

To an embedded pair of pants Q with two peripheral cuffs, β and β′, and an additional cuff

α, in the McShane setup there is a gap associated to β and one associated to β′. There are

three simple orthogeodesics in Q that leave from β1 (see Figure 1616). Two of them, say η and

η−1 return to β, and like before have the same traces and different orientations. The 6 gaps

associated to them are as before, where α plays the part of α1 and β′ plays the part of α2.
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There is another simple orthogeodesic, say η′, that goes from β to β′, and to it we associate an

additional Basmajian type gap. Again, the sum of the usual McShane measure is the sum of

these 7 gaps this time. As before, if β is a cusp, the Basmajian type terms disappear.

Final remarks

The Basmajian and McShane identities have been studied in many contexts. For instance,

the Basmajian identity has been generalized to inequalities on maximal representations [1313],

to higher Teichmüller theory [2323], and to situations with limit sets of different Hausdorff

dimension [1414]. The McShane identity found its first generalizations in the work of Bowditch

[55], Mirzakhani [2121] and Tan-Wong-Zhang [2222], the latter having generalized it to cone

surfaces. Bowditch also provided another proof of the original torus identity [44], recently

generalized by Labourie-Tan [1818]. Further generalizations include [1717], [1616], and [1212]. A very

useful survey is [99], although of course it doesn’t take into account the most recent work.

It might be interesting to see to what extent the identities investigated in this paper generalize

to other contexts. As mentioned previously, there is direct link between the Bridgeman

identity and the Basmajian identity [88], and the two identities share the same index set. In the

current identities, the measures are always sums of Basmajian terms (the McShane type terms

being infinite sums of Basmajian type terms that share the same initial dynamic behavior).

Hence there is an immediate abstract identity related to the Bridgeman identity, obtained by

summing the terms corresponding to the same index set. In a related direction, the Luo-Tan

identity [1919] decomposes the volume of the unit tangent bundle (also see [1515]). The index set

in these identities is the set of embedded pairs of pants. It seems reasonable to hope to be

able to generalize the techniques of the current paper to this context to obtain identities with

certain types of immersed pairs of pants.
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