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Abstract. The subject of this lecture is ongoing research about the distribution
of the simple closed geodesics on a compact Riemann surface, endowed with the
Poincaré metric of constant curvature -1. It is well known that the closed geodesics
on such a surface are dense, they are even dense in the unit tangent bundle. The
situation is quite different, however, if one restricts one’s consideration to the simple
geodesics: Birman and Series [2] have shown that the union of all closed geodesics
without self-intersections is a nowhere dense set. Our goal is to give a quantitative
version of this result.

1. Introduction

It is a well known result that on a compact negatively curved Riemannian manifold
M the closed geodesics are dense. They are even dense in the unit tangent bundle. The
“responsible” phenomenon is that if you consider any point p ∈ M and any unit tangent
vector v at p, then a geodesic ray with p and v as initial conditions will return arbitrarily
close to p and with tangent vector arbitrarily close to v, if you only wait long enough. It
is then possible to slightly modify p and v such that at the moment of return the initial
and end conditions match exactly and one has a smooth closed geodesic.

Now let us assume that M is a compact Riemann surface of genus g ≥ 2, i.e. a
compact two dimensional orientable Riemannian manifold of genus g endowed with a
Riemannian metric of constant curvature -1. We shall also say that M is a hyperbolic
surface.

In this case, one may well imagine that if we take p ∈ M at random and let a geodesic
ray γ start at p into an arbitrary direction v, then it will be difficult for γ to come back
near p over and over again without ever crossing itself. Hence, we expect that most of the
closed geodesics on M have self-intersections (i.e. transversal crossings). This is indeed
true and the following results are known.

Theorem A (Mirzakhani). Let NM (s, L) be the number of simple closed geodesics of
lengths ≤ L on M . For L →∞ this number has the asymptotic behavior

NM (s, L) ∼ cML6g−6,

where cM is a constant depending on M .

This theorem—which first was shown by McShane and Rivin [6, 7] in the case of the
once-punctured torus and for which there is also a weaker form in [9]—is in sharp contrast
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to Huber’s asymptotic law [4],
NM (L) ∼ eL/L,

where NM (L) is the number of all closed geodesics of lengths ≤ L on M .
The second result, due to Birman and Series [2], says that not only are the simple

closed geodesics much fewer in number, they also pass only through very special locations:

Theorem B (Birman-Series). The set S ⊂ M of all points on M which lie on a simple
closed geodesic is nowhere dense and has Hausdorff dimension one.

(The statement is true, more generally, for the sets Sk of points on M which lie
on a complete—closed or none closed—geodesic that has at most k transversal self-
intersections; k = 0, 1, . . . .) Hence, there is an open dense subset on M that is com-
pletely avoided by the simple closed geodesics. Our aim is to show that the avoided set
has even some thickness that is independent of the geometry of M :

Theorem C. There exists a constant cg > 0, depending only on g, such that any compact
Riemann surface M of genus g contains a disk of radius cg into which the simple closed
geodesics do not enter.

As an illustration we show the distribution of closed geodesics on a one-holed torus T
(a surface of genus 1 with one closed boundary geodesic). Although this is not a closed
surface the phenomenon shows up as well, and the computation of the geodesics was
easier to carry out on it. The figures represent the right-angled geodesic octagon T̃ in
the upper half plane model H of the hyperbolic plane that is obtained by cutting T open
along two disjoint geodesic arcs which meet the boundary of T perpendicularly at their
endpoints. Figure 1 shows the paths on T̃ of the first 10, respectively the first 50 closed
geodesics of T . Figure 2 shows the paths of the first 10, respectively 50, simple closed

Figure 1. The first 10, respectively 50, geodesics of a one-holed torus
drawn on a fundamental domain in the upper half plane

Figure 2. The first 10, respectively 50, simple closed geodesics
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geodesics. ”First n” is meant with respect to the combinatorial enumeration procedure
that we used for the drawing algorithm. In both cases the full set of geodesics is still
denser, but the difference in behavior is evident.

In the next paragraphs we give an outline proof of Theorem C, based on figures, in
which we try to bring the geometric phenomena into evidence.

2. Near the boundary of moduli space

Example 1 (thrice punctured sphere). Let us begin with an example where the state-
ment of Theorem C becomes quite evident. The example itself is a limit case and thus
lies on the boundary of the scope of Theorem C. It is obtained as follows.

D

τ

τ ′

M3

Figure 3. An ideal hyperbolic quadrilateral and the resulting thrice
punctured sphere

Let D be the unit disc model of the hyperbolic plane and let τ be an ideal geodesic
triangle, i.e. a geodesic triangle domain in D whose vertices lie at infinity (the boundary
of D) as shown on the left hand side of Fig. 3. Let Γ be the group of isometries of D
(Möbius transformations) generated by the three reflections across the sides of τ , and let
Γ3 ⊂ Γ be the index two subgroup consisting of all orientation preserving elements of Γ.
Then τ is a fundamental domain of Γ and the union τ ∪ τ ′ is a fundamental domain of
Γ3, where τ ′ is the reflected image of τ across one of its sides. Our example—shown on
the right-hand side of Fig. 3—is the surface M3 = D/Γ3, the quotient of D by the action
of Γ3. The surface M3 may also be described as being obtained by a pasting procedure;
it is the surface obtained by gluing together the sides of the ideal quadrilateral τ ∪ τ ′ as
shown on the left-hand side in Fig. 3.

M3 does not have any simple closed geodesics. But it has six simple complete geodesics,
as shown in the figure. Three of them (used as contour lines in the figure) connect the
vertices at infinity with each other, the other three go from a vertex at infinity to a
contour line and from there back to the same vertex at infinity. The complement of these
geodesics consists of 12 triangles. The inscribed circular discs have the property that no
simple complete geodesics enter into them.

We shall show in this paragraph that if a surface lies close to the boundary of moduli
space, then the situation on it is slightly similar to this example.
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Example 2 (flat torus). Now let us give a counterexample to Theorem C, in order to
show an other extremal case. Of course, this example will not be a hyperbolic surface.

The surface here is a flat torus, F , obtained by gluing together opposite sides of a
Euclidean rectangle as shown in Fig. 4. Any complete closed or non-closed geodesic on
F is simple, and for any ε > 0 there exists on F a closed geodesic that is ε-dense, i.e. for
which any point on F lies within distance less than ε.

Figure 4. Closed geodesics on a flat torus

For a hyperbolic surface in general the situation is somewhere between these two
examples. In the present section we look at the case where, to speak in terms of moduli,
surface M lies near the boundary of moduli space. Boundary points of the moduli space
Mg of compact Riemann surfaces of genus g, g ≥ 2, are surfaces with cusps, and so what
we assume is that M has at least one sufficiently small closed geodesic.

It is well known that any M ∈ Mg admits a decomposition into 3g − 3 three-holed
spheres, so-called pairs of pants, along a set of pairwise disjoint simple closed geodesics
γ1, . . . , γ2g−2. By a theorem due to Bers ([1, 3]), there even exists such a decomposition
with all γi shorter than a constant Lg, the Bers constant, that depends only on g.
Furthermore, if M contains simple closed geodesics of lengths less than arcsinh(1), then
one may choose a Bers decomposition in such a way that they all take part in it. Hence,
for M ∈ Mg sufficiently close to the boundary, Theorem C is settled by the following.

Lemma 1. There exist constants εL and rL such that if Y ⊂ M is a pair of pants with
one boundary geodesic smaller than εL and the others smaller than L, then Y contains
a disk of radius rL into which the simple closed geodesics of M do not enter.

Proof. (Sketch) Let us consider again a limit case: assume that Y has one cusp (instead
of a boundary geodesic of length < εL) and two boundary geodesics of lengths < L.
Figure 5 shows Y on the left-hand side, and a lift Ỹ of Y in the universal covering D
of M on the right-hand side. Ỹ is a geodesic polygon domain with four right angles
and two vertices at infinity; it may also be obtained by cutting Y open along the two
perpendicular geodesic arcs from the cusp to the two boundary geodesics γ1, γ2.

Now consider the parts on Y of the simple complete geodesics of M . There is one
example entirely on Y (not drawn in the figure) that goes from the cusp to the common
perpendicular of γ1 and γ2, and from there back to the cusp; its lift in Ỹ is the geodesic
that connects the two vertices e and f at infinity with each other. Denote by a, d,



SIMPLE CLOSED GEODESICS 5

γ1 γ2

γ̃1 γ̃2α

a b

cd

e

f

Y Ỹ
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Figure 5. Text

respectively b, c the ideal endpoints at infinity of the lifts γ̃1, γ̃2 of γ1, γ2. If α is any
complete simple geodesic on M that has an ideal endpoint at the cusp of Y , and if α̃ is
a lift of α in D that intersects Ỹ , then α̃ is either the geodesic from e to f , or it goes
from e or f to one of the geodesics γ̃1, γ̃2. It can therefore not enter into the shaded area
shown in the figure (part of triangle aef).

If α on M intersects Y but does not go into the cusp, then it must connect γ1 with
γ2. For any lift α̃ of it in D the intersection α̃∩ Ỹ must therefore be a subset of the ideal
quadrilateral abcd. Now, part of our shaded area lies outside this quadrilateral! So, this
part contains a disk of some positive radius into which no lift of a simple geodesic can
enter.

It is not hard to see that the same argument holds true if the assumption of a cusp
is replaced by the assumption that Y has a sufficiently small boundary geodesic. Hence,
the lemma.

¤

3. Continuity of the radii

For general M ∈ Mg the proof of Theorem C uses a continuity argument. Let cM be
the radius of the largest disk on M into which no simple closed geodesic enters. By the
Birman-Series theorem (Theorem B), cM is positive for each M . If we can show that cM

is a continuous function of M , M ∈ Mg, then we are done because, as is well known, the
subset Mg,ε of Mg consisting of all surfaces with shortest closed geodesic of length ≥ ε is
compact. Hence, cM has a positive lower minimum in Mg,ε and, by Lemma 1, a positive
lower bound outside Mg,ε.

The continuity is understood with respect to the topology of Mg based on the following
concept of quasi-isometry (there are also variants). A one-to-one mapping φ : M → M ′

is called a k-quasi-isometry (k ≥ 1) if for any p, q ∈ M one has

1
k
· dist(p, q) ≤ dist(φ(p), φ(q)) ≤ k · dist(p, q).

The distance of M, M ′ ∈ Mg is then defined as the infimum over all log(k) for which a
k-quasi-isometry from M to M ′ exists.
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Now assume that there is a k-quasi-isometry φ : M → M ′, with k close to 1, and
consider a disk on M into which no simple closed geodesic enters. Its image under φ
in M ′ is not exactly a disk but it contains a disk of almost the same radius. And the
images, φ(α), of the simple closed geodesics α of M do not enter in it. But where are
the closed geodesics in the free homotopy classes of the images? Do they lies almost at
the same place, as shown in Fig. 6, which means that we have found a ”good” disk of

On M On nearby M ′

φ

Figure 6

almost the same radius on M ′, or is the situation rather as in the next figure, where the
geodesic α′ in the homotopy class of φ(α) has moved too far away? The next example

On M On nearby M ′

φ

Figure 7

shows that there are, in fact, situations where α′ slips away from φ(α).

Example 3. Let S and S′ be surfaces of revolution in R3 as shown in Fig. 8, where
a contour line is rotated about a horizontal axis. If the contour line is convex, then
the surface has negative curvature. In both cases the contour line is almost straight,
and there exists a k-quasi-isometry φ from S to S′ with k almost equal to 1 that sends
boundary component γi of S to boundary component γ′i of S′, i = 1, 2. The contour
lines are such that on S as well as S′ there exists a unique simple closed geodesic α,
respectively α′ homotopic to the boundary. This geodesic lies at the narrow part of the

S
S′α

φ(α) α′

Figure 8. Quasi-isometric surfaces of revolution
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surface. On S the narrow part is near γ1; on S′ it is near γ′2. Hence, α′ lies far away
from φ(α).

The next lemma will tell us that on a hyperbolic surface the situation is different.
Its statement is in terms of quasi-geodesics. If α is a geodesic parametrized with unit
speed and φ : M → M ′ a k-quasi isometry, then φ ◦ α is a curve satisfying the following
definition for q = k2 (again there are variants of this definition): a parametrized curve
c : I → R from an interval I to a Riemannian manifold R is called a q-quasi-geodesic if
for any s, t ∈ I with sufficiently small |t− s|, the following holds, where `(c|[s,t]) denotes
the length of the arc of c corresponding to the interval [s, t]:

`(c|[s,t]) ≤ q · dist(c(s), c(t)).

The following lemma concludes the proof of Theorem C:

Lemma 2. For some positive function f : ]1,∞[ → R with limt→1 f(t) = 0 the following
holds. Any closed q-quasi geodesic γ′ on a hyperbolic surface lies within distance f(q)
from the closed geodesic γ in its free homotopy class.

Proof. (Sketch) As homotopies on the surface may be lifted to homotopies on the univer-
sal covering we shall prove the lemma for the case where γ is a geodesic in the hyperbolic
plane with ideal endpoints, say a and d, at infinity, and γ′ is a q-quasi geodesic having
the same ideal endpoints. We have to estimate the distance from any point p on γ′ to γ.

To this end we look at the inscribed geodesic polygon P = · · · p−2p−1p0p1 · · · of γ as
shown in Fig. 9 that has point p among its vertices, say such that p = p0, and all of whose
sides have length 1 (we might also use some other length). Any three consecutive points

pi−1

pi
pi+1

1

1 1

wi

Figure 9. An inscribed polygon

pi−1, pi, pi+1 form a triangle whose longest side has length wi ≥ 2q (because the length
of the arc on γ′ from pi−1 to pi+1 is at least 2). Now draw a comparison polygon Pq

as shown in Fig. 10, also with all sides of length 1, and such that any three consecutive
points form a triangle whose largest side has length 2q. The position of Pq must be such
that one of its sides coincides with side p0p1 and such that the polygon “looks towards”
γ. By construction the angles at the vertices of Pq are smaller than or equal to the
angles of P. This implies that γ separates p from the geodesic γq that connects the ideal
endpoints b, c of Pq with each other. In particular the distance from p to γ is smaller
than or equal to the distance from p toγq. The latter is a function of q (all points of Pq

lie on a a parallel curve of γ1) that converges to 0 as q → 1, and the lemma follows.
¤

4. Large genus

In this short paragraph we want to point out that constant cg does not have a positive
lower bound independent of g.
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p

a

b c

d

P

Pq

γq

Figure 10. Comparison polygon and the geodesic that connects its
ideal endpoints

The argument is as follows. Take any compact Riemann surface M and let δ > 0.
Since the closed geodesics on M are dense, there exists a sequence γ1, . . . , γn of them on
M such that any point p lies within distance < δ of some γi. By a theorem of Scott [10],
there exists a finite covering surface M̂ of some genus ĝ such that all primitive lifts of
γ1, . . . , γn on M̂ are simple geodesics. It follows that any point on M̂ lies within distance
< δ of some simple geodesic, and thus cĝ < δ.
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