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Abstract. We construct a quasiconformally homogeneous hyperbolic Riemann

surface—other than the hyperbolic plane—that does not admit a bounded pants

decomposition. Also, given a connected orientable topological surface of infinite

type with compact boundary components, we construct a complete hyperbolic metric

on the surface that has bounded geometry but does not admit a bounded pants

decomposition.

1. Introduction

A Riemann surface X is quasiconformally homogenous, or QCH, if there exists a real

number K such that K ≥ 1 and such that for any two points x, y ∈ X there exists

a K-quasiconformal homeomorphism f : X → X with f(x) = y. This notion was

introduced in [66] for hyperbolic manifolds of arbitrary dimension. In the same article,

the authors gave a characterization of all QCH hyperbolic manifolds in dimension

greater than two, which relied on rigidity results that do not exist for Riemann

surfaces. It is an open question to characterize QCH Riemann surfaces.

Building on results in the literature, the first and third author in [44] showed that this

problem can be split into four topological cases. Moreover, they gave a characterization

in one of the cases: every two-ended infinite-genus QCH Riemann surface with no

planar ends is quasiconformally equivalent to a (geometric) regular cover of a closed

surface. A key component of the proof was to show that every two-ended infinite-

genus QCH Riemann surface admits a bounded pants decomposition, that is, a pants

decomposition in which (non-cuspidal) cuffs have lengths that are universally bounded

from above and below. The motivation of this article is the following question: Does

every hyperbolic QCH Riemann surface, other than the hyperbolic plane, admit such a

pants decomposition? Our main theorem answers this question in the negative:
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Theorem 4.64.6. There exists a non-simply connected quasiconformally homogenous

hyperbolic Riemann surface without a bounded pants decomposition.

Intuitively, every non-simply connected QCH hyperbolic Riemann surface must have

its injectivity radius uniformly bounded from above and below (this is shown in [66,

Theorem 1.1]). In particular, every non-simply connected QCH hyperbolic Riemann

surface has bounded geometry. A hyperbolic Riemann surface X has bounded geometry

if the injectivity radius at each point of X outside the area 2 horoball neighborhoods

of the cusps is universally bounded from above and below.

It is clear that a Riemann surface with a bounded pants decomposition has bounded

geometry; however, the converse is false—Kinjo gives a counterexample in [99]. (How-

ever, Kinjo shows that every hyperbolic Riemann surface with bounded geometry

does admit a bounded hexagonal decomposition [1010].) In fact, the Riemann surface R

obtained by removing the lattice Z⊕ iZ from C is such a counterexample (which is

distinct from Kinjo’s example, but similar in nature). The point is that the thick part

of R is quasi-isometric to R2 with the standard Euclidean metric and there are curves

in any pants decomposition of R that must bound (topological) disks in C containing

an increasing number of lattice points. The isoperimetric inequality now guarantees

that the lengths of these curves tend to infinity.

Both this example and Kinjo’s are based on planar surfaces where every simple closed

curve is separating. It is not so clear how to create examples of non-planar Riemann

surfaces with bounded geometry that do not admit a bounded pants decomposition.

Our second theorem shows this is always possible:

Theorem 5.55.5. Every infinite-type orientable connected topological surface with com-

pact boundary components admits a complete hyperbolic metric with bounded geometry

and such that every pants decomposition has unbounded cuff lengths.

The fact that, for any topological surface of infinite type, one can find a hyperbolic

metric that does not admit a bounded pants decomposition is not entirely surprising

in light of the study of the Bers constant for finite-type surfaces. This constant,

first studied by Bers [55] and quantified by Buser and others [77, 11, 22, 1212], is an upper

bound on a shortest pants decomposition of a hyperbolic surface in terms of its (finite)

topology. The lower bounds for this constant are known to grow in terms of topology,

but the examples with genus generally use very thin surfaces, so such a limiting surface

would not have bounded geometry.
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Also note that if a surface has a bounded pants decomposition then its length spectrum

is indiscrete, and hence any hyperbolic surface with a discrete length spectrum cannot

have a bounded pants decomposition. In [33], Basmajian–Kim give a general strategy

for constructing hyperbolic surfaces with discrete length spectrum and prescribed

topology. However, the surfaces we construct in Theorem 5.55.5 necessarily do not have

a discrete length spectrum.

To establish the above theorems, it is thus necessary to find a new strategy. The key is

to mimic the example R described above, that is, to find surfaces with an isoperimetric

profile that will guarantee the non-existence of bounded pants decompositions. Most

of our constructions begin with a “plane with holes”: a surface similar to R but

with boundary geodesics of a fixed length, which are then pasted to obtain different

topological types and in ways which ensure the non-bounded pants decomposition

property.

Outline

After a preliminary section, Section 22, where we set notation and terminology, we

study in Section 33 the geometry of pairs of pants, and in particular their intrinsic

diameters, which will be a key tool in our proofs. In Section 44 we establish the basis

for our constructions and establish Theorem 4.64.6. In the final section, Section 55, we

handle all remaining topological types, establishing Theorem 5.55.5.
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2. Preliminaries

All our surfaces will be orientable. A hyperbolic surface with totally geodesic boundary

is a connected complete metric space in which every point has a neighborhood isometric

to an open subset of a closed geodesic half-plane in the hyperoblic plane. Given a

hyperbolic surface X, the length of a curve α in X is denoted by `X(α). For x ∈ X,

injradX(x) will denote the injectivity radius of X in x, that is, the supremum of

the radii of isometrically embedded hyperbolic disks centered at x. The systole of
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X, denoted sys(X), is the infimum of the lengths of closed geodesics in X. The

surface X is said to have bounded geometry if there exists a constant M > 1 such

that sys(X) ≥ 1/M and injradX(x) ≤M for every x ∈ X. Equivalently, in the case

where X has no boundary, there are positive universal upper and lower bounds on the

injectivity radius of all points of X in the complement of well chosen neighborhoods

of the cusps of X.

A geodesic pants decomposition of a (hyperbolic) surface is a collection of disjoint

simple closed curves such that the complementary regions are all three-holed spheres

(pairs of pants) with finite area. For finite-type surfaces this is equivalent to being a

maximal collection of disjoint simple closed geodesics that is maximal with respect

to inclusion, but for infinite-type surfaces, an extra condition on local finiteness is

necessary. A (geodesic) pants decomposition P of X is bounded if there exists a

constant B > 1 such that every closed geodesic γ ∈ P satisfies 1/B ≤ `X(γ) ≤ B.

Note that not every hyperbolic surface has a geodesic pants decomposition, e.g., if it

contains a funnel or half-plane.

In general, the arguments that follow are mostly self contained. For basic facts and

formulas in hyperbolic geometry, we make appropriate references to [77]. Outside of

basic hyperbolic geometry and surface topology, we will make reference to topological

ends and the classification of surfaces based on the end spaces of surfaces, which we

refer the reader to Richards [1313].

3. Bounds on the diameter of pairs of pants

One of the keys to providing examples of hyperbolic surfaces with no bounded pants

decompositions is to show that there are pairs of pants that span long portions of the

surface, that is, there are pants with large diameter. In order to do this, we need to

relate the lengths of the cuffs of a pair of pants to its diameter, and in particular give

upper bounds on the diameter as a function of its cuff lengths. We will also have need

to work with pairs of pants with cusps, in which case we will focus on the diameters

of the thick part. The goal of this section is to establish these upper bounds. We first

treat the case of no cusps (Lemma 3.13.1) and then the cusped case (Lemma 3.23.2). The

arguments are similar in nature, but the latter is more technical.

Lemma 3.1. Let l and L be positive real numbers satisfying l < L. There exists a

constant K = K(l) such that any pair of pants P with cuff lengths between l and L

has diameter less than 3
2
L+K.
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Proof. We first make the observation that every right-angled hexagon has area π and

hence there is a bound on the radius of the largest inscribed circle. It follows that

the distance between any point in the hexagon and the boundary is bounded by a

universal constant. Explicitly: for any point p in the hexagon, a ball of area r around

p is of area 2π(cosh(r)− 1), so if the ball is embedded then 2π(cosh(r)− 1) < π and

hence r < arccosh(3/2) < 1.

We next decompose P into the union of two isometric right-angled hexagons with

disjoint interiors. We work with one of the hexagons H, which contains three pairwise

non-adjacent sides of lengths `1
2
, `2

2
, and `3

2
. Denote the length of the side opposite the

side of length `3
2

by w. Using a standard formula for hyperbolic right-angled hexagons

(see [77, Theorem 2.4.1(i)]), we readily deduce that

coshw ≤ 1

sinh2 `
2

(
cosh

L

2
+ cosh2 `

2

)
.

Now using the facts (for all x, y ≥ 1) that arccoshx < log x+ log 2 and log(x+ y) <

log x+ log(y + 1) we have

w < log cosh
L

2
+K1(`) < L+K1(`),

where

K1(`) = log

[
2

sinh2 `
2

]
+ log

(
cosh2 `

2
+ 1

)
+ log 2.

Of course the same bound holds for the side opposite `1
2

as well as the side opposite
`2
2

. Putting the bounds for each of the sides together we see that the boundary of H

has length bounded by 3L+ 3K1.

Now using the fact that any point on the pair of pants is distance at most 1 from

the boundary of H, we have that the diameter of P is at most 3
2
L + K, where

K = 3
2
K1 + 2.

We now adapt this result to the setting of pants with cusps. The goal this time will

be to bound the diameter of a thick part of the pants. To do so we remove a canonical

neighborhood of each cusp; in particular, given a pair of pants P with cusps, the

truncated pair of pants associated to P is the subset P t of P obtained by removing

the area 2 horoball neighborhoods of each cusp. Note that these neighborhoods are

always embedded and disjoint. In fact, these are the maximal such neighborhoods,

and this is the sense in which they are canonical (see [77, Section 4.1]). Up to isometry,
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there is a unique pair of pants with three cusps, and its diameter can be computed

explicitly. However, the 3-cusped pair of pants will not play a role in the sequel, and

so we will only consider pairs of pants with at least one totally geodesic boundary

component.

In what follows, we will frequently refer to the collar function η : (0,∞) → (0,∞)

defined by

η(`) = arcsinh

(
1

sinh(`/2)

)
.

Lemma 3.2. Let l and L be positive real numbers satisfying l < L and let P be a

pair of pants with either one or two cusps and totally geodesic boundary. Then, there

exists a constant K = K(l) such that if the lengths of the cuffs of P are in the interval

[l, L], then diam(P t) ≤ L+K.

Proof. We first treat the case when P has one cusp and two totally geodesics boundary

components of length `1 and `2 in the interval [l, L].

As in Lemma 3.13.1, we begin by decomposing P into two right-angled pentagons with

disjoint interiors, which when intersected with P t yield two isometric right-angled

hexagons with disjoint interiors. Let H̃ be one of the pentagons, and H = H̃ ∩ P t

the corresponding hexagon. The side of ∂H corresponding to the horocycle is not

geodesic, but a curve of constant curvature of length 1. Together with sides of lengths
`1
2

and `2
2

, they form alternating sides of the hexagon. We denote the other lengths by

x, y and z as in Figure 11.

`1/2 `2/2

xy

z

1

Figure 1: The truncated hexagon H inside the pentagon H̃.

As in the previous lemma, we observe that any point p ∈ H is distance at most 1 from

∂H. (The argument only depended on an upper bound of the area of the hexagon

and here area(H) = π − 1.)
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As before, a bound on the perimeter of H, denoted `(∂H), yields a bound on the

diameter of P t. Indeed, any two points of P t are distance at most 1 from ∂H, and

hence diam(P t) ≤ `(∂H)
2

+ 2. In order to bound this perimeter, we proceed to estimate

x, y and z.

The pentagon H can be further decomposed into two Lambert quadrilaterals with

disjoint interiors by taking the perpendicular from the side of H of length z to the

cusp. Using a standard formula for Lambert quadrilaterals (see [77, Theorem 2.3.1(i)]),

we have

z = η(`1) + η(`2) ≤ 2 η(`).

The goal is now to show that there is a bound on both x and y of the form L
2

+ ∆,

where ∆ only depends on `. There are certainly many ways of doing this, including

writing down an explicit formula for x and y that depend on `1 and `2, and then

studying the resulting function. To simplify things, we instead view P as the geometric

limit of a pair of pants where one of the cuff lengths goes to 0, which will allow us to

use a standard trigonometric formula.

Let `0 be a positive real number, and let P`0 be a pair of pants with cuff lengths

`0, `1 and `2. As before, decompose P`0 into two isometric right-angled hexagons

with disjoint interiors; let H`0 be one of these hexagons. By the collar lemma (see [77,

Theorem 4.1.1]), the cuff of length `0 admits an embedded neighborhood of width

η(`0) in P`0 that is disjoint from the other cuffs. Let P t
`0

be the result of removing the

η(`0)-neighborhood around the cuff of length `0 from P`0 , and let H t
`0

= P t
`0
∩H`0 .

Keeping with our notation, let x0 and y0 denote the lengths of the sides in H t
`0

opposite

the sides of length `1/2 and `2/2, respectively. The area of η(`0)-neighborhood in P`0
is `0 sinh(1/`0), which limits to 2 as `0 tends to 0. In particular, as `0 → 0, the pair

of pants P`0 limits to the pair of pants P , and the η(`0)-neighborhood around the cuff

of length `0 limits to the area 2 horoball neighborhood of the cusp in P . It follows

that x0 → x and y0 → y as `0 → 0.

The side of H`0 containing the side of H t
`0

of length x0 has length x0 + η(`0). It follows

that

cosh (x0 + η(`0)) =
cosh(`1/2) + cosh(`0/2) cosh(`2/2)

sinh(`0/2) sinh(`2/2)

≤ cosh(L/2) + cosh(`0/2) cosh(`/2)

sinh(`0/2) sinh(`/2)

where the equality is an immediate application of a standard formula for hexagons
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(see [77, Theorem 2.4.1(i)]), and where the inequality readily follows from the fact that

the hyperbolic cotangent function is monotonically decreasing on the positive real

line. Hence,

x0 ≤ arccosh

(
cosh(L/2) + cosh(`0/2) cosh(l/2)

sinh(`0/2) sinh(l/2)

)
− η(`0).

Now arccosh(t) = log(t +
√
t2 − 1) < log(2t) and arcsinh(t) = log(t +

√
t2 + 1) >

log(2t) and thus

x0 < log

(
1

sinh(`0/2)

(
cosh(L/2)

sinh(l/2)
+ cosh(`0/2) coth(l/2)

))
− log

(
1

sinh(`0/2)

)
= log

(
cosh(L/2)

sinh(l/2)
+ cosh(`0/2) coth(l/2)

)
≤ log

(
cosh(L/2) + cosh(`0/2) cosh(L/2)

sinh(l/2)

)
= log (cosh(L/2)) + log

(
1 + cosh(`0/2)

sinh(`/2)

)
≤ L

2
+ log

(
1 + cosh(`0/2)

sinh(`/2)

)
where the third inequality uses the fact that l ≤ L and the fifth inequality uses the

fact that log(cosh t) < t whenever t > 0. By continuity, we have

x = lim
`0→0

x0

≤ lim
`0→0

(
L

2
+ log

(
1 + cosh(`0/2)

sinh(`/2)

))
=
L

2
+ log

(
2

sinh(`/2)

)
The same argument applies to y. As `1 and `2 are bounded above by L, we obtain an

upper bound on the perimeter of H:

`(∂H) < x+ y + z + `1/2 + `2/2 + 1 < 2L+ 2 η(`) + 2 log

(
2

sinh(l/2)

)
+ 1.

We now take the function K(l) to be

K(l) = η(`) + log

(
3

sinh(l/2)

)
+ 2 +

1

2

and thus we obtain

diam(P t) ≤ L+K(l)
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as desired.

We now treat the case when P has two cusps; the method is similar but less complicated

than the one-cusp case. As before, we consider a truncated pair of pants, but this

time there are two horocyclic neighborhoods removed. We denote by `1 the length of

the only geodesic boundary curve, which we assume lies between l and L. We look at

the corresponding truncated hexagon H, which this time has an axial symmetry. The

remaining side lengths are denoted as in Figure 22.

`1/2

xx

1 1

z

Figure 2: The doubly truncated hexagon H.

As before, we have

diam(P t) ≤ `(∂H)/2 + 2,

and so need to bound the perimeter of H. We use the same limiting argument as

before by considering a pair of pants with two boundary geodesics of length `0 and

the third of length `1. We then remove the two standard collars of width η(`0) around

the two geodesics of length `0 and denote by z0 the common orthogonal between

the two collars (corresponding to z on H). Working in the hexagon H`0 , another

straightforward application of [77, Theorem 2.4.1(i)] yields

cosh (z0 + 2η(`0)) =
cosh(`1/2) + cosh2(`0/2)

sinh2(`0/2)
≤ cosh(L/2) + cosh2(`0/2)

sinh2(`0/2)
,

and hence

z0 ≤ arccosh

(
cosh(L/2) + cosh2(`0/2)

sinh2(`0/2)

)
− 2η(`0).

Using the same functional properties as before, we can deduce that

z0 ≤ log

(
cosh(L/2) + cosh2(`0/2)

sinh2(`0/2)

)
− 2 log

(
1

sinh(`0/2)

)
= log

(
cosh(L/2) + cosh2(`0/2)

)
.
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Using continuity, the fact that log(cosh t) < t for t > 0, and a basic calculus computa-

tion, we obtain

z = lim
`0→0

z0

≤ lim
`0→0

log
(
cosh(L/2) + cosh2(`0/2)

)
= log(cosh(L/2) + 1)

≤ L

2
+ 1

We now need to bound the quantity x. As in Figure 33, we consider the unique

`1/2

z

1

x

Figure 3: A Lambert quadrilateral with an ideal point and a right-angled ideal triangle.

orthogeodesic coming from the opposite ideal point and note the base point of this

orthogeodesic is exactly the endpoint of the boundary of the horocyle. This can either

be computed, or in fact easily observed in Figure 44.

Again using a standard formula for Lambert quadrilaterals ([77, Theorem 2.3.1(i)]), we

have

x = η(`1) ≤ η(`).

0 1

i
1

Figure 4: The orthogeodesic and length 1 boundary of the horocyle are tangent.
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We can now bound the perimeter of H:

`(∂H) = 2x+ 2 + z +
L

2
≤ L+ 2 η(`) + 3

and it follows that the diameter of P t satisfies

diam(P t) <
L

2
+K(l)

for

K(l) = η(`) +
3

2
.

The above lemmas will be used to show that any pants decomposition of certain surfaces

have pants with arbitrarily long cuff lengths. We make the following observation that

will be crucial in how we use the above lemmas. Let P be an embedded pair of pants

in a hyperbolic surface X. Then, P has an intrinsic distance, which we denote dP , but

also a distance coming from X, denoted dX . When applicable, the same observation

applies to a truncated pair of pants P t. Hence, we have the following inequalities:

sup
p,q∈P

dX(p, q) ≤ sup
p,q∈P

dP (p, q) ≤ diam(P ) (1)

and

sup
p,q∈P t

dX(p, q) ≤ sup
p,q∈P t

dP (p, q) ≤ diam(P t). (2)

4. Planes with handles and QCH Riemann surfaces

The main goal of this section is to give an example of a quasiconformally homogeneous

surface that fails to admit a bounded pants decomposition and hence establishing

Theorem 4.64.6. This surface will be an example of a larger class of surfaces—planes

with handles—constructed below in Section 4.14.1. Topologically, planes with handles

are constructed from the plane by removing open disks and identifying the resulting

boundary components in pairs. Geometrically, we will explore two cases: either the

distance between any two identified pairs is universally bounded or not. Section 4.34.3

deals with the former case and Section 4.44.4 the latter. Before considering these

cases, in Section 4.24.2 we establish a topological lemma about arcs on surfaces and a

general geometric proposition giving a lower bound on the cuff lengths in a pants

decomposition based on the existence of quadrangular subsurfaces.
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b

b

a

a

c
Rb

Figure 5: The one-holed hyperbolic square Rb made of four right-angled pentagons.

4.1. Planes with handles

Given a real number b such that sinh(b) > 1, there exists a unique right-angled

hyperbolic pentagon with adjacent sides of length b [77, Lemma 2.3.5]. Pasting four

copies together, we obtain a one-holed square Rb as shown in Figure 55. If we set

b = arcsinh(1), then the pentagon degenerates into an ideal Lambert quadrilateral,

and in this case, we can again paste four copies together to obtain a one-cusped square

Rarcsinh(1). In either case, given b ≥ arcsinh(1), we can paste copies of Rb together

to form a grid with an action of Z2 by isometries; we denote the resulting surface

by Σb. Observe that if b > arcsinh(1), then Σb is one-ended and has infinitely many

boundary components; if b = arcsinh(1), then the end space of Σb is homeomorphic

to a convergent sequence with its limit point; in either case, Σb is often referred to as

a flute surface.

Definition 4.1. A hyperbolic surface obtained from Σb by identifying a subset of

boundary components pairwise via orientation-reversing isometries is called a plane

with handles. If the distance between any pair of identified boundary components is

universally bounded, then we say that the associated plane with handles has bounded

gluings.

For example, Σb is itself a plane with handles with bounded gluings (since there are

no gluings); this example also shows that the naming is a bit of a misnomer since Σb

has no handles. We readily see that a plane with handles has bounded geometry. In

Proposition 4.54.5 below, we will see that a plane with handles with bounded gluings

does not admit a bounded pants decomposition.

In what follows, it will be helpful for us to have a fixed embedding of Σb into R2, so
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Figure 6: The grid made by pasting one-holed squares.

that we can refer to coordinates. Fix an isometric copy of Rb in Σb and choose a side

of Rb. The complete geodesics obtained as concatenations of the sides of the squares

are called horizontal and vertical according to their position in Figure 66.

Now fix an embedding of Σb into R2 such that the restriction of the embedding to

every proper horizontal and vertical geodesic of Σb is an isometry and such that

the origin in R2 sits at the intersection of a horizontal and vertical geodesic of Σb.

The action of Z2 on R2 given by (m,n) · (x, y) = (x + 2mb, y + 2nb) restricts to an

action by isometries on Σb. Pick a boundary component of Σb, label it ∂0,0, and set

∂i,j = (i, j) · ∂0,0; this is a labelling of all the boundary components of Σb.

4.2. Surfaces with quadrangular boundary

The goal in this subsection is to give a general criterion on a hyperbolic surface—

in terms of the existence of specific subsurfaces—that gives a lower bound on the

supremum of lengths in a pants decompositions of the surface. The reader should

keep planes with handles in mind below; however, we will work in greater generality

so we may use the results later.

Definition 4.2. Let X be a hyperbolic surface with a preferred boundary component

δ and four marked points w, x, y, z ∈ δ. We say X has quadrangular boundary if each

component of δ r {w, x, y, z} is a geodesic segment and each component of ∂X r δ is

totally geodesic; we call δ the quadrangular boundary component. Let a, b, c, and d be

the closures of the components of δ r {w, x, y, z} labelled such that a ∩ c = ∅. Then,

we define the width of X to be the quantity

ω(X) = min{`X(α) : α : [0, 1]→ X such that α(0) ∈ a, α(1) ∈ c or α(0) ∈ b, α(1) ∈ d}.

Our first goal is to show that if a hyperbolic surface X contains a subsurface with

13



quadrangular boundary of large width and long quadrangular boundary, then any

pants decomposition of X must have large cuffs. In order to do this, we need a

topological lemma.

Lemma 4.3. Let S be a surface with a preferred boundary component with four

marked points. Let a, b, c, and d denote the closure of the complementary components

of the four marked points in the preferred boundary component of S, labelled such that

a∩ c = ∅. Let A be a collection of essential and pairwise-disjoint simple closed curves

and simple arcs on S such that each arc has two distinct endpoints on the preferred

boundary component of S. If A contains finitely many arcs, none of which connect b

and d, then there exists a path in S connecting a and c that is disjoint from every arc

and curve in A.

Proof. If A has no arcs, then the boundary of S is a connected component of the

complement of the union of curves in A, and hence there is a path from a to c as

desired, namely b. We may therefore assume that there is at least one arc in A.

First consider the case in which no arc in A has an endpoint in a∪ c, and hence every

arc either has both endpoints in b or both endpoints in d. Let us focus on b; let Ab
be the arcs in A with both endpoints in b. We say two arcs δ, η ∈ Ab overlap if the

endpoints of δ separate the endpoints of η in b (and vice versa). Observe that if no

two arcs of Ab overlap (and in particular if |Ab| ∈ {0, 1}), then there is a component

of a regular neighborhood of b ∪ (
⋃
δ∈Ab

δ) connecting a to c.

We will argue now by induction on the number of arcs in Ab. We have already

completed the base cases, that is, when |Ab| ∈ {0, 1}. Let k ∈ N and suppose

|Ab| = k + 1. If no two of the arcs in Ab overlap, then as we have already argued,

there exists a path from a to c. Otherwise, we can choose δ, η ∈ Ab that overlap. Let

Sδ be the surface obtained by cutting S along δ; observe that Sδ has two boundary

components. Since δ ∩ η = ∅, we may view η as an arc in Sδ; moreover, since the

endpoints of δ separate the endpoints of η in b, and hence in ∂S, we must have that

the endpoints of η are on distinct components of ∂Sδ. It follows that the surface Sηδ
obtained by cutting Sδ along η has a single boundary component.

The four marked points on ∂S determine four points on ∂Sηδ whose complement has

four components, three of which correspond to a, c, and d from ∂S, and the other is a

union of arcs from b together with δ and η. We let A′ denote the set of arcs in Sηδ
obtained by viewing each arc in Ar {δ, η} as an arc in Sηδ , and we similarly define
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A′
b. Then, |A′

b| = k − 1, and hence, by our induction hypothesis, there exists a path

connecting a to c in Sηδ disjoint from the union of the arcs in A′. Note that this path

is also a path in S, which concludes the proof in the case where no arc in A has an

endpoint in a ∪ c.

Now, assume there are arcs in A with endpoints in a ∪ c. Let A′ be the subset of

A consisting of arcs with no endpoints in a ∪ c, and let α be the path from a to c

disjoint from each arc and curve in A′ constructed in the previous case. Let Aα denote

the collection of arcs in A that have nontrivial intersection with α. Then, there is a

component of the regular neighborhood of the union of α with every arc in Aα that is

a path from a to c disjoint from every arc and curve of A.

Given a complete hyperbolic surface X, a hyperbolic surface Y with quadrangular

boundary, and an embedding of Y into X, we define the width of Y relative to X to

be the quantity

ωX(Y ) = inf{`X(α) : α : [0, 1]→ X such that α(0) ∈ a, α(1) ∈ c or α(0) ∈ b, α(1) ∈ d},

where a, b, c, and d are the closures of the components of the complement of the four

marked points in the quandrangular boundary of Y , labelled such that a ∩ c = ∅.

In order to adapt the standard definition to our setting, we define the systole of a

hyperbolic surface to be the infimum of lengths of closed geodesics.

Proposition 4.4. Let X be a complete hyperbolic surface with positive systole `, and

let Y be a hyperbolic surface with quadrangular boundary. If there exist an embedding

of Y into X such that the quadrangular boundary component δ of Y is separating

and essential, then any pants decomposition of X contains a curve of length at least

min{`X(δ̂), 2
3

(ωX(Y )−K)}, where δ̂ is the unique closed geodesic in X homotopic to

δ and K = K(`) is as in Lemma 3.13.1.

Proof. Fix a pants decomposition of X. If δ̂ is a curve in the decomposition, then

we are finished; so, assume this is not the case. Let Z denote the closure of the

component of X r δ containing Y . The result of intersecting each curve in the given

pants decomposition with Z yields a collection A of pairwise-disjoint simple geodesic

arcs and simple closed geodesics. Only finitely many curves in a pants decomposition

intersect a given compact set, and hence there are only finitely many arcs in A. Let

a, b, c, and d be the closure of the complementary components of the four marked

points in δ, labelled such that a ∩ c = ∅. We can then apply Lemma 4.34.3 to see that
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there is a path in Z disjoint from the arcs and curves in A connecting either b and d

or a and c. Either way, this path must have length at least ωX(Y ). Note that this

path must be contained in a pair of pants in the decomposition; in particular, this

pair of pants must have diameter at least ωX(Y ), or if the pair of pants has a cusp,

then the associated truncated pair of pants has diameter at least ωX(Y ). In either

case, by Lemma 3.13.1 or Lemma 3.23.2, we can conclude that this pair of pants must have

a cuff of length at least 2
3

(ωX(Y )−K) as desired.

4.3. Planes with handles with bounded gluings

Given m ∈ N, let Sbm denote an m2-holed square obtained by pasting m2 copies of

Rb in an m×m-grid. Let the outer boundary of Sbm refer to the unique non-smooth

boundary component of Sbm; in particular, Sbm is a hyperbolic surface with quadrangular

boundary, whose quadrangular boundary component is the outer boundary and whose

marked points correspond to the four non-smooth points of the outer boundary. We

readily see that ω(Sbm) = 2mb.

Proposition 4.5. If X is a plane with handles with bounded gluings, then every pants

decomposition of X has unbounded cuff lengths.

Proof. Let us first consider the case with no gluings, that is, when X = Σb for

some b ≥ arcsinh(1). First note that the systole ` of X is positive. Moreover,

for every m ∈ N, X contains an isometric and convex copy of Sbm; in particular,

ωΣb
(Sbm) = ω(Sbm) = 2mb. Also note that if m > 1, then the geodesic in X homotopic

to the outer boundary of Sbm has length at least 8(m − 1)b > 2mb. Hence, by

Proposition 4.44.4, given any pants decomposition of X, it contains a curve of length at

least 2mb−K(`), and thus the lengths of the cuffs diverge.

Now, let us assume that X is obtained by gluing boundary components of Σ = Σb for

some b > arcsinh(1). We will proceed to use the coordinate system on Σ described

previously.

Let ∼ denote the equivalence relation on Z2 given by (i, j) ∼ (i′, j′) if ∂i,j and ∂i′,j′

are identified in X. Since X has bounded gluings, we can define

J = max{n ∈ N : there exists (i, j) ∈ Z2 s.t. (i, j) ∼ (i, j + n) or (i, j) ∼ (i+ n, j)}.

Let m ∈ N satisfy m > 2J . Let Sm ⊂ Σ denote the intersection of Σ with the square

in R2 with vertices (0, 0), (2mb, 0), (0, 2mb), and (2mb, 2mb), so that Sm is isometric
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to Sbm. Now, we do not know if the outer boundary of Sm is separating in X or not;

however, the key to the proof is that the outer boundary is close to a separating

curve, as we now describe. Let SJm ⊂ Σ be the intersection of Σ with the square in

R2 containing Sm with side lengths 2mb+ 2J and having vertex (−J,−J). It follows

that if 0 ≤ i, j ≤ m and (i, j) ∼ (i′, j′), then ∂i′,j′ ⊂ SJm. We can therefore find a

separating closed geodesic ηm in Σ contained in SJm and such that every non-outer

boundary component of Sm is on the same side of ηm. To see this, for each (i′, j′) ∈ Z2

such that (i′, j′) ∼ (i, j) with ∂i,j ⊂ Sm and ∂i′,j′ 6⊂ Sm, choose a path in SJm r Sm

connecting the outer boundary of Sm and ∂i′,j′ with the stipulation that any two such

paths are disjoint. The geodesic homotopic to the boundary component of a regular

neighborhood of the union of these paths with the outer boundary of Sm and the

∂i′,j′ that are disjoint from Sm has the desired property. Before continuing, note that

`X(ηm) > 8(m− 1)b.

Let Y denote the subsurface of X bounded by ηm that contains each non-quadrangular

boundary component of Sm. Let w, x, y, z ∈ ηm be points in the intersection of ηm

with the Euclidean diagonals of the square defining SJm such that at exactly one of

these points is contained in each of the four (J + 1) × (J + 1)-squares sharing a

vertex with SJm and intersecting Sm. With these marked points, we can view Y as a

hyperbolic surface with quadrangular boundary.

Let d denote the minimum distance in Σ between any two of its boundary components.

Observe that ηm can only intersect Sm in the copies of Rb that share a vertex with

Sm. It follows that, by construction, ωX(Y ) ≥ 2d(m/J − 2). Let ` denote the systole

of X, and note that ` > 0. We can therefore apply Proposition 4.44.4 to see that any

pants decomposition of X contains a curve of length at least

min

{
8(m− 1)b,

2

3
(2d(m/J − 2)−K)

}
.

Since this holds for all m > 2J + 2, we see that any pants decomposition of X has

unbounded cuff lengths.

To finish this subsection, we consider a particular example in order to establish the

main theorem, Theorem 4.64.6. Using the notation setup in Proposition 4.54.5, let X be

a plane with handles such that the induced equivalence relation ∼ on Z2 is given

as follows: (2i, j) ∼ (2i + 1, j) for all i, j ∈ Z. We then see that the Z2 action

on Σb descends to an action on X by isometries, and moreover, Z2\X is a closed

surface of genus two. Every geometric regular cover of a closed surface is QCH [66,
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Proposition 2.7], and hence X is a QCH plane with handles with bounded gluings.

Our main theorem now follows from applying Proposition 4.54.5 to X:

Theorem 4.6. There exists a non-simply connected quasiconformally homogenous

hyperbolic Riemann surface without a bounded pants decomposition.

4.4. Planes with handles with unbounded gluings

In Proposition 4.54.5, we saw that every pants decomposition of every plane with handles

with bounded gluings has unbounded cuffs. Here, we will see that if the gluings

are unbounded, then there is no such uniform statement: in particular, there are

examples of planes with handles with unbounded gluings that have bounded pants

decompositions and examples without.

0

Figure 7: The arcs (in blue) close up to give a bounded pants decomposition of Xρ.

Example 4.7 (Unbounded gluing, bounded pants decomposition). Fix b > arcsinh(1).

Observe that the reflection ρ of R2 given by (x, y) 7→ (−x, y) restricts to an (orientation-

reversing) isometry of Σb. Let ∼ be the equivalence relation on Σb defined by

(x, y) ∼ (x′, y′) if and only if (x′, y′) = (x, y) or (x, y) ∈ ∂Σb and (x′, y′) = (−x, y).

Then, Xρ = Σb/ ∼ is a plane with handles with unbounded gluings. However, Xρ has

a bounded pants decomposition: such a pants decomposition is depicted in Figure 77.

Example 4.8 (Unbounded gluing, all pants decompositions unbounded). Fix b >

arcsinh(1). Define an equivalence relation ≈ on Z2 as follows: (i, j) ≈ (i′, j′) if and

only if j = j′, and

i = i′, or
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j < 0 and i′ = −i, or

j ≥ 0, |i− i′| = 1, and min{i, i′} is even.

Let X be obtained from Σb by identifying ∂i,j with ∂i′,j′ by an orientation-reversing

isometry whenever (i, j) ≈ (i′, j′). The portion of X obtained from the lower half

of Σb looks like the surface described in Example 4.74.7, and in particular, the second

condition guarantees that X has unbounded gluings. However, the portion of X

obtained from the upper half of Σb looks like the QCH plane with handles described

for Theorem 4.64.6, and in particular, an identical argument to that of Proposition 4.54.5

applied to this subsurface of X shows that every pants decomposition has unbounded

cuff lengths.

5. Constructions in all topological types

The goal of this section is to show that, given any connected orientable surface S

with compact boundary components and of infinite topological type, there exists

a complete hyperbolic metric on S that has bounded geometry but that does not

have a bounded pants decomposition. In the previous section, we gave a general

construction for building such hyperbolic structures on planes with handles; however,

topologically, in the empty boundary case, this covers only two distinct surfaces,

namely the flute surface and the Loch Ness monster surface. We now consider the

rest. The construction will split into two cases: first, we will consider finite-genus

2-manifolds whose space of ends is homeomorphic to the union of a Cantor set and a

finite discrete set, and then we will consider the rest. In the second case, we will use

the fact that the end space must either have infinitely many isolated planar ends or

at least one non-planar end.

5.1. Finite-type surface minus a Cantor set

We begin with the case of a sphere minus a Cantor set. Let C be a copy of a Cantor

set in S2 and let SC = S2 r C. The idea is to write SC as a union of flute surfaces,

which we individually identify with Σb for some b > arcsinh(1), and then show that

the resulting surface has the desired geometric properties.

To do this, fix a collection {δn}n∈N of homotopically nontrivial, pairwise-disjoint,

pairwise non-homologous, simple closed curves on SC whose images in H1(SC ,Z)

form a basis. Let {Sk}k∈N be an enumeration of the closures of the components

of the complement of
⋃
n∈N δn. For each k ∈ N, Sk is topologically a flute surface.
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To see this, note that Sk is planar, it has infinitely many boundary components,

every boundary component is compact, every simple closed curve bounds a compact

subsurface, and the surface is one ended. If the second condition did not hold, then

SC would either have an isolated end or there would be a linear relation between the

curves in homology; if either of the last two conditions were not satisfied, then the

original collection of curves could not have been a homology basis. The classification

of surfaces now guarantees that Sk is a flute surface.

We will now endow each of the Sk with a geometry that will force the surface to not

have bounded pants decompositions. To do so, we refer to the previous construction

via squares (see Figure 55), where the quantities a, b and c are defined as in Section 4.14.1.

We choose b to be such that c = 1
2
arcsinh(1), so that the inner cuff length will be

2 arcsinh(1). Explicitly, using [77, Theorem 2.3.4] as before, one chooses b to be such

that

sinh2(b) = cosh

(
1

2
arcsinh(1)

)
.

This results in b being exactly

b = arcsinh

(√
cosh

(
1

2
arcsinh(1)

))
.

In particular, note that b > arcsinh(1), and hence, by [77, Lemma 2.3.5], the desired

rectangle, Rb, exists. We can now equip each Sk with a hyperbolic metric so that it is

isometric to Σb.

By construction, we can write S =
(⊔

n∈N Sk
)
/ ∼, where ∼ is an equivalence relation

determined by the fact that the Sk are subsurfaces of SC . Now, on a given boundary

component, we can realize ∼ as an orientation-reversing isometry, and in doing so,

we equip SC with a complete hyperbolic metric; let us call the resulting hyperbolic

surface Z.

Before working with Z, we need a lemma, which is deduced from [11, Lemma 4 and its

following remark]:

Lemma 5.1. Let F be a finite-area planar hyperbolic surface with totally geodesic

boundary. Given a simple closed geodesic γ of length at most 2 arcsinh(1) and a

pants decomposition Q of F , there exists a pants decomposition containing γ whose

maximum cuff length is at most the maximum cuff length of Q.

Roughly speaking, the proof consists of constructing a new pants decomposition using

arcs obtained from the curves in Q by cutting along γ. Now by the collar lemma,
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geodesic arcs that cut across γ must pick up a definitive, and significant, amount of

length, so it is natural to expect that adding γ to the pants decomposition will not

increase the maximum length of a cuff in the decomposition. This is accomplished

through careful cut and paste arguments together with length estimates. We note

that it is crucial to the argument that the length of γ is at most 2 arcsinh(1) and that

the surface is planar (which forces all simple closed curves to be separating).

Proposition 5.2. Every pants decomposition of Z has unbounded cuff lengths.

Proof. Each copy of Σb associated to the Sk is isometrically embedded in Z. Let Σ

be one such copy. We denote by Γ the set of boundary curves of Σ; let Γ = {γm}m∈N

be an enumeration of Γ. The main step of the proof will be to show that any pants

decomposition of Z can be replaced by a pants decomposition that contains Γ without

increasing the supremum of lengths of the pants decomposition. This new pants

decomposition will include a pants decomposition of Σ, which by Proposition 4.54.5,

necessarily has unbounded cuff lengths.

We begin with a pants decomposition P of Z. For each γ ∈ Γ, let Pγ be the (finite)

set of curves of P that intersect γ, and let Zγ be the subsurface of Z spanned by Pγ .

We can now apply Lemma 5.15.1 with Zγ1 ,Pγ1 , and γ1 to obtain a new pants decompo-

sition, say P1, of Z containing γ1 and such that the supremum of lengths of curves in

P1 is no more than that of P . Now observe that γ1 is either peripheral to or disjoint

from Zγ2 . In particular, we can again use Lemma 5.15.1 to obtain a pants decomposition,

say P2, of Z containing both γ1 and γ2 and such that the supremum of lengths of

curves in P2 is no more than that of P . Continuing in this fashion for each m ∈ N, we

build a pants decomposition Pm of Z containing γ1, . . . , γm such that the supremum

of cuff lengths is at most that of P. With the setup, we can take the direct limit of

these pants decompositions to obtain a pants decomposition of Z containing each

curve in Γ and whose supremum of cuff lengths is at most that of P . Now, as already

noted, it follows from Proposition 4.54.5 that P has unbounded cuff lengths.

We now treat the topological case of a finite-type surface with a Cantor set removed.

Let F be a finite-type surface and let F ′ be obtained from F by removing an open

disk. Fix a hyperbolic metric on F ′ so that its boundary is totally geodesic and each

component has length 2 arcsinh(1). Now, let Σ′ be one of the isometric copies of

Σb embedded in Z (so that Σ′ corresponds to Sk for some k ∈ N), and let Z ′ be a

connected component of ZrΣ′. Then, topologically, Z ′ is a closed disk with a Cantor
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set removed from its interior. Let ZF be the complete hyperbolic surface obtained

as the union of F ′ and Z ′ with the boundary of Z ′ identified with a component of

∂F ′ via an orientation-reversing isometry. Topologically, ZF is homeomorphic to the

surface F with a Cantor set removed.

Proposition 5.3. Let F be an orientable finite-type surface. Any pants decomposition

of ZF has unbounded cuff lengths.

Proof. The proof is very similar to the proof of Proposition 5.25.2; however, we need to

carefully choose Σ, an embedded copy of Σb, that is significantly far away from F ′.

As a consequence, unlike the proof of Proposition 5.25.2, we will argue by contradiction.

Suppose there exists a pants decomposition P of ZF with bounded cuff lengths, and

let

L = sup
δ∈P

`(δ).

By construction and an application of the collar lemma, we can readily see that there

exists an isometric embedding of Σb into ZF whose image Σ (corresponding to one of

the Sk) has distance strictly greater than L from F ′. In particular, given any boundary

component γ of Σ, the surface spanned by the curves in P intersecting γ is disjoint

from F ′, and hence must be planar. This allows us to proceed as in the proof of

Proposition 5.25.2 and construct a bounded pants decomposition of Σ, which contradicts

Proposition 4.54.5; hence, we can conclude that P has unbounded cuff lengths.

5.2. The general setup

Let S be an infinite-type surface that cannot be obtained by removing a Cantor set

from a finite-type surface (this case was considered previously). We give a general

outline for constructing a complete hyperbolic metric on S with bounded geometry

and such that there are no bounded pants decompositions.

First, decompose S into flute surfaces by cutting along a collection of appropriate

curves [1111, Lemma 3.2]. Each flute surface has a single topological end, which

corresponds to a unique end of S (the set of such ends is dense in the end space of S).

Next fix b > arcsinh(1), and call one of the flute surfaces Q1. Identify each flute

surface in the decomposition other than Q1 with the hyperbolic flute surface Σb. On

Q1 delete a countable sequence of (open) disks with pairwise-disjoint closures such

that only finitely many of the disks intersect any given compact set—this surgered
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surface is again a flute surface. Next identify Σb with the surgered Q1 by assigning

the upper-half boundary curves of Σb with the boundaries of the deleted disks in

Q1. Identify the boundary curves of the original flute surface Q1 with the lower half

boundary curves of Σb in any way. Denote this hyperbolic flute surface by Q′
1 and

continue to denote its boundary curves, as we did in Section 44, by ∂i,j.

By the topological assumptions on S, namely that it is not homeomorphic to a finite-

type surface with a Cantor set removed, we may assume without loss of generality

that the end of S corresponding to the end of Q1 is either non-planar; planar and

accumulated by boundary components; or neither, in which case it is planar and

accumulated by isolated planar ends. The boundary gluing data for the lower half

curves of Q′
1 is determined since they come from the boundary curves of Q1. Depending

on the topology of the end of Q1, we modify the surgered flute surface Q′
1 in the

following way:

If the end of Q1 is non-planar, for j > 0 identify ∂2i,j and ∂2i+1,j of Q′
1 via

orientation-reversing isometries for all i ∈ Z;

if the end is non-planar and accumulated by boundary components, then simply

leave the boundary components as they are;

otherwise, for each ∂i,j with j > 0, take a copy of the unique pair of pants with

two cusps and a boundary component of length b, and identify its boundary

with ∂i,j via an orientation-reversing isometry.

Reassembling all of the flute surfaces along with the modified flute surface Q′
1, we

obtain a complete hyperbolic surface with the topology of the original surface S.

Finally, there exist “large squares” (quadrangular subsurfaces of arbitrarily large width)

whose distinguished boundary curve is a square in the upper half-plane of the modified

Q′
1. These quadrangular subsurfaces come from the large isometric embeddings of Sbm

in the upper half of Q′
1—just as in the proof of Proposition 4.54.5. The large width of

these embeddings can be guaranteed by embedding them arbitrarily far away from

the lower half of Q′
1. Hence, by Proposition 4.44.4, every pants decomposition of X must

have unbounded cuff lengths. Now by construction, X has bounded geometry, and

hence we have established:

Proposition 5.4. Let S be an orientable connected surface of infinite topological type

and with compact boundary components. If either S has infinite genus or the end
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space of S is not homeomorphic to a Cantor set union a finite discrete set, then there

exists a complete hyperbolic structure on S with bounded geometry and such that every

pants decomposition has unbounded cuff lengths.

By the classification of orientable connected surfaces with compact boundary compo-

nents, Proposition 5.35.3 and Proposition 5.45.4 establish the second main theorem:

Theorem 5.5. Every infinite-type orientable connected topological surface with com-

pact boundary components admits a complete hyperbolic metric with bounded geometry

and such that every pants decomposition has unbounded cuff lengths.
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