
A SHORT NOTE ON SHORT PANTS

Hugo Parlier††

Abstract. It is a theorem of Bers that any closed hyperbolic surface admits a pants decom-

position consisting of curves of bounded length where the bound only depends on the

topology of the surface. The question of the quantification of the optimal constants has

been well studied and the best upper bounds to date are linear in genus, a theorem of Buser

and Seppälä. The goal of this note is to give a short proof of a linear upper bound which

slightly improve the best known bound.

1. INTRODUCTION

A pants decomposition of a hyperbolic surface is a maximal collection of disjoint simple

closed geodesics, which as its name indicates, decomposes the surface into three holed

spheres or pairs of pants. In the case of closed surfaces of genus g ≥ 2, a pants decom-

position contains 3g− 3 curves which decompose the surface into 2g− 2 pairs of pants.

Any surface admits an infinite number of pants decompositions and even up to homeomor-

phism the number of different types of pants decomposition grows quickly (roughly like

g!). Bers proved that there exists a constant Bg which only depends on the genus g such

that any closed hyperbolic surface of genus g has a pants decomposition with all curves of

length less than Bg.

The first notable step in the direction of quantifying Bg was obtained by Buser [44] where an

upper bounds of order g log g and lower bounds of order
√

g were established. The first

upper bounds linear in g were obtained by Buser and Seppälä [66] and Buser extended these

bounds to the case of variable curvature [55]. The best bounds known to date [55, Th. 5.1.4]

are 6
√

3π(g− 1) so the best known linear factor is ≈ 18.4.

It should also be noted that the direct method of computing the optimal constant in each

genus seems out of reach as the only known constant is B2, a result of Gendulphe [77].

The goal of this note is to offer a short proof of a linear upper bounds which provide a
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slight improvement on previously known bounds.

Theorem 1.1. Every closed hyperbolic surface of genus g ≥ 2 has a pants decomposition with all
curves of length at most

4π(g− 1) + 4Rg

where Rg is at a logarithmic function in g which can be taken to be

Rg = arccosh
1√

2 sin π
12g−6

< log(4g− 2) + arcsinh 1.

The theorem provides an improvement on the factor in front of the genus from ≈ 18.4 to

≈ 12.6. The true growth rate of Bg remains unknown. It follows from the bounds in the

closed case that surfaces with n cusps and genus g also have short pants decompositions

where the bounds depend on n and g this time. For fixed genus and growing number

of cusps, the growth rate of the optimal constants is known to grow like
√

n (see [22, 11])

which seems to indicate that the growth rate for the closed surfaces might be of order
√

g.

However, if one considers sums of lengths of curves in a pants decomposition instead of

the maximum length then the case of cusps is very different from the genus case (compare

[22, 88]).
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class at the Schrödinger Institute in Vienna during the special program on “Teichmüller

Theory”, Winter 2013, and I thank the organizers for inviting me. I’d also like to thank

Robert Young for his helpful comments.

2. PRELIMINARIES

To a curve γ or a free homotopy class [γ] of curve on a topological surface Σ we associate a

length function `S(γ) which associates to a hyperbolic structure S on Σ the length of the

unique closed geodesic in [γ]. A first tool that we shall use is the following lemma which in

particular will allow us to restrict the proof of the main theorem to the case of surfaces with

systole of length at least 2 arcsinh 1.

Lemma 2.1 (Length expansion lemma). Let Σ be a topological surface with n > 0 boundary
curves γ1, . . . , γn. For any hyperbolic surface S ∼= Σ and any (ε1, . . . , εn) ∈ (R+)n \ {0} there
exists a hyperbolic surface S′ ∼= Σ with

`S′(γ1) = `S(γ1) + ε1, . . . , `S′(γn) = `S(γn) + εn

and such that any non-trivial simple closed curve γ ⊂ Σ satisfies

`S′(γ) > `S(γ).
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This result seems to have been known for a long time, as it is claimed in [1111] (also see [1010]

for a direct proof and [99] for a stronger version).

The following result, due to Bavard [33], is sharp.

Lemma 2.2 (Marked systoles). For any x ∈ S, S a closed hyperbolic surface of genus g, there
exists a geodesic loop δx based in x such that

`(δx) ≤ 2 arccosh
1

2 sin π
12g−6

.

What Bavard actually proves is that the above value is a sharp bound on the diameter of

the largest embedded open disk of the surface. A weaker version of this lemma can be

obtained by comparing the area of an embedded disk to the area of the surface. The area of

D an embedded disk of radius r on a hyperbolic surface is the same as the area of such a

disk in the hyperbolic plane so

area(D) = 2π(cosh r− 1).

Comparing this to area(S) = 4π(g− 1) shows

r < 2 log(2g− 1 +
√

2g(2g− 2)) < 2 log(4g− 2).

This weaker bound can be found in [55][Lemma 5.2.1] but note that the order of growth of

this bound is the same as in Bavard’s result.

Consider a hyperbolic surface S possibly with geodesic boundary. In the free homotopy

class of a simple closed geodesic loop γx based at a point x ∈ S lies a unique simple closed

geodesic γ (possibly a cusp or a boundary geodesic). In the event where γ is not a cusp, it

will be useful to bound the Hausdorff distance between γ and x.

Lemma 2.3. Let S, γx, γ be as above. Then

max
y∈γ

d(x, y) < arccosh
(

cosh
`(γx)

2
coth

`(γ)

2

)
.

Proof. Note that γx and γ bound a cylinder that can be cut into two tri-rectangles with

consecutive sides of length `(γ)/2 and d(γx, γ) as in figure 11.

Hyperbolic trigonometry in the tri-rectangle implies

sinh d(γx, γ) sinh
`(γ)

2
< 1. (1)
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d(γx, γ)
`(γ)

2

`(γx)
2

Figure 1: From a geodesic loop to a closed geodesic

Now the maximum distance between x and γ is at most the length of the diagonal of the

tri-rectangle. By hyperbolic trigonometry in one of the right angles triangles bounded by

this diagonal, we obtain for all y ∈ γ:

cosh d(x, y) ≤ cosh d(γx, γ) cosh
`(γx)

2

which via equation 11 becomes

d(x, y) < arccosh

(
cosh

(
arcsinh

1

sinh `(γ)
2

)
cosh

`(γx)

2

)

= arccosh
(

cosh
`(γx)

2
coth

`(γ)

2

)
.

It is the following corollary of these lemmas that we shall use in the sequel. It is obtained

by replacing `(γx) by Bavard’s bound, `(γ) with 2 arcsinh1 and by a simple manipulation.

Corollary 2.4. Let γx be the shortest geodesic loop based in x ∈ S a closed surface and γ the unique
closed geodesic in its homotopy class. If `(γ) ≥ 2 arcsinh1, then for all y ∈ γ

d(x, y) < Rg := arccosh
1√

2 sin π
12g−6

.

A further small manipulation gives the following rougher upper bound on this distance

where the order of growth is more apparent:

Rg < log(4g− 2) + arcsinh1.
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3. PROOF OF MAIN THEOREM

We begin with any surface S ∈ Mg and our goal is to find a pants decomposition of

S which contains all simple closed geodesics of S of length ≤ 2 arcsinh1 and which has

relatively short length. Recall that all simple closed geodesics of length less than 2 arcsinh1

are disjoint, and it is for this reason that this value appears. Note that S may have a pants

decomposition of shorter length which doesn’t contain all simple closed geodesics of length

≤ 2 arcsinh1 but we restrict ourselves to searching for those that do. We’ll call such pants

decompositions admissible pants decompositions.

As we are only looking among admissible pants decompositions, we can immediately apply

Lemma 2.12.1 to deform our surface S to a new surface S′ with all simple closed geodesics of

length greater or equal to 2 arcsinh1 and with the length of all curves γ lying in admissible

pants decompositions of length at least `S(γ). (If S already had this property, then S′ = S.)

We now construct algorithmically a pants decomposition of S′. The algorithm has two main

steps and a fail-safe step.

The algorithm is initiated as follows. Consider x1 ∈ S′ and γx1 the shortest geodesic loop

based at x1. We set γ1 to be the unique closed geodesic in the same free homotopy class

and we cut S′ along γ1 to obtain a surface with boundary (and possibly disconnected)

S1 := S′ \ γ1.

Note that as such S1 is an open surface but we could equivalently treat it as a compact

surface with two simple closed geodesic boundary curves by considering its closure (but

not its closure inside S). We will proceed in the sequel in a similar way.

Main Step 1

Choose xk+1 ∈ Sk with d(xk+1, ∂Sk) > Rg. Consider γxk+1 the shortest geodesic loop in xk+1.

Observe that in light of Corollary 2.42.4 γxk+1 is not freely homotopic to any of the boundary

curves of Sk. Set γk+1 to be the unique simple closed geodesic in the same free homotopy

class and consider the surface

S′k+1 := Sk \ γk+1.

We remove any pair of pants from S′k+1 to obtain Sk+1

If there are no more remaining x ∈ Sk with d(x, ∂Sk) > Rg we proceed to the next main

step, otherwise the step is repeated. For further reference we note that all curves created in
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this step have length at most

2 arccosh
1

2 sin π
12g−6

and thus in particular have length strictly less than 2Rg.

Main Step 2

All x ∈ Sk satisfy d(x, ∂Sk) ≤ Rg. Consider a point xk+1 ∈ Sk such that there are two distinct

geodesic paths that realize the distance from xk+1 to ∂Sk. This provides a non-trivial simple

path c′ from ∂Sk to ∂Sk, where by non-trivial we mean that Sk \ c′ does not include a disk.

In particular, in the free homotopy class of c′ with end points allowed to glide on the same

boundary curves, there is a unique simple geodesic arc c of minimal length, perpendicular

in both end points to ∂Sk.

There are two possible topological configurations for c depending on whether c is a path

between two distinct boundary curves or not (see figure 22 for an illustration).

α1 α2

α̃

α

α̃1 α̃2

c

c

Figure 2: The two topological types for path c

Case 1: If c is a path between distinct boundary curves α1 and α2, then c ∪ α1 ∪ α2 is

contained in a unique pair of pants (α1, α2, α̃). We set

γk+1 := α̃

and

S′k+1 := Sk \ (α1, α2, α̃).

Case 2: If c is a path with endpoints on a single boundary curve α then c ∪ α is contained in

a unique pair of pants (α, α̃1, α̃2).

If α̃1 6= α̃2 then we set

γk+1 := α̃1, γk+2 := α̃2
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and

S′k+2 := Sk \ (α1, α2, α̃).

If α̃1 = α̃2 then (α1, α2, α̃) is contained in a one holed torus T and we set

γk+1 := α̃1

and

S′k+1 := Sk \ T.

The algorithm continues until γ3g−3 is constructed, i.e., when a full pants decomposition is

obtained.

Lengths of curves

Begin by observing that in both types of steps described above, at each step we have

`(∂Sk+1) < `(∂Sk) + 4Rg.

Indeed: if Sk+1 is obtained by cutting along a curve as in Step 1, then the length of the curve

is strictly shorter than 2Rg and the boundary increases by at most twice this length.

If Sk+1 is obtained as in Step 2, case 1, then the curve α̃ is of length at most

`(α1) + `(α2) + 4Rg.

As Sk+1 is obtained by removing the pair of pants with curves α1, α2 and α̃, the boundary of

Sk+1 no longer contains α1 and α2 and the boundary length increases by at most 4Rg. In

Step 2, case 2, one argues similarly.

In order to ensure that the length of the constructed curves does not surpass the desired

length, the algorithm contains a fail-safe step.

Fail-safe step

If at any step `(∂Sk) ≥ 4π(g − 1) then the next curve is constructed following slightly

different procedure which we describe here. First observe that if

`(∂Sk) ≥ 4π(g− 1)

with Sk obtained as above, then

`(∂Sk) < 4π(g− 1) + 4Rg
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as at every step boundary length cannot increase by more than 4Rg.

We consider an r-neighborhood of ∂Sk. For small enough r, this neighborhood is a union of

cylinders around the boundary curves. We let r grow until the topology changes, i.e., until

the cylinder first bump into each other. We choose one of the geodesic paths c created at

the bumping point.

Here we use an area argument to bound the length of c. The area of an embedded r-

neighborhood of `(∂Sk) is at most that of the surface thus

`(∂Sk) sinh r < 4π(g− 1).

By assumption this implies

r < arcsinh1

and thus

`(c) < 2 arcsinh1.

As before, there are two topological types for c, case 1 and case 2 as above. In both cases,

we borrow the notation from above, but we argue slightly differently for the lengths.

In case 1 we have a pair of pants with boundary curves α1, α2 and α̃ which we decompose

into two right angles hexagons. By the hexagon relations we have

cosh
`(α̃)

2
= sinh

`(α1)

2
sinh

`(α2)

2
cosh `(c)− cosh

`(α1)

2
cosh

`(α2)

2

< sinh
`(α1)

2
sinh

`(α2)

2
3− cosh

`(α1)

2
cosh

`(α2)

2

< cosh
(
`(α1)

2
+

`(α2)

2

)
.

From this

`(α̃) < `(α1) + `(α2).

So at this step we have

`(∂Sk+1) < `(∂Sk).

A similar (and easier) argument shows that the same conclusion holds in case 2 by looking

at a pentagon decomposition of the pants (α, α̃1, α̃2).

Note that after a fail-safe step the boundary length decreases so it is possible that we

return to Main Step 2 but otherwise we continue to create curves while decreasing the total

boundary length.

All the curves γk created are at one point boundary curves of a surface S′k from Main Step

1, a boundary curve of a surface Sk from Main Step 2 or a boundary curve of Sk from the

8



fail-safe step. As such their lengths are all bounded by the total boundary lengths of these

surfaces. Thus

`(γk) < 4π(g− 1) + 4Rg

and the theorem is proved.
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Mathematics. Birkhäuser Boston Inc., Boston, MA, 1992.
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