
SYSTOLE GROWTH FOR FINITE AREA HYPERBOLIC SURFACES

FLORENT BALACHEFF, ERAN MAKOVER, AND HUGO PARLIER†

Abstract. We are interested in the maximum value achieved by the systole function over

all complete finite area hyperbolic surfaces of a given signature (g, n). This maximum is

shown to be strictly increasing in terms of the number of cusps for small values of n.

We also show that this function is greater than a function that grows logarithmically in

function of the ratio g/n.

1. Introduction

Consider two natural integers g and n such that 2g − 2 + n is positive. For an orientable

complete finite area hyperbolic surface M of signature (g, n), where g is the genus and n the

number of cusps, the systole is defined as length of the (or a) shortest closed geodesic and

denoted by sys(M). Because there is an upper bound on the systole which only depends

on the topology of the surface, the quantity

sys(g, n) := sup{ sys(M) |M is a finite area hyperbolic surface of signature (g, n) }

is finite and we are interested in its asymptotic behavior in terms of g and n. Observe

that this supremum is in fact a maximum following Mahler’s compactness theorem, see

[Mu71]. Furthermore sys(g, n) is universally bounded from below by 2 arcsinh(1), an easy

consequence of, on the one hand, the fact that the set of systoles of a maximal surface fill

the surface, and on the other hand, the collar lemma.

The first interesting upper bound on sys(g, n) to appear in the literature is due to Schmutz

Schaller [Sc94, Theorem 14] (another proof appeared in [Ad98]). The bound is as follows:

for n ≥ 2 and (g, n) 6= (0, 3),

(1.1) sys(g, n) ≤ 4 arccosh

(
6g − 6 + 3n

n

)
.

For a number of cusps bigger than the genus, the function sys(g, n) is thus roughly con-

stant. More precisely, for any function n(g) of the genus with integer values such that
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supg→∞
g

n(g) = α ∈ [0,∞[, we have

2 arcsinh(1) ≤ sys(g, n(g)) ≤ 4 arccosh(6α+ 3).

In the other direction, if n(g) is such that limg→∞
g

n(g) = +∞, the right term in inequality

(1.1) is asymptotically equivalent to 4 ln( g
n(g)).

In [Sc94], Schmutz Schaller also proved that surfaces corresponding to principal congruence

subgroups of PSL2(Z) have maximal systole in their respective moduli spaces. More pre-

cisely, for any integer k ≥ 2, let Γk denote the kernel of the map PSL2(Z)→ PSL2(Z/kZ).

If (gk, nk) denotes the signature of the surface quotient Mk = H2/Γk, then

sys(Mk) = sys(gk, nk).

For k = p prime,

np =
p2 − 1

2

and

gp = 1 +
(p2 − 1)(p− 6)

24

so that 72·g2p ' n3p (see [BFK]). Furthermore, a standard calculation (compare with [BS94])

leads to the following lower bound:

(1.2) sys(Mp) & 4 ln

(
gp
np

)
' 4

3
ln gp.

So inequality (1.1) is asymptotically sharp for signatures (gp, np). Here and in the sequel,

we use the following definition: two functions λ, µ : N→ R satisfy the relation λ(g) & µ(g)

if for any positive ε we have (1 + ε) · λ(g) ≥ µ(g) for large enough g.

In the compact case, Buser and Sarnak proved in [BS94] that there exists a universal

constant U > 0 such that for all genus g ≥ 2

U ln g ≤ sys(g, 0) ≤ 2 ln(4g − 2),

and that for some special infinite sequences of genera gk, the lower bound can be strength-

ened to

sys(gk, 0) &
4

3
ln gk

by more delicate arithmetic considerations.

We add the following results to this panorama.
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Theorem. The function sys(g, n) enjoys the following properties.

1. For all (g, n) such that 2g − 2 + n > 0 and n ≤ 2,

sys(g, n) < sys(g, n+ 1).

2. For any g ≥ 2 and n ∈ N,

sys(g, n) ≥ U ln

(
g

n+ 1

)
where U denotes Buser’s and Sarnak’s universal constant.

Property 1. says that for fixed genus the function sys(g, n) is strictly increasing in n for

very small values of n. One may wonder how long this remains true. The existence of

closed hyperbolic surfaces in any genus g ≥ 2 with large systole [BS94] and inequality (1.1)

imply that this growth property is doomed to fail for large enough n. It is worth noting

that it is unknown whether sys(g, n) is increasing in g.

Property 2. together with inequality (1.1) implies that for any function n : N → N such

that limg→∞
g

n(g) = +∞, the function sys(g, n(g)) grows roughly like ln
(

g
n(g)

)
(where by

roughly we mean up to positive multiplicative constants).

2. Adding a small number of cusps

Our goal in this section is to prove Property 1. of our main theorem. This follows directly

from the following two lemmas.

Lemma 1. Let M be a hyperbolic surface of signature (g, n) and suppose that M admits an

embedded open disk of radius sys(M)
2 centered at some point p. Then the unique hyperbolic

surface M ′ of signature (g, n+ 1) and conformally equivalent to M \ {p} satisfies

sys(M ′) > sys(M).

Proof. In order to link the systole on both surfaces, we first define an appropriate notion of

systole for Riemannian surfaces of genus g with n puncture points. For such a surface, the

systole is defined as the infimum over the lengths of all closed curves which does not bound

a disk or a once punctured disk. For hyperbolic closed surfaces of genus g or hyperbolic

surfaces of signature (g, n), this definition coincides with the definition of systole as the

length of a shortest closed geodesic.

We now control the systole of M \ {p} in terms of the systole of M . On the one hand, a

closed curve of M \ {p} which does not bound a disk or a punctured disk in M has length
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at least sys(M) by definition. On the other hand, let γ be a closed curve of M \ {p} which

bounds a once punctured disk in M but not in M \ {p}. If we consider all closed curves of

M \ {p} homotopic to γ, the infimum of their lengths will be realized by a closed geodesic

loop of M based at p. As the open disk centered at p and of radius sys(M)
2 is embedded, we

deduce that the length of this geodesic loop, and thus of γ, is at least sys(M). In conclusion,

sys(M \ {p}) = sys(M).

The result then follows from a type of Schwarz lemma [Wo82] which asserts that the natural

map M ′ →M is contracting. �

Lemma 2. On a hyperbolic surface M of genus g with at most two cusps, there always

exists an embedded open disk of radius sys(M)
2 .

Proof. If there is no cusp, this is a straightforward consequence of the definition of systole.

So suppose that there is at least one cusp on the surface and proceed by contradiction.

Consider a maximal embedded disk D and denote by p its center. The existence of such a

disk is guaranteed by compactness (the thick part of the surface is compact) and the fact

that there is an upper bound on the radius of an embedded disk. By assumption, its radius

r is strictly less than sys(M)
2 . Due to the maximality of D, its boundary admits at least

one point of self-intersection which we call a self-bumping point of the disk. Consider the

geodesic loop formed by the two radii of the disk joining p to some self-bumping point. As

its length is 2r < sys(M), this bumping loop must be parallel to a cusp. If there is only one

such bumping loop, it is easy to see that we get a contradiction: by moving our point p in

the appropriate direction, one can increase the radius of our maximal embedded open disk.

So there are at least two bumping loops. Now observe that because the disk is embedded,

two such loops only intersect in p and thus both loops are non homotopic (see for instance

the bigon criterion [FM11]). So both loops surround distinct cusps. In particular for the

case of a surface with one cusp we have reached a contradiction. We now suppose for the

sequel that M has two cusps.

Observe that the existence of a third self-bumping point is impossible, as there are no

more cusps to surround. We will get a contradiction in the event that there are only

two self-bumping loops on the maximal embedded disk by proving that we can move its

center in an appropriate direction in order to increase its radius. Recall that two horocyclic

neighborhoods of area 1 around the cusps are disjoint. Now consider the two geodesic loops

γ1, γ2 based at p and surrounding the two cusps. Consider, for each of the neighborhoods,

the unique shortest geodesic between the neighborhood and the point p entirely contained

in the cylinder bounded by the cusp and the corresponding geodesic loop (see figure 1).
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Figure 1. A geodesic loop surrounding a cusp

For each loop γk, denote this distance dk and its associated path ck. Via standard hyperbolic

trigonometry considerations, the geometry of this hyperbolic cylinder between one of the

geodesic loops and the associated cusp is completely determined by either `(γk) or dk. More

precisely, there exists a strictly increasing function that associates to the length `(γk) the

distance dk. In particular, as `(γ1) = `(γ2), we deduce that d1 = d2. Now consider the

two distance realizing paths c1 and c2 emanating from p. They locally divide the surface

around p into two parts, and as such one can move the point p in the appropriate part

in order to increase its distance to each of the horocyclic neighborhoods. This leads to a

contradiction. �

3. Adding a large number of cusps

The purpose of this section is to prove Property 2. of our main theorem.

3.1. Comparison results and consequences. Fix a signature (g, n) such that g ≥ 2.

Let M be a hyperbolic closed surface of genus g with n points {p1, . . . , pn} and M ′ be

a hyperbolic punctured surface with n cusps. Suppose that M ′ and M \ {p1, . . . , pn} are

conformally equivalent. We already know by [Wo82] that the natural map M ′ → M is

contracting, and thus sys(M ′) > sys(M), but we would like to have an opposite type

inequality.

We first recall a comparison theorem of Brooks found in [Br99]. We denote by Di := D(pi, r)

the disks in M of radius r centered at the pi’s. For small enough r, these disks are pairwise

disjoint and embedded. We also denote by {c1, . . . , cn} the n cusps of M ′. Each cusp ci

admits a neighborhood isometric to a neighborhood of infinity in the punctured disk model

C := H2/{z 7→ z + 1}. More specifically, we can choose around each cusp ci a horocyclic

neighborhood of size ` denoted Bi := B(ci, `) and composed of all horocycles around ci

of length at most `. Thus Bi is isometric to the subset {z | =(z) ≥ 1
`} of C where =(z)

denotes the imaginary part of z. By choosing ` small enough, we can assume that these

neighborhoods are pairwise disjoint.
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Theorem 1 (Brooks). For any ε > 0, there exist numbers r and ` such that, if the disks

D1, . . . , Dn of radius r and the horocyclic neighborhoods B1, . . . , Bn of size ` are respectively

pairwise disjoint, then to every closed geodesic γ in M corresponds a closed geodesic γ′ in

M ′ whose image under the natural map M ′ →M is homotopic to γ and such that

length(γ′) ≤ (1 + ε) · length(γ).

In particular,

sys(M ′) ≤ (1 + ε) · sys(M).

As the surfaces Mp = H2/Γp for p prime corresponding to the p-th congruence subgroup

satisfy

sys(Mp) &
4

3
ln gp,

we directly deduce that

sys(gp, 0) &
4

3
ln gp.

We proceed to a more precise lower bound on the systole of M ′ in terms of the systole of

M and the radius r.

Proposition 1. For any r such that the disks D1, . . . , Dn of radius r are pairwise disjoint,

sys(M ′) > min{sys(M), 4r}.

Proof. Any closed geodesic of M ′ whose image under the map M ′ →M is not homotopically

trivial has length strictly bounded from below by sys(M). We will prove that the remaining

homotopy classes have geodesic representatives of length greater than 4r. Among such

classes, a class whose geodesic representative is of minimal length is necessarily simple.

Consider such a class in M ′. This class defines a unique homotopy class in M \{p1, . . . , pn}
which is uniquely represented by a minimal piecewise geodesic in M where the singular

points of the curve belong to {p1, . . . , pn}. The number of these singular points is at least

two and so, as two points of the pi’s are distance at least 2r, its length is at least 4r. To

conclude the proof, we again use that the natural map M ′ →M is contracting [Wo82]. �

Property 2. is now implied by the following.

Proposition 2. For any n ∈ N∗,

sys(g, n) ≥ min

{
U ln g, 2 arccosh

(
2(g − 1)

n
+ 1

)}
where U denotes the Buser’s and Sarnak’s universal constant.



SYSTOLE GROWTH ON SURFACES WITH CUSPS 7

Proof. We know by [BS94] that

sys(g, 0) ≥ U ln g

for any g ≥ 2 where U > 0 is universal constant. Let M be a maximal surface of genus g

and consider a maximal system {Di}Ni=1 of pairwise disjoint disks of radius

r := min

{
U

4
ln g,

1

2
arccosh

(
2(g − 1)

n
+ 1

)}
.

Observe that r ≤ sys(M)
4 and denote by pi the center of the disk Di. By the maximality of

such a system, M must be covered by the disks {2Di}Ni=1, where 2Di denotes the disk of

center pi and radius 2r. We derive that

N · 2π(cosh 2r − 1) ≥ N ·A(2Di) ≥ A(M) = 4π(g − 1),

so

N ≥ n.

Now let M ′ be the unique surface with n cusps such that M \ {p1, . . . , pn} and M ′ are

conformally equivalent. We conclude by applying Proposition 1. �

Remark 1. In particular for any α ∈ [0, 1[,

sys(g, [gα]) ≥ cα ln g,

where cα := min{U, 2(1− α)}.

3.2. Final remarks. Fix a growing function n : N→ N and let M ′ be a maximal surface

of genus g with n(g) cusps, that is

sys(M ′) = sys(g, n(g)).

Theorem 1 applied to large enough g implies the following:

sys(g, 0) & sys(g, n(g)).

It would be interesting to know for what n(g) the opposite inequality holds. In particular,

observe that proving that sys(g, n(g)) ' sys(g, 0) for functions satisfying n(g) ≤ 5[g
2
3 ] would

imply the conjecture [Sc98] that

sys(gp, 0) ' 4

3
ln gp.
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