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Abstract. In this paper, we investigate a family of graphs associated to collections of arcs

on surfaces. These multiarc graphs naturally interpolate between arc graphs and flip graphs,

both well studied objects in low dimensional geometry and topology. We show a number of

rigidity results, namely showing that, under certain complexity conditions, that simplicial

maps between them only arise in the “obvious way”. We also observe that, again under

necessary complexity conditions, subsurface strata are convex. Put together, these results

imply that certain simplicial maps always give rise to convex images.

1. Introduction

Both arc graphs and flip graphs are useful objects for studying surfaces and their mapping

class groups. The former is a Gromov hyperbolic graph on which the mapping class group

acts, while the latter is, for large enough complexity, not Gromov hyperbolic but is always

quasi-isometric to the underlying mapping class group. Arc graphs have single arcs as

vertices while flip graphs have maximal sets of disjoint arcs (triangulations) as vertices.

Thus interpolating in between them gives rise to a family of graphs where vertices are

multiarcs (sets of arcs of a given size), and which we study in this article. We’re interested

in rigidity phenomena and to what extent results about the geometry of flip graphs extend

to these graphs.

Before describing our results, let us point out that the setup is quite similar in nature to

multi-curve graphs which interpolate between curve graphs and pants graphs. Erlandsson

and Fanoni [EFEF] studied their rigidity from the point of view of understanding simplicial

maps between them. These generalized results of Aramayona who proved these results

for pants graphs [AraAra]. For context, we note that mapping class groups also enjoy forms

of strong rigidity, see for example the results of Aramayona and Souto [ASAS]. These results

inspired us to study similar phenomena between multiarc graphs, as generalizations of

similar results for flip graphs [AKPAKP].

* Research partially supported by ANR/FNR project SoS, INTER/ANR/16/11554412/SoS, ANR-17-CE40-0033.

2010 Mathematics Subject Classification: Primary: 57M15. Secondary: 05C60.
Key words and phrases: Arc graphs, flip graphs, mapping class groups.

1



Another source of inspiration comes from questions about the intricate geometry of these

combinatorial objects. For both pants graphs and flip graphs, the following question makes

sense: if two pants decompositions or triangulations in a given graph have a curve or arc

in common, does any geodesic between them always retain the common curve or arc? A

geodesic between, say, two pants decomposition describes how to transform one into the

other in the smallest possible number of moves, so it seems natural to never move a curve

already in place. And in fact, for pants decompositions, this is at least quasi true, by results

of Brock [BroBro] and Wolpert [WolWol], by which we mean that you can find quasi-geodesics

between the pants decompositions which do exactly that. However, despite partial results,

it is not known in general [APS1APS1, APS2APS2, ALPSALPS, TZTZ] and is in fact equivalent to asking

whether there are always a finite number of geodesics between vertices of the pants graph.

For flip graphs, this is always known to be the case by recent results of Disarlo with the first

author [DPDP].

Our first results show that this continues to hold for multiarc graphs. For a surface S
and an integer k ≥ 1, we denote by A[k](S) the k-multiarc graph (see Section 22 for the

precise definition of vertices and edges). The subset ofA[k](S) consisting of multiarcs which

contain a given multiarc ν is denoted by A[k]
ν (S).

Theorem 1.1. Let k′ ≤ k. For any k′-multiarc ν, A[k]
ν (S) is strongly convex.

One expects this type of result to be true for the corresponding multicurve graphs, but

nothing of the type is known.

We then shift our focus to rigidity questions, as in the Erlandsson-Fanoni results alluded

to earlier. We show that our graphs exhibit the same strong rigidity properties as the

corresponding curve graphs. We state the main result in the following theorem, where

non-exceptional just means that we disallow some low complexity cases (see Section 22 for

the exact definition).

Theorem 1.2. Let S1 and S2 be non-exceptional surfaces such that the complexity ω(S1) is at
least 7 + k1. Let ϕ : A[k1](S1) ↪→ A[k2](S2) be a simplicial embedding, with k2 ≥ k1, and assume
ω(S2)−ω(S1) ≤ k2 − k1. Then ω(S2)−ω(S1) = k2 − k1 and

if k2 = k1, ϕ is an isomorphism induced by a homeomorphism f : S1 → S2;

if k2 > k1, there exists a π1-injective embedding f : S1 → S2 and a (k2 − k1)-multiarc ν on
S2 such that for any µ ∈ A[k1](S1) we have

ϕ(µ) = f (µ) ∪ ν.
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Before stating more results, let us make a few comments. In some sense, the fact that these

graphs all have the mapping class group as isomorphism group is a particular case of

the above theorem (see Theorem 5.15.1), but the above result is of course strictly stronger. A

second remark is about our complexity conditions. While it is impossible to be completely

free of them, it is unclear to what extent these conditions can be relaxed. In our approach, we

use simplicial rigidity phenomena of flip graphs which already have complexity conditions

built-in (although it is also unclear how necessary they are even in this case).

Finally, we put these results together to show that under certain complexity conditions, the

image of simplicial maps is always geometric:

Theorem 1.3. Let S1 and S2 be non-exceptional surfaces such that the complexity ω(S1) is at
least 7 + k1. Let ϕ : A[k1](S1) ↪→ A[k2](S2) be a simplicial embedding, with k2 ≥ k1, and assume
ω(S2)−ω(S1) ≤ k2 − k1. Then ϕ

(
A[k1](S1)

)
is strongly convex inside A[k2](S2).
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2. Preliminaries

All surfaces are compact, connected, and orientable with a non-empty finite set of marked

points. A boundary component is either an isolated marked point or a boundary curve

which is required to have at least one marked point on it.

An exceptional surface is a surface of genus at most one with at most 3 boundary components.

Note that the number of marked points on a boundary component is not relevant. For

instance, a polygon with any number of vertices is an exceptional surface.

A k-multiarc is a collection of k disjoint arcs. The maximal size of a multiarc is the complexity
ω(S) = 6g+ 3b+ 3p+ q− 6, where g is the genus, b is the number of boundary components,

p is the number of marked points on the interior of S, and q is the number of marked points

on the boundary of S. A maximal size multiarc is called a triangulation.

We define a k-multiarc graph, A[k](S), associated to a surface S. The vertices of this graph

are k-multiarcs. Two multiarcs are connected with an edge if they share a (k− 1)-multiarc,

ν, and the remaining two arcs intersect minimally on S\ν. With this definition, A[1](S) is

the arc graph and A[ω(S)](S) is the flip graph.

There is another subgraphs of a k-multiarc graph which proves to be useful. If v is a vertex
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of A[k](S) then star of ν, denoted St(ν), is the subgraph spanned by ν and all its adjacent

vertices, in other words the 1-neighborhood of ν.

We end this preliminary section by observing that our graphs of choice are all connected.

Lemma 2.1. For a surface S and an integer k satisfying 1 ≤ k ≤ ω(S), the graphs A[k](S) are
connected.

Proof. We give a proof by induction on k. The base case, for k = 1, is the connectivity of the

arc graph, which is well known.

AssumeA[k−1](S) is connected for every surface satisfying ω(S) ≥ k− 1. Consider a surface

S with complexity at least k and two k-multiarcs α = {a1, . . . ak} and β = {b1, . . . , bk}. By

assumption, there is a path α\ak = γ0, γ1, γ2, . . . , γn = β\bk in A[k−1](S). Let c0 = ak

and ci = γi\γi−1 for 0 < i ≤ n. We know c0 is connected to c1 in A[1](S\(γ0 ∩ γ1)), say

by the path c0 = d0, d1, . . . dm1 = c1. Then we create the path δ0 = {δ0
i }

m1
i=0, in A[k](S),

where δ0
i = γ0 ∪ di. Similarly, we define paths δi arising from a path connecting ci to ci+1.

Concatenating {δi}n
i=0 gives a path between α and β in A[k](S).

3. Convexity

In this section, we show that our graphs have nice convexity properties, namely that

geodesics between multiarcs which share an arc also share this arc:

Theorem 3.1. Let k′ ≤ k. For any k′-multiarc ν, A[k]
ν (S) is strongly convex.

Proof. Say the multiarcs α, β ∈ A[k](S) have exactly one arc in common, x. Consider a

geodesic g between α and β in A[k](S), where g is α = γ0, γ1, . . . , γn = β. Our goal is

to show x ∈ γi for all 0 ≤ i ≤ n. Assume not, then there exists at least one subpath

γj, γj+1, . . . , γm, j > 0, m < n, where no multiarc in the subpath contains x.

Assume
(
∪m

t=jγt

)
∩ x = ∅. There is one arc in γm\γm+1, denote this arc as b; we say that

b is sent to x. Counting backwards from m, let i be the first number such that b /∈ γi but

b ∈ γi+1, note j ≤ i ≤ m− 1. Then γi and γi+1 differ by one arc, b′ and b. Since γi ∩ x = ∅,

b′ is disjoint from x, so we can replace γt with γ′t = γt\b ∪ x for all t between i + 1 and m.

Consequently, γ′m = γm+1, so this new path, α = γ0, . . . γi, γ′i+1, . . . γ′m, γm+2, . . . , γn = β is

shorter than g, contradicting the fact that g is a geodesic.

Therefore we can assume
(
∪m

t=jγt

)
∩ x 6= ∅. Using the same argument as above, we may

assume that γj+1, . . . , γm−1 all contain an arc that intersects x. Pick an orientation of x and
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denote x+ as the oriented arc. Let b be any other arc on S, define πx+(b) as follows:

if i(x, b) = 0 then πx+(b) = b

if i(x, b) > 0 then πx+(b) is the collection of arcs obtained by combing b along x+,

as shown in Figure 11. Note that each arc in πx+(b) has at least one endpoint that

coincides with x.

For a multiarc α = {a1, . . . , an}, define πx+(α) = ∪n
i=1πx+(ai).

Note that in [DPDP] this same map is defined for triangulations, so when k = ω(S).

Figure 1: An example of an arc being combed along x+.

Let α = {a1, a2, . . . , ak}, where a1 is the first arc that intersects x looking up from x+, at is

the last arc that intersects x, and ai, for t < i ≤ k, does not intersect x.

Lemma 3.2. The arc a1 is the only arc in {a1, . . . at} such that πx+(a1) is either contained in α or
is peripheral.

Proof. Under the πx+ ma, ai, for 1 < i ≤ t, is combed towards the endpoint of x+. Since a1

is below ai, any arc created under the action of πx+ will intersect a1 or be in πx+(a1), see

Figure 22. Since a1 and ai are distinct arcs πx+(ai) 6= πx+(a1), so πx+(ai) must contain an arc

that is not in α or peripheral.

Note, if πx+(a1) is either in α or is peripheral then we say a1 collapses.

Lemma 3.3. There is at least one way to assign each arc in α to an arc in πx+(α) ∪ x such that the
assignment is injective. Furthermore, an arc a ∈ α is assigned an arc in πx+(a).

Proof. First, complete the k-multiarc α to a triangulation αT on S. As we have a triangulation,

we are in the situation described in [DPDP] and in this case πx+(αT) contains ω(S)− 1 arcs. It

follows that one arc in αT must collapse under πx+ .
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Figure 2

We know by Lemma 3.23.2, the first arc as we look up from x+ in αT is the arc which collapses;

we assign this arc to x. Then every other arc in αT can be assigned to an arc in πx+(αT) such

that the assignment is injective and for each arc a ∈ αT, a is assigned an arc in πx+(a). The

assignments of the arcs in α define the assignment we want.

Recall the geodesic g from α to β and the subpath γj, γj+1, . . . , γm. Assume we have

modified the path with γ′i+1, . . . γ′m where γ′t is an assignment as described in Lemma 3.33.3,

for all i + 1 ≤ t ≤ m, for some i between j and m. We define γ′i by assigning each arc in γi

to an arc in πx+(γi) as follows. By definition of a path between k-multiarcs, γi differs from

γi+1 by one arc; call this arc y. Assume y is sent to z in γi+1. Assign each arc in γi\y as it

was assigned in fx+(γi+1). Then assign y as follows:

If πx+(y) is empty then assign y to x.

If πx+(y) contains an arc not already assigned to an arc in γi\y, then assign y to that

arc.

If all arcs in πx+(y) are assigned to an arc in γi\y already then we need to reassign

some arcs in γi\y. Assign y to an arc in πx+(y), call it y′. Then find the arc in γi

assigned to y′ and reassign it to an arc in its image under πx+ . Work backwards like

this until all arcs in γi are assigned properly; this is possible by Lemma 3.33.3.

These assignments define γ′i .

Starting with γm−1, set γ′m−1 to be the arcs in πx+(γm−1) assigned to the arcs in γm−1 as

described in Lemma 3.33.3. Working backwards, define γ′i for j ≤ i ≤ m− 2 using γ′i+1 as
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described above. Now we have a valid path of the same length where
(
∪n

t=jγt

)
∩ x = ∅.

Therefore, by the arguments above, this path is not a geodesic. The result follows.

4. Simplicial embeddings

In this section we show, given surfaces under certain complexity conditions, that any

simplicial map between arc graphs from the surface of largest complexity to the other is

induced by a homeomorphism. We then promote this result to simplicial embeddings

between arc graphs and multiarc graphs.

The following lemma is one of the key tools:

Lemma 4.1. If a complete subgraph contains 3 vertices that permute k + 1 arcs (i.e. the intersection
between the 3 vertices contains k− 2 arcs) then every vertex in the complete subgraph permutes
those k + 1 arcs.

Proof. Let α, β, and γ be the three vertices that permute k + 1 arcs, let α = {a1, . . . ak}.
Denote by νi = α\ai. Without loss of generality, β = νk ∪ bk and γ = νj ∪ bk for some j 6= k.

Take δ to be another multiarc in the complete subgraph, recalling δ is adjacent to α, β, and

γ. By contradiction, suppose that δ contains an arc d not equal to any arc in α, β, or γ. If δ

contains bk, then α and δ differ by two arcs, contradicting the fact that α and δ are adjacent.

If δ does not contain bk, then to be adjacent to β, δ = νk ∪ d. In this case, γ and δ differ by

two arcs, contradicting the fact that β and δ are adjacent. Therefore, δ = νi ∪ bk, for some

i 6= j, k.

The main trick in the following proof is the observation that a simplicial map between

arc graphs induces a simplicial map between flip graphs. This is because triangulations

correspond to maximal subgraphs in arc graphs and you can “see” flips by seeing which

maximal subgraphs share near maximal graphs.

Theorem 4.2. Let S1 and S2 be two surfaces of complexity at least 7 such that ω(S2) ≤ ω(S1).
Let ϕ : A(S1) ↪→ A(S2) be a simplicial embedding. Then ϕ is an isomorphism induced by a
homeomorphism f : S1 → S2.

Proof. For any surface S the maximum complete subgraph in A(S) is of size ω(S). Since ϕ

is a simplicial embedding, a complete graph in A(S1) is mapped to a complete graph of

the same size in A(S2). Therefore ω(S1) ≤ ω(S2), and by assumption ω(S2) ≤ ω(S1) so

ω(S1) = ω(S2).
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A maximum complete graph in A(S) corresponds to a triangulation, so we know that

triangulations in A(S1) are mapped to triangulations in A(S2). Flip moves are also pre-

served since they correspond to two maximum complete graphs that intersect in ω(S1)− 1

vertices. Hence ϕ induces a map ϕ : F (S1) ↪→ F (S2) between flip graphs that is a simplicial

embedding. By [KPKP] there is a homeomorphism f : S1 → S2 that induces ϕ, and therefore f
induces ϕ.

The following result concerns topological types of arcs, and will be a tool that we use later.

Two arcs, a1 on S1 and a2 on S2 are of same topological type if there is homeomorphism

ϕ : S1 → S2 sending a1 to a2. As we’ve just seen that simplicial embeddings under certain

complexity conditions come from homeomorphisms, we immediately get the following.

Corollary 4.3. Let S1 and S2 be two surfaces of complexity at least 7 such that ω(S2) ≤ ω(S1).
Let ϕ : A(S1) ↪→ A(S2) be a simplicial embedding. Then ϕ sends arcs of S1 to arcs of the same
topological type.

An ear on a surface S is an arc e such that S \ e has a triangle as a connected component. A

non-separating arc is an arc a such that S \ a is non-separating. So a particular consequence

of the above result is that ears are sent to ears and non-separating arcs to non-separating

arcs.

We now prove the following result which generalizes the above results to embeddings of

arc graphs into multiarc graphs.

Theorem 4.4. Let S1 and S2 be two non-exceptional surfaces of complexity at least 7 such that
ω(S2) − ω(S1) ≤ k − 1 and k > 1. Let ϕ : A(S1) ↪→ A[k](S2) be a simplicial embedding.
Then ω(S2) − ω(S1) = k − 1 and there exists a π1 injective embedding f : S1 → S2 and a
(k− 1)-multiarc ν on S2 such that for any µ ∈ A[1](S1) we have ϕ(µ) = f (µ) ∪ ν.

Proof. Take a ∈ A[1](S1) and let α = ϕ(a) = {a1, . . . ak}. Define νj = {a1, . . . , âj, . . . , ak}.
Our goal is to show ϕ(St(a)) ⊂ A[k]

νk (S2). Take b, c ∈ A[1](S1\a) such that they are disjoint;

since the complexity is greater than 6 these arcs exists. Without loss of generality we can

assume β = ϕ(b) = {a1, . . . , ak−1, bk}. Now there are two cases:

1. γ = ϕ(c) = νj ∪ bk where j 6= k, or

2. γ = ϕ(c) = νk ∪ ck, where ck ∈ A[1](S2\νk).

If Case 1 happens: Take any arc d ∈ A[1](S1) such that d is disjoint from a, b, and c; this

exists because ω(S1) ≥ 7. Then consider ϕ(d). Since ϕ is a simplicial embedding ϕ(d) is
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mutually disjoint from α, β, and γ. By Lemma 4.14.1 ϕ(d) = νi ∪ bk for some i 6= j, k. If there

are k− 1 arcs in A[1](S1\(a ∪ b ∪ c)) then injectivity of ϕ would be violated by taking k− 1

arcs and applying Lemma 4.14.1. By our restrictions on the surfaces, S1\(a ∪ b ∪ c) is not a

collection of polygons (surfaces with exactly one boundary component, no genus, and no

interior marked points). Thus, there are infinitely many arcs in A[1](S1\(a ∪ b ∪ c)) because

ω(S1) ≥ 7. Therefore, case 2 must happen.

Take any arc in St(a) different from b or c; let this arc be d. Then one can find a path from c
to d in A[1](S1\a), c = c0, c1, c2, . . . cm = d. For all 0 ≤ i ≤ m, the arcs ci, ci+1, and a form a

triangle and by the contradiction in case 1, ϕ(ci) = νk ∪ x for some x ∈ A[1](S1). Therefore

ϕ(St(a)) ⊂ A[k]
νk (S2).

Now we have the following map diagram:

A[1](S1) A[k]
vk (S2) ⊂ A[k](S2)

A[1](S2\νk)

ϕ

∼= θ
Φ

where θ is an isomorphism defined by θ(νk ∪ x) = x and Φ = θ ◦ ϕ. Since ϕ is a simplicial

embedding, Φ must be a simplicial embedding as well; so ω(S2\νk) ≤ ω(S1). By Theorem

4.24.2, Φ is induced by a homeomorphism f : S1 → S2\νk. Composing f with the natural

inclusion S2\νk ↪→ S2, we get a π1-injective map F : S1 → S2 where ϕ is induced by F and

νk.

5. Rigidity

We now proceed to show that our graphs all have the expected automorphism groups,

completing the well-known results for flip graphs and the arc graph.

Theorem 5.1. Aut(A[k](S)) = Mod(S).

We will prove Theorem 5.15.1 by induction. It is known that Aut(A[1](S)) ' Mod(S) [DD, IMIM,

KPKP]. Assume Aut(A[k−1](S)) ' Mod(S). We will show Aut(A[k](S)) ' Aut(A[k−1](S)).
Define the following map:

θ : E(A[k](S)) −→ V(A[k−1](S))

αβ 7−→ α ∩ β
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By definition of a multiarc graph, it follows that θ is surjective.

Lemma 5.2. For A ∈ Aut(A[k](S)), if for e f ∈ E(A[k](S)) θ(e) = θ( f ), then θ(A(e)) =

θ(A( f )).

Proof. By definition, θ(e) = θ( f ) = µ if and only if e and f are in A[k]
µ (S) ⊂ A[k](S).

Therefore A(e), A( f ) ∈ A(A[k]
µ (S)). A induces a map:

ψ : A[1](S\µ) −→ A[k](S)

a 7−→ A({a} ∪ µ)

which is a simplicial embedding. Therefore, by Theorem 4.44.4 there exists a (k− 1)-multiarc

ν such that ψ(A[1](S\µ)) ⊂ A[k]
ν (S), which implies θ(A(e)) = ν = θ(A( f )).

Define the map ϕ as follows:

ϕ(A) : V(A[k−1](S)) −→ V(A[k−1](S))

µ 7−→ θ(A(e))

where e is any edge such that θ(e) = µ. ϕ(A) is well defined by Lemma 5.25.2 and is a bijective

map because its inverse is ϕ(A−1).

Lemma 5.3. ϕ(A) sends edges to edges.

Proof. Take an edge, µν, inA[k−1](S). ThenA[k]
µ (S)∩A[k]

ν (S) = {µ∪ ν}, therefore A(A[k]
µ (S))

and A(A[k]
ν (S)) intersect in exactly one vertex. This implies A[k]

ϕ(A)(µ)
(S) ∩ A[k]

ϕ(A)(ν)
(S)

is non empty. Since ϕ(A)(ν) and ϕ(A)(µ) are k − 1 multiarcs, either A[k]
ϕ(A)(µ)

(S) =

A[k]
ϕ(A)(ν)

(S) or A[k]
ϕ(A)(µ)

(S) ∩ A[k]
ϕ(A)(ν)

(S) is just one vertex. If A[k]
ϕ(A)(µ)

(S) = A[k]
ϕ(A)(ν)

(S)

then ϕ(A)(µ) = ϕ(A)(ν), violating the injectivity of ϕ. So, A[k]
ϕ(A)(µ)

(S) ∩ A[k]
ϕ(A)(ν)

(S) =

{ϕ(A)(µ) ∪ ϕ(A)(ν)}. This tells us that ϕ(A)(µ)ϕ(A)(ν) is an edge in A[k−1](S).

Thus, ϕ(A) is a simplicial map from A[k−1](S) to itself. Furthermore, since it is also a

bijection, ϕ(A) is an automorphism. Therefore we can define the map ϕ:

ϕ : Aut(A[k](S)) −→ Aut(A[k−1](S))

A 7−→ ϕ(A)

Lemma 5.4. ϕ is a group homomorphism.
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Proof. Take A, B ∈ Aut(A[k](S)) and a (k− 1) multiarc, µ, say θ(e) = µ.

ϕ(A ◦ B) = θ(A ◦ B(e)) = θ(A(B(e))) = ϕ(A)(θ(B(e)))

= ϕ(A)ϕ(B)(θ(e)) = ϕ(A) ◦ ϕ(B)(µ)

Lemma 5.5. ϕ is injective.

Proof. We show ker(ϕ) = {id}. Assume ϕ(A) = id. Take µ ∈ A[k−1](S) where µ =

{m1, . . . , mk} and set µi = µ\mi. Define the edge ei to be µνi for some νi ∈ A[k−1](S) such

that θ(ei) = µi. Now

µi = ϕ(A)(µi) = θ(A(ei)) = A(µ) ∩ A(νi).

So µi ⊂ A(µ) for all 1 ≤ i ≤ k. Therefore, A(µ) = µ and A = id.

Lemma 5.6. ϕ is surjective.

Proof. Take the maps F : Mod(S) → Aut(A[k](S)) and G : Mod(S) → Aut(A[k−1](S)) to

be the natural maps between the mapping class group and the multiarc graph. By the

induction hypothesis, G is surjective. Therefore, to show ϕ is surjective all that needs to

be shown is G = ϕ ◦ F. Take f ∈ Mod(S) and a (k− 1) multiarc, µ = {m1, . . . , mk−1}. Let

e = αβ be an edge in A[k](S) such that θ(e) = µ. Then we have the following:

ϕ(F( f ))(µ) = θ(F( f )(µ)) = θ(F( f )(α)F( f )(β)) = F( f )(α) ∩ F( f )(β)

= { f (m1), . . . , f (mk−1), f (a)} ∩ { f (m1), . . . , f (mk−1), f (b)}

= { f (m1), . . . , f (mk−1)} = G( f )(µ)

Therefore, Aut(A[k](S)) ' Aut(A[k−1](S)) ' Mod(S), proving Theorem 5.15.1.

6. Simplicial embedding between arc-type graphs

In this section, we prove our main theorem about simplicial embeddings.

The following notions will come in handy. An ear on a surface S is a separating arc such that

one of the two connected components is a triangle. We say that two disjoint non-separating

arcs or ears a and b form a nice pair if S\(a ∪ b) has exactly one component with positive

complexity.
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We introduce a new subgraph of A[k](S), B[k](S), defined as follows:

V(B[k](S)) = {µ | µ contains a non-separating arc or ear}

E(B[k](S)) = {µν | |µ ∩ ν| = k− 1 and the remaining arcs form a nice pair}

Lemma 6.1. For ω(S) ≥ 7, B[1](S) is connected.

Proof. Assume S is a punctured sphere, S0,p with p ≥ 4. (if p = 3 then all disjoint non-

separating arcs form nice pairs). For an arc to be non-separating in S0,p it must have two

separate endpoints. Two disjoint non-separating arcs in S0,p form a nice pair if and only if

the arcs don’t share the same endpoints. Take non-separating arcs a and b such that they do

not form a nice pair. Then they must have the same endpoints. We know both components

of S\(a ∪ b) is a surface containing a puncture that’s not an endpoint of a or b. Then there

exists an arc, c, disjoint from both a and b and doesn’t share both endpoints with a or b.

Therefore a and c, and b and c, form a nice pair. So we have the path a, c, b in B[1](S).

Assume S is a surface that’s not a punctured sphere, therefore S has positive genus. Here it

is still true that if two disjoint non-separating arcs don’t form a nice pair then they share

both endpoints. Take non-separating disjoints arcs a and b such that they do form a nice pair.

If p ≥ 3 then one of the components of S\(a ∪ b) has a puncture which is not an endpoint

of a or b and we can find a non-separating arc c with one endpoint on this puncture which

is disjoint from a and b. Therefore we have a desired path. If p = 2 then we can find a

non-separating arc, c, in one of the components of S\(a ∪ b) which starts and ends at the

same puncture. Therefore a and c, and b and c, form a nice pair and we get the desired path.

If p = 1 then all disjoint non-separating arcs form nice pairs.

Now assume S is any surface. Take arcs a, b ∈ B[1](S). Then we can form a unicorn path

between a and b:

a = c0, c1, . . . , cn = b,

being sure to pick the orientation of a and b such that c1 has two distinct endpoints. We

know that cici+1 don’t form a nice pair for 1 ≤ i ≤ n − 2, however they are disjoint

non-separating curves so we can connect each cici+1 in B[1](S) as described above.

Remark 6.2. The following observations about a multiarc µ ∈ A[k](S)\B[k](S) will be very

useful:

If S is a surface with genus at least 1 then there is one non-separating arc, a, that is

disjoint from µ. We can then Dehn twist a around the meridian of one of the genuses.

This results in infinitely many multiarcs in B[k](S) adjacent to µ.
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If S = S0,p is a punctured sphere then there are at most 2p− 5 disjoint separating

arcs, so k ≤ 2p− 5. Then there are at least p− 1 non-separating arcs disjoint from µ.

Therefore, there are k(p− 1) multiarcs in B[k](S) adjacent to µ.

If S has at least three boundary components and no genus then any separating arc

must isolate one of the two boundary components and therefore S\µ has a component

with one of the boundaries in S. Take the curve circling the boundary; one can Dehn

twist any non-separating arc disjoint from µ around the curve to get infinitely many

non-separating arcs disjoint from µ.

Theorem 6.3. Let S1 and S2 be non-exceptional surfaces such that the complexity ω(S1) is at
least 7 + k1. Let ϕ : A[k1](S1) ↪→ A[k2](S2) be a simplicial embedding, with k2 ≥ k1, and assume
ω(S2)−ω(S1) ≤ k2 − k1. Then ω(S2)−ω(S1) = k2 − k1 and

if k2 = k1, ϕ is an isomorphism induced by a homeomorphism f : S1 → S2;

if k2 > k1, there exists a π1-injective embedding f : S1 → S2 and a (k2 − k1)-multiarc ν on
S2 such that for any µ ∈ A[k1](S1) we have

ϕ(µ) = f (µ) ∪ ν.

The proof of Theorem 6.36.3 proceeds by induction on k1. When k1 = 1, Theorem 4.44.4 gives us

the result. Now assume that we know the result up to k1 − 1.

If a is an ear in S1 then we denote S1\a to be the component of positive complexity. Now

take a non-separating arc or ear a on S1. We can define the following map:

ϕa : A[k1−1](S1\a) = A[k1]
a (S1) ↪→ A[k2](S2).

By the induction hypothesis ϕa is induced by a π1-injective embedding fa : S1\a→ S2 and

k2 − k1 + 1 = ω(S2)−ω(S1\a)

= ω(S2)−ω(S1) + 1

therefore ω(S2)−ω(S1) = k2 − k1 =: d, as desired. The induction hypothesis also states

that along with fa there is a (d + 1)-multiarc, νa, such that ϕa(µ) = fa(µ) ∪ νa.

Note that a 0-multiarc is just the empty set.

Lemma 6.4. If a and b are disjoint non-separating arcs or ears and form a nice pair on S1 then
there exists a π1-injective embedding f : S1 → S2 and a d-multiarc ν on S2 such that ϕ is induced
by f and ν on A[k1]

a (S1) ∪A[k1]
b (S1). Moreover, if d = 0, then f is a homeomorphism.
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Proof. We know we have maps ϕa, which is induced by νa and fa on A[k1]
a (S1), and ϕb,

which is induced by νb and fb onA[k1]
b (S1). What we will show is that νa ∩ νb is a d-multiarc

and fa, fb define a π1-injective embedding S1 → S2 which is a homeomorphism when

d = 0.

Case k1 = 2: We have:

ϕ({a, b}) = νa ∪ { fa(b)} = νb ∪ { fb(a)}

which implies that νa ∩ νb is a d-multiarc if and only if νa 6= νb.

To show νa 6= νb we proceed by contradiction; assume νa = νb. Then

ϕ(A[2]
a (S1) ' A[1](S1\a)) ⊆ A[k2]

νa (S2) = A[1](S2\νa)

ϕ(A[2]
b (S1) ' A[1](S1\b)) ⊆ A[k2]

νb (S2) = A[k2]
νa (S2) = A[1](S2\νa)

and since ω(S1\a) = ω(S2\νa) we can apply Theorem 4.24.2 to get ϕ(A[2]
a (S1)) = ϕ(A[2]

b (S1)) =

A[k2]
νa (S2). Now take µ ∈ A[k2]

νa (S2) where µ 6= ϕ({a, b}), then there exists α ∈ A[2]
a (S1)

and β ∈ A[2]
b (S1) such that ϕ(α) = ϕ(β) = µ. Since ϕ is injective α = β giving α, β ∈

A[2]
a (S1) ∩ A[2]

b (S1). However, there is only one multiarc in A[2]
a (S1) ∩ A[2]

b (S1) which is

{a, b}, therefore α = β = {a, b} contradicting that µ = ϕ({a, b}). So νa and νb are not equal

and ν := νa ∩ νb is a d-multiarc.

Now we will show fa and fb induce the same map on S1\(a ∪ b). Take c ∈ A[1](S1\(a ∪ b))
and consider the multiarcs {a, c} and {b, c}. These form an edge in A[2](S1), therefore

ϕ({a, c})ϕ({b, c}) is an edge in A[k2](S2). We know

ϕ({a, c}) = νa ∪ fa(c)

ϕ({b, c}) = νb ∪ fb(c)

and since νa 6= νb, fa(c) = fb(c). Accordingly, fa and fb induce the same map A[1](S1\(a ∪
b)) → A[1](S2\ϕ({a, b})). Since the complexities of S1\(a ∪ b) and S2\ϕ({a, b}) are

equal we may assume ga = fa|S1\(a∪b) and gb = fb|S1\(a∪b) are homeomorphisms onto

S2\ϕ({a, b}). Moreover, g−1
b ◦ ga induces the identity map on S1\(a ∪ b), therefore the

class of g−1
b ◦ ga is trivial in Mod(S1\(a ∪ b)). This implies ga = gb ◦ h where h is some

homeomorphism on S1\(a∪ b) isotopic to the identity. Thus we can assume fa and fb agree

on S1\(a ∪ b) and we define a map f : S1 → S2 by extending either fa or fb to S1. The

resulting map f is a π1-injective embedding. Hence f induces a simplicial map between

the arc graphs of S1 and S2.

When d = 0, i.e. k1 = k2 = 2, f (a) = νa and f (b) = νb so νa and νb are both arcs. By

Corollary 4.34.3, the arcs νa and νb are of the same topological type as a and b. Now fa induces
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a simplicial map between the arc graph of S1\(a ∪ b) and the arc graph of S2\(νa ∪ νb).

As the surfaces have the same complexity, by the rigidity of arc graphs, we necessarily

have that S1\(a ∪ b) and S2\(νa ∪ νb) are homeomorphic and in fact fa is induced by a

homeomorphism. The same argurment holds for fb. As fa and fb naturally extend to f ,

and because the arcs a, resp. b, and f (a) = νa, resp. f (b) = νb, are of the same type, we can

promote f to a homeomorphism which completes the case when k1 = k2 = 2.

Case k1 ≥ 3: Take µ ∈ A[k1]
a∪b(S1), we know µ = {a} ∪ {b} ∪ µ̃ where µ̃ is a (k1− 2)-multiarc.

Then

ϕ(µ) = νa ∪ fa(µ\a) = νa ∪ { fa(b)} ∪ fa(µ̃)

= νb ∪ fb(µ\b) = νb ∪ { fb(a)} ∪ fb(µ̃)

As µ̃ varies, fa(µ̃) and fb(µ̃) varies since ϕ is injective and the rest of ϕ(µ) is fixed since it

does not depend on µ̃. Therefore νa ∪ { fa(b)} = νb ∪ { fb(a)} and fa(µ̃) = fb(µ̃), implying

fa and fb induce the same map A[k1−2](S1\(a ∪ b))→ A[k1−2](S2\(νa ∪ fa(b))). Now using

the same argument as before, fa|S1\(a∪b) = fb|S1\(a∪b) ◦ h where h is a homeomorphism

on S1\(a ∪ b) isotopic to the identity. And as before, we can assume fa and fb agree on

S1\(a ∪ b) and defines a map f : S1 → S2. The same argument as in the case where k = 2

holds here as well, implying f is a π1-injective map and when d = 0 f is a homeomorphism.

Finally, since f is injective f (a) 6= f (b), thus νa ∩ νb is a d-multiarc.

Lemma 6.5. The embedding ϕ is induced by f and ν on B[k](S1).

Proof. Let f and ν be determined by the nice pair (a, b) as in Lemma 6.46.4. Take an arc

c ∈ B[1](S1), since B[1](S1) is connected there exists a path

a = c0, c1, . . . cm = c.

As a and c1 form a nice pair, by Lemma 6.46.4 they determine a map f ′ and a d-multiarc ν′.

Both f and f ′ agree with fa so we can assume that f ′ = f on S1\a. Then f ′(µ) ∪ ν′ =

ϕ(µ) = f (µ) ∪ ν for any multiarc µ on S1\a, therefore ν′ = ν.

If a is a non-separating arc then f = f ′ on S1 by continuity. Otherwise, if a is an ear then

f = f ′ on everything but a triangle, but two maps can’t differ on just a triangular portion,

so they must be equal on all of S. Now, repeating the argument along the path we know

that ϕ is induced by f and ν on A[k1]
c (S1), and therefore on B[k](S1) since c is arbitrary.

Lemma 6.6. The image of ϕ is in A[k2]
ν (S2).
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Proof. Suppose not. Take µ ∈ A[k1](S1)\B[k1](S1) such that ϕ(µ) /∈ A[k2]
ν (S2). In other

words, there exists an arc a ∈ ν such that a /∈ ϕ(µ). Take a multiarc µ ∈ B[k1](S1) adjacent to

µ, which exists by Remark 6.26.2. We know that ϕ(µ) = ν∪ f (µ) and since µ and µ are adjacent

and ϕ is an embedding, ϕ(µ) and ϕ(µ) are adjacent. Therefore, |ϕ(µ) ∩ ϕ(µ)| = k2 − 1

and ϕ(µ) ∩ ϕ(µ) = ν\{a} ∪ f (µ). This tells us that f (µ) ⊆ ϕ(µ)\ν =: η and ν\{a} ⊂ ϕ(µ)

where, |η| = k2 − (d− 1) = k1 + 1. Then µ ⊆ f−1(η), which has at most cardinality k1 + 1

since f is injective. This holds true for every µ ∈ B[k1](S1) adjacent to µ, and η does not

depend on µ. We know there are at most k1 + 1 multiarcs in f−1(η) but there are more than

k1 + 1 arcs in B[k1](S1) adjacent to µ by Remark 6.26.2 arriving at a contradiction.

This gives us a map

Φ : A[k1](S1) −→ A[k1](S2)

µ 7−→ ϕ(µ)\ν

So we have

ϕ(µ) = Φ(µ) ∪ ν

for every µ ∈ A[k1](S1) and all that’s left to show is that f induces Φ.

Lemma 6.7. For any arc b on S1, Φ(A[k1]
b (S1)) ⊆ A[k1]

f (b)(S2).

Proof. Take µ ∈ A[k1]
b (S1). If µ ∈ A[k1]

b (S1) ∩ B[k1](S1), then Φ(µ) = f (µ) ∈ A[k2]
f (b)(S2) by

Lemma 6.56.5. Suppose µ ∈ A[k1]
b (S1)\B[k1](S1). For any µ ∈ B[k1](S1) that is adjacent to µ we

have

Φ(µ) ∩Φ(µ) = f (µ)\{ f (b)}.

Therefore µ is a subset of Φ(µ) ∪ { f (b)}. This implies that there are k1 + 1 multiarcs in

B[k1](S1) adjacent to µ, contradicting Remark 6.26.2.

Take any µ ∈ A[k1](S1) and say µ = {b1, . . . , bk1}. Then

Φ(µ) = ∩k1
j=1Φ(A[k1]

bj
(S1)) ⊆ ∩k1

j=1A
[k1]
f (bj)

(S2) = f (µ).

Therefore Φ(µ) = f (µ) for all multiarcs µ ∈ A[k1](S1), which concludes the proof of

Theorem 6.36.3.
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