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Abstract. We show that the asymptotic growth rate for the minimal cardinality of a set of simple
closed curves on a closed surface of genus g which fill and pairwise intersect at most K ≥ 1 times

is 2
√
g/
√
K as g → ∞ . We then bound from below the cardinality of a filling set of systoles by

g/ log(g). This illustrates that the topological condition that a set of curves pairwise intersect at

most once is quite far from the geometric condition that such a set of curves can arise as systoles.

1. Introduction

We study the size of a collection of simple closed curves on a closed, orientable surface of genus
g ≥ 2 which fill the surface and pairwise intersect at most K times for some fixed K ≥ 1. In
particular, we give upper and lower bounds on the minimum numbers of curves in such a collection.

The original motivation for this work arose when considering fillings sets of systoles on closed
hyperbolic surfaces (definitions are given in Section 2). Thurston [4] suggested that the subspace
Xg of Teichmüller space consisting of those surfaces that admit a filling set of systoles might form a
mapping class group invariant spine. However still very little is known about this set of surfaces, and
whether Xg is indeed contractible remains to be shown. Another natural but difficult problem is to
determine the smallest size of a filling set of systoles. A first approach is to consider the topological
constraints on such a set, for it is straightfoward to observe that the curves in a filling set of systoles
are nonseparating and can only pairwise intersect at most once.

In our main result, we are thus generalizing these topological restrictions on filling sets of sytoles
by allowing a larger uniform bound on pairwise intersection for filling sets of simple closed curves.

Theorem 1. Let S be a closed, orientable surface of genus g ≥ 2. The number n of curves in a
filling set of simple closed curves which pairwise intersect at most K ≥ 1 times satisfies

(1.1) n2 − n ≥ 4g − 2

K
Moreover, if N is the smallest integer satisfying this inequality, then there exists a set of no more
than N + 1 such curves on S.

Note that Theorem 1 is only really interesting where g is much larger than K. We have the
resulting corollary:

Corollary 2. Let S be a closed, orientable surface of genus g ≥ 2. The number n of curves in a
smallest filling set of simple closed curves which pairwise intersect at most K ≥ 1 times satisfies

n ∼ 2
√
g√
K

; in other words,

lim
g→∞

n
√
g

=
2√
K

The topological approximation given by Theorem 1 for the smallest number in a filling set of
systoles turns out to be very crude. Our second result says that the number of systoles in a smallest
filling set grows with g at a rate of order strictly greater than

√
g.

The first and third authors were supported by EPSRC grant EP/F003897. The second author was supported in part by Swiss
National Science Foundation grant number PP00P2 128557. The third author is supported in part by NSF grant DMS-0856143 and
NSF RTG grant DMS-0602191.

1



2 J. W. ANDERSON, H. PARLIER, AND A. PETTET

Theorem 3. Let S be a closed, orientable hyperbolic surface of genus g ≥ 2 with a filling set of
systoles {σ1, . . . , σn}. Then

n ≥ π
√
g(g − 1)

log(4g − 2)
.

Furthermore there exist hyperbolic surfaces of genus g with filling sets of n ≤ 2g systoles.

Our paper is organized as follows. We begin with definitions and notation in Section 2. For
the proof in Section 3 of Theorem 1, we use an Euler characteristic argument to obtain a lower
bound on the number in a filling set of curves which pairwise intersect at most K times. To find
an upper bound, we give a construction of such a set of curves whose cardinality is at most one
larger than the lower bound. As it must work for all g and satisfy this small cardinality condition,
this construction is rather cumbersome to describe. Thus in Section 4 we produce for K = 1 easier
examples of such small sets of curves whose growth rate, though larger, still has order

√
g. We give

an explicit proof that these sets cannot be realized as systoles in Proposition 4. Finally, in Section
5 we prove Theorem 3.

Acknowledgments. The authors are thankful to Greg McShane for several helpful discussions which
led to the use of the hairy torus example in Section 3. The authors are also very grateful for the
anonymous referee’s careful reading and useful suggestions. The third author is thankful to Stanford
University and the School of Mathematics at the University of Southampton for their hospitality
during the conception of this paper.

2. Preliminaries

The results in this paper are stated only for closed, orientable surfaces, although it is possible
to extend them to include punctured surfaces. On the other hand, our proofs work explicitly and
extensively with compact surfaces with nonempty boundary, and so we begin with some conventions
for this purpose.

Let F be a compact, orientable surface with nonempty boundary. An arc on F is a simple arc
whose endpoints lie on the boundary of F and whose interior lies in the interior of F (that is, we
assume that all arcs are properly embedded). We usually confuse an arc with its homotopy class,
relative to its basepoints.

Let A be an arc on the surface F . We record the three possibilities for the closure F \A of the
complement of A in F :

(1) The endpoints of A lie in distinct boundary components of F . In this case, A is said to

be boundary cutting: the connected surface F \A has the same genus as F , but one fewer
boundary components.

(2) The endpoints of A lie in the same boundary component of F , and F \A is connected. In

this case, A is said to be genus cutting: the surface F \A has genus one less than the genus
of F and one more boundary component.

(3) The endpoints of A lie in the same boundary component of F , and F \A is disconnected.

In this case, A is separating; the surface F \A has genus equal to the genus of F and one
more boundary component.

These three possibilities will be revisited in the proof of Theorem 1. Note that the removal of an
arc of type (1) or (2) does not disconnect the surface; in these two cases, if F is connected, then

F \A is also connected. The arcs of type (3) occur only towards the end of the proof of Theorem

1, when describing the “last curves” in a filling set. Note that parts of the boundary of F \A come
equipped with identifications corresponding to A.

Let S be a closed, orientable surface of genus g ≥ 2. A curve on S is a simple, closed, essential
(homotopically nontrivial) curve. We often confuse a curve with its homotopy class; when consid-
ering curves which intersect, we generally aim to choose representatives for their homotopy classes
with minimal intersection number.
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Recall that a set of curves on S fills if the complement of the union of its curves consists of simply
connected components. Given K ≥ 1, a set of curves forms a K-filling set if it fills the surface, and
if any two curves in the set intersect at most K times.

By a hyperbolic surface, we mean a surface equipped with a hyperbolic metric. Every homotopy
class of curves on a hyperbolic surface contains a unique geodesic representative. A systole on a
hyperbolic surface is a shortest simple closed geodesic on the surface. A straightforward cut-and-
paste argument shows that a filling set of systoles on a surface is a 1-filling set, and further that all
curves in a filling set of systoles are nonseparating.

3. Proof of Theorem 1

As the title suggests, in this section we give a proof of our main theorem, Theorem 1. For this
we require lower and upper bounds for the size of a K-filling set of simple close curves.

3.1. The lower bound. Let γ1, . . . , γn be a set of n curves satisfying the hypotheses of Theorem
1 for some fixed K ≥ 1. Let S(m) denote the compact surface whose interior is the complement of
the union of the first m curves γ1, . . . , γm on S. Then the Euler characteristic X (S(n)) of S(n) is
at least one.

On S(m), the curve γm+1 consists of the union of at most Km arcs whose endpoints correspond to
intersections of γm+1 with the first m curves. Deleting a single arc increases the Euler characteristic
by at most one. Removing all arcs of γm+1, the Euler characteristic of the resulting surface S(m+1)
increases by at most Km. Thus we have:

1 ≤ X (S(n)) ≤ X (S(n− 1)) +K(n− 1)

≤ X (S(n− 2)) +K(n− 2 + n− 1)

...

≤ X (S(1)) +K(1 + · · ·+ n− 2 + n− 1)

= 2− 2g +K
n(n− 1)

2
Rearranging the terms gives the inequality of Theorem 1.

3.2. The upper bound. For this we describe a K-filling set with cardinality N or N+1, described
inductively in that the (m+ 1)st curve γm+1 is given in terms of the previous γ1, . . . , γm. As should
be apparent in what follows, a minimal such set is in no way unique, and the number of such sets
(up to homeomorphism) grows with genus. Part of the difficulty here is in making a choice for these
curves in such a way that they can be described systematically, and it should be noted that we make
no attempt to keep track of all possible sets of small cardinality.

The curves described will in fact make up an M -filling set, where M = min{K, g}. This takes into
account the relative sizes of K and g; for in the case that g is small relative to K, the set is g-filling
so that pairwise intersections between curves are fewer than required. This resolves difficulties in
the construction for these cases.

3.2.1. Notation. Suppose that γ1, . . . , γm are the first m curves chosen for our collection. Recall
that S(m) is the compact surface with boundary having interior S\(γ1∪· · ·∪γm). The natural map

fm : S(m) −→ S

is the identity when restricted to the interior of S(m) and identifies boundary components cor-
responding to the curves γ1, . . . , γm. For most cases (see Section 3.2.3 below), the curve γm is

described by M(m− 1) arcs {Ai,jm }
1≤i≤m−1
1≤j≤M on S(m− 1) such that

γm = fm−1

(m−1⋃
i=1

M⋃
j=1

Ai,jm

)
.
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If γm is one of the “last curves”, then it is given by a similar union, but of possibly fewer than
M(m − 1) arcs (see Section 3.2.4 below). Denote by bi,jm and ti,jm the base and terminal points of
the arc Ai,jm , respectively. The order in which the arcs are joined will be clear when discussing the
relationship between the base and terminal points of arcs. For brevity and clarity, we say that the
arc Ai,jm is genus cutting (respectively, boundary cutting) if it is genus cutting (respectively, boundary
cutting) in the surface whose interior is:

S(m− 1) \
i−1⋃
k=1

M⋃
`=1

Ak,`m \
j−1⋃
`=1

Ai,`m

3.2.2. The first two curves. The first curve γ1 is a nonseparating simple closed (oriented) curve on
S. To describe the curves γm for m ≥ 2, we first consider when the genus of S(m − 1) is M more
than the number of boundary cutting arcs from γm−1. If this is already not the case for m = 2, the
remaining curves on S are “last curves,” as described in Section 3.2.4 below.

Let γ+1 (respectively, γ−1 ) be the component in S(1) of f−11 (γ1) for which the surface lies on the
left (respectively, right). Choose M distinct points p1, p2, . . . , pM on γ1, ordered for convenience
according to the orientation of γ1. For 1 ≤ k ≤M , let p+k be a point on γ+1 , and p−k a point on γ−k
such that f1(p+k ) = f1(p−k ) = pk.

For 1 ≤ j < M , the base point of A1,j
2 is b1,j2 = p+j , and the terminal point is t1,j2 = p−j+1; the

terminal point t1,M2 of A1,M
2 is p−1 . The union

⋃M
j=1A

1,j
2 then maps under f1 to a simple closed curve

γ2. We choose the arcs so that A1,1
2 is boundary cutting and each remaining arc A1,j

2 , 2 ≤ j ≤ M ,
is genus cutting. Hence, the surface S(2) will have M boundary components.

3.2.3. The intermediate curves. The curve γm+1, m ≥ 2, is considered an “intermediate curve” as
long as the genus of S(m) is at least M greater than the number of arcs Ai,jm which are boundary
cutting in S(m− 1). If S(m) has smaller genus, then γm+1 is described as one of the “last curves”
below.

For each arc Ai,jm of γm, there will be a corresponding arc Ai,jm+1 of γm+1. If Ai,jm is genus cutting,

then Ai,jm+1 is chosen to be boundary cutting; likewise if Ai,jm is boundary cutting, then Ai,jm+1 is
genus cutting. This convention keeps down the number of boundary components and connected
components of the surface S(m).

We now define the base and terminal points of the arcs Ai,jm+1 on S(m). The first arc A1,1
m+1 is

based at a point b1,1m+1 in the interior of a component of f−1m (γ1) which, when projected to S(m−1),

contains the base point b1,1m of A1,1
m . Once we define the terminal points, all of the base points are

determined because the union
⋃m
i=1

⋃M
j=1A

i,j
m+1 mapping under fm to the closed curve γm+1 forces

relations between base points and terminal points of arcs. Namely, when i = 1 and 1 < j ≤M , we
define the arcs A1,j

m+1 to be based at the points

b1,jm+1 = f−1m (fm(t1,j−1m+1 ))\{t1,j−1m+1 }

Then for 1 < i ≤ m and j = 1, we define the arcs Ai,1m+1 to be based at the points

bi,1m+1 = f−1m (fm(ti−1,Mm+1 ))\{ti−1,Mm+1 }

Finally, we define the arcs Ai,jm+1, for 1 < i ≤ m and 1 < j ≤M , to be based at the points

bi,jm+1 = f−1m (fm(ti,j−1m+1 ))\{ti,j−1m+1 }

We now describe the terminal points for these arcs; these will depend on whether the arc in question
is genus cutting or boundary cutting.
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We first describe how to terminate the arcs Ai,jm+1 for 1 ≤ i ≤ m−1, 1 ≤ j ≤M , and (i, j) 6= (m−
1,M). The notation N (γm) will always indicate a thin collar neighbourhood of γm which does not
contain the intersection of any two curves from the set {γ1, . . . , γm−1}. For some such neighbourhood

the arc Ai,jm+1 terminates at a point ti,jm+1 contained in the same component of f−1m (N (γm)) as one of

the two points of f−1m (fm−1(ti,jm )). The terminal point ti,jm+1 lies on a component of f−1m (γk), where
k = i+ 1 if M = 1, where k = i if 1 ≤ j < M , and where k = i+ 1 if j = M .

Suppose that Ai,jm is genus cutting so that Ai,jm+1 is boundary cutting. Then Ai,jm+1 terminates at

a point ti,jm+1 lying in a different boundary component of S(m) from the base point bi,jm+1. On the

other hand, if Ai,jm is boundary cutting so that Ai,jm+1 is genus cutting, then the terminal point ti,jm+1

of Ai,jm+1 is on the same boundary component of S(m) as the base point bi,jm+1.

This leaves to describe those arcs of γm+1 which intersect the arcs of the curve γm. Let q1, . . . , qM
in S(m − 1) be M points along the arc Am−1,Mm ordered according to the orientation of Am−1,Mm .
Again N (γm) can be chosen so that there is a unique point q+i ∈ S(m) of f−1m (fm−1(qi)) which lies
in the same component of f−1m (N (γm)) as

f−1m (fm(tm−1,M−1m+1 ))\{tm−1,M−1m+1 }

and q−i the other point in fm(f−1m−1(qi)). The arc Am−1,Mm+1 terminates at tm−1,Mm+1 = q−1 , and each

arc Am,jm+1 for 1 ≤ j ≤M − 1 terminates at tm,jm+1 = q−j+1. The arcs Am,jm+1, 1 ≤ j ≤M , are all genus

cutting, with the final arc Am,Mm+1 terminating at

tm,Mm+1 = f−1m (fm(b1,1m+1))\{b1,1m+1}

closing up the curve γm+1.

γ1

A1,1
2 A1,1

2A1,2
2 A1,1

3

A1,2
3

A2,1
3

A2,2
3

Figure 1. On the left is the boundary of S(2) for K = 2 and a surface of genus
g ≥ 5. On the right, the arcs of the curve γ3 are shown on S(2). The open points
indicate the basepoint of γ2, while the solid points indicate the basepoint of γ3.
The arcs A1,1

2 and A1,2
3 are boundary cutting, while the arcs A1,2

2 , A1,1
3 , A2,1

3 , and

A2,2
3 are genus cutting.

3.2.4. The last curves. Finally we consider the case when the genus of S(m), m ≥ 2, is not large
enough to define Mm nonseparating arcs as described above. This occurs when the genus of S(m)
is less than the number of boundary cutting arcs Ai,jm in S(m − 1), or else exceeds it by less than
M . We treat these two cases separately.
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Case (1): The genus of S(m) is at most the number of boundary cutting arcs Ai,jm . We choose arcs

A1,1
m+1, A

1,2
m+1, . . . , A

1,M
m+1, A

2,1
m+1, A

2,2
m+1, . . . as above until we have that complement of ⋃

1≤k<i1

⋃
1≤j≤M

Ak,jm+1

 ∪
 ⋃

1≤`<j1

Ai1,`m+1


in S(m) is a sphere with holes, and so that Ai1,j1m is a boundary cutting arc of γm. For Ai1,j1m and

every subsequent boundary cutting arc Ai,jm of γm, the corresponding arc Ai,jm+1 of γm+1 is chosen to

lie entirely in a component of some thin collar neighbourhood N (γm) of γm; the arc Ai,jm+1 is then
separating, with the property that one of the components of its complement is simply connected.

Now recall that the arc Am−1,Mm is genus cutting; the last arc of γm+1 is then a boundary

cutting arc we label Am−1,Mm+1 (not to be confused with Am−1,Mm+1 as chosen above, where γm+1 is

an intermediate curve), if such an arc exists (see Figure 2). Otherwise Am−1,Mm+1 is a boundary

cutting arc whose terminal point tm−1,Mm+1 is mapped by fm to a point on fm−1(Am−1,Mm ), and a last

separating arc Am,1m+1 closes up γm+1 (see Figure 3). (Again, Am,1m+1 is chosen according to whether
γm+1 is an intermediate curve, as in the last section, or a last curve.)

Am−1,Mm+1

Am−1,Mm

γm−1 γm−1 ⊂ ∂S(m)

γ1 ⊂ ∂S(m)γ1

Figure 2. Here γm+1 closes up with the arc Am−1,Mm+1 .

Case (2): The genus of S(m) exceeds the number of boundary cutting arcs Ai,jm by L < M . In this

case, the genus cutting arcs Am,jm+1 for 1 ≤ j ≤ L − 1 are as described for the intermediate curves.

The very last arc of γm+1 is the genus cutting arc Am,Lm+1 which closes up γm+1.

In either Case (1) or Case (2), the resulting complementary surface (when the arcs described so
far have been deleted) has at most one non simply connected component (in Case (2) the surface
S(m + 1) is connected). If all components of the surface S(m + 1) are simply connected, then
γ1, . . . , γm+1 is a filling set. Otherwise, the final curve of our filling set is γm+2, consisting of the
final set of arcs we describe as follows.

We begin by noting that the surface S(m + 1) has genus 0 and multiple boundary components

come from genus cutting arcs in the previous step. As before we choose arcs Ai,jm+2 to be boundary
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Am,1m+1

Am−1,Mm+1

Am−1,Mm

γm−1 ⊂ ∂S(m)

γ1 ⊂ ∂S(m)

Figure 3. Here γm+1 closes up with the arc Am,1m+1.

cutting if Ai,jm+1 was genus cutting. Whenever Ai,jm+1 is either boundary cutting or separating, Ai,jm+2

is chosen to be a separating in S(m+ 1). Then if γm+1 arose from Case (1) above, the final arc of
γm+2 is separating. If on the other hand γm+1 arose from Case (2) above, then the final arc chosen
for γm+2 is a boundary cutting arc closing up γm+2, if such an arc exists; otherwise a boundary
cutting arc terminating on that final arc of γm+1 is chosen, followed by a separating arc which closes
up γm+2. The arcs chosen reduce the number of boundary components or cut off simply connected
pieces. The full set of curves is now necessarily filling.

Now that we have described the set of curves, we must establish that the curves are nonseparating
and pairwise nonhomotopic. Notice that up until at least k = m, the curves γk are nonseparating
as the complement of their union has one component. They are also pairwise nonhomotopic as a
consequence of the following well known lemma (see, for example, the Bigon Criterion in [3]).

Lemma 1. If γ and δ are two simple closed curves on S such that S \ {γ ∪ δ} is connected, then γ
and δ intersect minimally (among all representatives of their respective isotopy classes).

This takes care of the “intermediate curves.”
The “last curves,” γm+i, i = 1, 2, are slightly more problematic as they may be composed of arcs

some of which separate the surface they are defined on. However by construction these separating
arcs can be isotoped (relative endpoints) to arcs on the boundary of their respective surface so that
the union of the resulting set of arcs do not separate. These isotopies induce an isotopy of the
corresponding curve γm+i on S whose union with the previous curves is not separating; thus the
isotoped curve is itself not separating.

We claim that γm+1 and γm+2 are not homotopic to each other, nor to any of the other curves
in the set. The curve γm+i, i = 1, 2, necessarily contains the image under fm+i−1 of a boundary
cutting arc A with endpoints on two boundary components of S(m+ i− 1). We begin by observing
that if S(m+ i−1) has more than one boundary component, then they are simple (essential) closed
curves on the surface S. This is because multiple boundary components comes from genus cutting
arcs at the previous step. Thus there is always an arc on a boundary component which on S is
glued to an arc of some other boundary component. Consider a simple curve obtained by gluing a
simple path between the midpoints of the two arcs: it intersects the boundary component exactly
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once and by the bigon criterion, both are essential. Now let η denote one of them. After a possible
isotope of η, Lemma 1 implies that the curve γm+i intersects η nontrivially, while the previous
curves γ1, . . . , γm+i−1 have empty intersection with η. This proves the claim.

3.2.5. The final step. Now recall that N is the smallest integer satisfying the inequality (1.1). Note
that up through stage m, when genus runs out, each arc increases the Euler characteristic of the
complementary surface by one. As a consequence, we must have m + 1 ≤ N (see the argument
for the lower bound). On the other hand, only at most two additional curves γm+1 and γm+2 are
required to fill the surface, and so N ≤ m + 2. Therefore m is equal to N − 2 or N − 1, and this
completes the proof of Theorem 1.

4. A simple small filling set

The 1-filling set of curves described in Theorem 1 is not easy to describe or visualize, and so here
we provide an alternative family of examples of 1-filling sets on closed, orientable surfaces. They
are not optimally small in size, but still have growth rate of order

√
g. Although purely topological,

these examples are inspired by Buser’s hairy torus example (see [1, Section 5.3]), used there to find
a lower bound on the Bers constant. We shall see quite explicitly in Proposition 4 that the family
provides examples of 1-filling sets which cannot be realized as geometric systoles.

For all integers N > 0, consider the family of surfaces of genus N2 + 1. Such surfaces can
topologically be constructed by gluing together N2 one holed tori with “square” boundary (see
Figure 4 for the torus with square boundary and Figure 5 to see how they are pasted together).

αk

αk+1

γk

δkβk βk+1

Figure 4. The torus building block

Denote the horizontal curves on the surface which were originally the horizontal boundaries of
the squares as αk, k = 1, . . . , N , and the corresponding vertical ones as βk, k = 1, . . . , N (see Figure
4 for labels). Also consider the horizontal and vertical curves γk, k = 1, . . . , N and δk, k = 1, . . . , N
as in Figures 4 and 5. Note that the union of all four sets gives a set of 4N curves which pairwise
intersect at most once and whose complementary region is a set of N2 disks. As the genus is equal
to N2 + 1, the cardinality of the set of curves grows in genus like 4

√
g.

The following proposition shows that the curves described above cannot be realized as systoles.

Proposition 4. For any N ≥ 4 and any choice of (hyperbolic) metric on a closed, orientable surface
of genus N2 + 1, the curves {αk}Nk=1 and {βk}Nk=1 described above cannot be systoles.
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α1

α1

γ1

γN

δ1 δN

β1 β1

Figure 5. A surface of genus N2 + 1

Proof. Consider the N2 simple nontrivial curves, say εk, k = 1, . . . , N2, which were originally the
boundary curves of the one holed tori used to construct our surface. Now suppose that there exists
a hyperbolic metric for which the curves {αk}Nk=1 and {βk}Nk=1 are systoles of length x. Denote the
length of a curve γ with this metric as `(γ). Each εk is homotopic to a closed curve consisting of two
segments of two consecutive αis and two segments of two consecutive βjs, and one can construct
curves homotopic to all of the εk using each segment exactly twice. Thus one has the following
inequality:

N2∑
k=1

`(εk) < 2

N∑
k=1

(`(αk) + `(βk)).

But as `(εk) ≥ x and `(αk) = `(βk) = x this gives

N2x < 4Nx

which is a contradiction for N ≥ 4. �

We remark that the proposition also holds for N = 2, 3; however these cases require separate
consideration from N ≥ 4. As they serve no real purpose in this paper, their proof is omitted.

5. Growth of filling systoles

As we have seen in the previous section, the K-filling sets and the sets of curves which are
realizable as systoles are distinct. Here we investigate the minimal cardinality of filling sets of
systoles.

Theorem 3. Let S be a closed, orientable hyperbolic surface of genus g ≥ 2 with a filling set of
systoles {σ1, . . . , σn}. Then

n ≥ π
√
g(g − 1)

log(4g − 2)
.
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Furthermore there exist hyperbolic surfaces of genus g with filling sets of n ≤ 2g systoles.

Proof. We begin with the first inequality. The set of systoles fills, and so their complementary region
on the surface is a union of hyperbolic disks with piecewise geodesic boundary. The total perimeter
of the set of disks obtained this way is twice the sum of the lengths of the systoles. It is easy to see
that the length x of a systole of a surface of genus g satisfies the inequality x ≤ 2 log(4g − 2) (see
[1, Lemma 5.2.1]). So the total perimeter of the disks does not exceed L ≤ 4n log(4g − 2).

Now the total area of the disks equals the area of the surface (A = 2π(2g − 2)). By the isoperi-
metric inequality in the hyperbolic plane we have

L ≥
√
A2 + 4πA

which implies

4n log(4g − 2) ≥ 4π
√
g(g − 1)

and the desired inequality follows.

To show the second inequality, it suffices to exhibit an example of a surface with a filling set
of systoles of cardinality 2g. For g ≥ 2, one can construct a surface by pasting together, in an
appropriate way, four copies of a regular right angled (2g + 2)-gon. Note that for every g, it is
straightforward to establish that there is only one such polygon; we denote its (uniquely determined)
side length `, and let m denote the barycenter of the vertices.

By standard hyperbolic trigonometry on the polygon, we obtain that

` = 2 arcsinh

√
cos

π

g + 1
.

Note that the distance in the interior of the polygon between any two nonadjacent edges is greater
than ` (and strictly greater if the two edges are more than one apart from being adjacent). To see
this, consider any two such edges e1 and e2, and the two paths, say c1 and c2, of length dg between
m and the midpoint of these edges. The paths c1 and c2 plus the distance realizing path between
e1 and e2 are part of a pentagon with right angles, except for the angle π

g+1k between c1 and c2,

where k is the minimal number of edges between e1 and e2. Note that this pentagon is uniquely
determined up to isometry by g and k. Finally: for k = 1 one obtains the distance ` calculated
above, and the distance between e1 and e2 is a strictly increasing function in k.

In pairs, one glues the polygons along every second edge to obtain two (g + 1)-holed spheres

of boundary lengths all equal to 2` = 4 arcsinh
√

cos( π
g+1 ). These spheres have a natural set of

“seams” corresponding to the edges of the polygons that have been pasted together. Now one glues
along the boundaries of the two surfaces such that the two end points of each seam are pasted
exactly to the two end points of a same seam on the other holed sphere. There are now 2g + 2
filling curves on the resulting surface of length 2`. It suffices to see that these curves are systoles.
To see this, note that any simple nontrivial simple closed curve not homotopic to one of the 2g + 2
curves constructed above necessarily contains at least two arcs which join nonadjacent edges on one
of the four polygons. As any such arc has length more than `, this implies that any nontrivial simple
closed curve has length more than 2`.

The surface we have constructed has 2g+ 2 systoles but it is easy to see that any subset of these
systoles σ1, . . . , σ2g with intersection number i(σk, σk+1) = 1 for k = 1 to 2g− 1 fills, and that their
complementary region is a (right angled) connected polygon. �

Observe that the lower bound in the previous theorem implies that there are at most a finite
number of genera for which the 1-filling sets constructed in the proof of Theorem 1 are realizable as
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systoles.

Let us conclude by remarking the following. Families of surfaces with number of filling systoles of
growth order g

log(g) are possibly quite difficult or impossible to find. The proof of Theorem 3 shows

that if such a family exists then the lengths of the systoles must grow at least like log(g). Although
such families of surfaces are known to exist (the first examples were found in [2]), they are very
difficult to construct and most known examples come from using arithmetic groups in some way.
Furthermore, the order of growth of the number of systoles for these families is at least linear. One
would have to analyse the topology of the sets of systoles of such surfaces to see if there are filling
subsets with less than linear growth.
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