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Uniformization of metric surfaces

Under which conditions on a metric surface X , homeomor-
phic to some model surface M , does there exist

u: M → X

with good geometric and analytic properties?

• Classical uniformization theorem: Every simply connected
Riemann surface is conformally diffeomorphic to D, C or S2.

• Uniformization theorem of Bonk-Kleiner [1]: Let X ≃ S2

be Ahlfors 2-regular. Then there exists a quasisymmetry
u: S2→ X if and only if X is linearly locally connected.

• Uniformization theorem of Rajala [6]: Let X ≃ R2 be of lo-
cally finite H 2-measure. Then there exists a geometrically
quasiconformal map u: U → X , U ⊂ R2, if and only if X is
reciprocal.

Goal: Generalization to a larger class of metric surfaces.

Main result
Let X ≃ D be geodesic, H 2(X ) <∞ and ℓ(∂ X ) <∞. Then there exists a

continuous, monotone surjection u: D→ X such that

mod(Γ )≤
4
π
·mod(u ◦ Γ ) (1)

for every family Γ of curves in D.

• The factor 4
π is optimal.

• If u is a homeo then (1) is equivalent to the
analytic definition of quasiconformality.

• u upgrades to a geometrically quasiconformal
homeomorphism if X is reciprocal.

• u upgrades to a quasisymmetry if X is Ahlfors
2–regular and linearly locally connected.

• Similar result by Ntalampekos and Romney [4].

Sobolev maps into metric spaces

A map u: D→ X is in the Sobolev space W 1,2(D, X )
if there is a non-negative function g ∈ L2(D) such
that for every Lipschitz function f : X → Rwe have

f ◦ u ∈W 1,2(D) and |∇( f ◦ u)| ≤ Lip( f )g a.e.

• u ∈W 1,2(D, X ) has a minimal weak upper gradi-
ent gu ∈ L2(D). Define the energy of u by

E2
+(u) := ∥gu∥2L2(D).

• u ∈ W 1,2(D, X ) admits an approximate metric
derivative a.e., allowing us to make sense to no-
tions of quasiconformality and area.

• u ∈ W 1,2(D, X ) extends to S1 a.e. by means of a
well-defined trace operator, denoted by tr(·).

•Λ(∂ X , X ) is the family of maps u ∈W 1,2(D, X )
such that tr(u) almost parametrizes ∂ X .

Modulus of curve families

• Modulus mod(·) is an outer measure on the
class of curves and a conformal invariant.

• mod(Γ )measures how many locally rectifiable
curves are contained in the curve family Γ .

Strategy of proof

• Show that Λ(∂ X , X ) ̸= ;.

• Use existence of an energy minimizing map
u ∈ Λ(∂ X , X ), see [2].

• Prove continuity of energy minimizers.

• Use results from [2] and [3] to show that u is
monotone and the modulus inequality (1) is
fulfilled.

Existence of Sobolev maps

We will show that Λ(∂ X , X ) ̸= ;. For this, we construct the desired Sobolev
map as a limit of Lipschitz maps vn from D to some neighbourhood N1/n(X )
with uniformly bounded area and vn|S1 parametrizing ∂ X .

• The Lipschitz map vn is obtained via factorizing through a 2-dim sim-
plicial complex Σ consisting of Euclidean cells of sidelength 1/n.

• There exist Lipschitz maps

ψ: X → Σ and ϕ : Σ→ N1/n(X )

that are almost inverse to each other.

• Construct a continuous map ϱ : D→ Σ,
where ϱ|S1 : S1→ Σ(1) is Lipschitz and
close to ψ(∂ X ) and the integral over the
multiplicity function of ϱ is bounded.

• By Radó [5]: For every 2-cellσ inΣ there exists y ∈ σwith rel-
atively small multiplicity and |ι(ϱ, x)| ≤ 1 for any x ∈ ϱ−1(y),
where ι(ϱ, x) is the winding number.

• Define ϱ on small balls B such that

–ϱ|B is constant with image in ∂ σ if ι(ϱ, x) = 0,

–ϱ|B is a biLipschitz homeomorphism and ϱ|∂ B is homotopic to the pro-
jection of ϱ|∂ B to ∂ σ if |ι(ϱ, x)|= 1.

• Extend ϱ|⋃B∪S1 to a Lipschitz map ϱ : D→ Σ with bounded area.

• Use properties of N1/n(X ) to change ϕ ◦ϱ into the desired Lipschitz map.

Continuity of energy minimizers

In this setting, an energy minimizing map
u ∈ Λ(∂ X , X ) has a representative which is contin-
uous and extends continuously to S1:

• There is a notion of area such that u is area
minimizing.

• After applying the Courant-Lebesgue Lemma and
some metric arguments, we find for every small
enough ϵ > 0 a δ > 0 such that for

W := B(z,δ)∩ D

the trace tr(u|W) is contained in a Jordan domain
Ω ⊂ X bounded by a biLipschitz curve and with
diam(Ω)< ϵ.

• Consider the set

N := {w ∈W : u(w) ∈ X \Ω}.

If N is not negligible, one can use a Fubini-type
argument to show that

Area(u|N)> 0.

• SinceΩ is bounded by a biLipschitz curve, we find
a Lipschitz retraction

R: X → Ω with R(X \Ω) ⊂ ∂Ω.

• Then the map v agreeing with u on D \W and
with R ◦ u on W is also contained in Λ(∂ X , X )
and contradicts the area minimizing property of
u, since Area(v|N) = 0.
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