Quasiconformal almost parametrizations of metric surfaces

Damaris Meier and Stefan Wenger

Department of Mathematics, University of Fribourg

Uniformization of metric surfaces

Under which conditions on a metric surface *X*, homeomorphic to some model surface *M*, does there exist

 $u: M \to X$

with good geometric and analytic properties?

- *Classical uniformization theorem:* Every simply connected Riemann surface is conformally diffeomorphic to D, \mathbb{C} or S^2 .
- Uniformization theorem of Bonk-Kleiner [1]: Let $X \simeq S^2$ be Ahlfors 2-regular. Then there exists a quasisymmetry

Main result

Let $X \simeq \overline{D}$ be geodesic, $\mathscr{H}^2(X) < \infty$ and $\ell(\partial X) < \infty$. Then there exists a continuous, monotone surjection $u: \overline{D} \to X$ such that

$$\operatorname{mod}(\Gamma) \le \frac{4}{\pi} \cdot \operatorname{mod}(u \circ \Gamma)$$
 (1)

for every family Γ of curves in \overline{D} .

- The factor $\frac{4}{\pi}$ is optimal.
- If *u* is a homeo then (1) is equivalent to the

- $u: S^2 \rightarrow X$ if and only if X is linearly locally connected.
- Uniformization theorem of Rajala [6]: Let $X \simeq \mathbb{R}^2$ be of locally finite \mathscr{H}^2 -measure. Then there exists a geometrically quasiconformal map $u: U \to X$, $U \subset \mathbb{R}^2$, if and only if X is reciprocal.

Goal: Generalization to a larger class of metric surfaces.

analytic definition of quasiconformality.

- *u* upgrades to a geometrically quasiconformal homeomorphism if *X* is reciprocal.
- *u* upgrades to a quasisymmetry if *X* is Ahlfors 2–regular and linearly locally connected.
- Similar result by Ntalampekos and Romney [4].

Sobolev maps into metric spaces

- A map $u: D \to X$ is in the Sobolev space $W^{1,2}(D,X)$ if there is a non-negative function $g \in L^2(D)$ such that for every Lipschitz function $f: X \to \mathbb{R}$ we have $f \circ u \in W^{1,2}(D)$ and $|\nabla(f \circ u)| \leq \operatorname{Lip}(f)g$ a.e.
- $u \in W^{1,2}(D,X)$ has a minimal weak upper gradient $g_u \in L^2(D)$. Define the energy of u by

 $E_+^2(u) := \|g_u\|_{L^2(D)}^2.$

u ∈ W^{1,2}(D,X) admits an approximate metric derivative a.e., allowing us to make sense to notions of quasiconformality and area.

Modulus of curve families

Modulus mod(·) is an outer measure on the class of curves and a conformal invariant.
mod(Γ) measures how many locally rectifiable curves are contained in the curve family Γ.

Strategy of proof

- Show that $\Lambda(\partial X, X) \neq \emptyset$.
- Use existence of an energy minimizing map

Continuity of energy minimizers

In this setting, an energy minimizing map $u \in \Lambda(\partial X, X)$ has a representative which is continuous and extends continuously to S^1 :

• There is a notion of area such that *u* is area minimizing.

- $u \in W^{1,2}(D,X)$ extends to S^1 a.e. by means of a well-defined trace operator, denoted by tr(·).
- $\Lambda(\partial X, X)$ is the family of maps $u \in W^{1,2}(D, X)$ such that tr(u) almost parametrizes ∂X .
- $u \in \Lambda(\partial X, X)$, see [2].
- Prove continuity of energy minimizers.
- Use results from [2] and [3] to show that *u* is monotone and the modulus inequality (1) is fulfilled.

 $X \subseteq N_{1/n}(X)$

Existence of Sobolev maps

We will show that $\Lambda(\partial X, X) \neq \emptyset$. For this, we construct the desired Sobolev map as a limit of Lipschitz maps v_n from \overline{D} to some neighbourhood $N_{1/n}(X)$ with uniformly bounded area and $v_n|_{S^1}$ parametrizing ∂X .

- The Lipschitz map v_n is obtained via factorizing through a 2-dim simplicial complex Σ consisting of Euclidean cells of sidelength 1/n.
- There exist Lipschitz maps

 $\psi: X \to \Sigma$ and $\varphi: \Sigma \to N_{1/n}(X)$

that are almost inverse to each other.

• Construct a continuous map $\varrho: \overline{D} \to \Sigma$, where $\varrho|_{S^1}: S^1 \to \Sigma^{(1)}$ is Lipschitz and close to $\psi(\partial X)$ and the integral over the

• After applying the Courant-Lebesgue Lemma and some metric arguments, we find for every small enough $\varepsilon > 0$ a $\delta > 0$ such that for

 $W:=B(z,\delta)\cap D$

the trace $tr(u|_W)$ is contained in a Jordan domain $\Omega \subset X$ bounded by a biLipschitz curve and with $diam(\Omega) < \varepsilon$.

• Consider the set

 $N:=\{w\in W: u(w)\in X\setminus\overline{\Omega}\}.$

If *N* is not negligible, one can use a Fubini-type argument to show that

Area $(u|_N) > 0.$

• Since Ω is bounded by a biLipschitz curve, we find a Lipschitz retraction

 $R: X \to \overline{\Omega}$ with $R(X \setminus \overline{\Omega}) \subset \partial \Omega$.

• Then the map v agreeing with u on $D \setminus W$ and with $R \circ u$ on W is also contained in $\Lambda(\partial X, X)$ and contradicts the area minimizing property of u, since $\operatorname{Area}(v|_N) = 0$.

multiplicity function of ϱ is bounded.

 $l(\varrho, x) = 0$

 $|\iota(\varrho, x)| = 1$

 $\varrho|_{\partial B}$

• By Radó [5]: For every 2-cell σ in Σ there exists $y \in \sigma$ with relatively small multiplicity and $|\iota(\varrho, x)| \leq 1$ for any $x \in \varrho^{-1}(y)$, where $\iota(\varrho, x)$ is the winding number.

- Define $\overline{\varrho}$ on small balls *B* such that
- $-\varrho|_B$ is constant with image in $\partial \sigma$ if $\iota(\varrho, x) = 0$,
- $-\overline{\varrho}|_B$ is a biLipschitz homeomorphism and $\overline{\varrho}|_{\partial B}$ is homotopic to the projection of $\varrho|_{\partial B}$ to $\partial \sigma$ if $|\iota(\varrho, x)| = 1$.
- Extend $\overline{\varrho}|_{\bigcup B \cup S^1}$ to a Lipschitz map $\overline{\varrho} : \overline{D} \to \Sigma$ with bounded area.
- Use properties of $N_{1/n}(X)$ to change $\varphi \circ \overline{\varrho}$ into the desired Lipschitz map.

References

[1] Mario Bonk and Bruce Kleiner. "Quasisymmetric parametrizations of twodimensional metric spheres". In: *Invent. Math.* 150.1 (2002), pp. 127–183.

- [2] Alexander Lytchak and Stefan Wenger. "Area Minimizing Discs in Metric Spaces". In: Arch. Ration. Mech. Anal. 223.3 (2017), pp. 1123–1182.
- [3] Alexander Lytchak and Stefan Wenger. "Canonical parameterizations of metric disks". In: *Duke Math. J.* 169.4 (2020), pp. 761–797.
- [4] Dimitrios Ntalampekos and Matthew Romney. "Polyhedral approximation of metric surfaces and applications to uniformization". In: *Duke Math. J.* (to appear).
- [5] Tibor Radó. "On absolutely continuous transformations in the plane". In: *Duke Math. J.* 4.1 (1938), pp. 189–221.
- [6] Kai Rajala. "Uniformization of two-dimensional metric surfaces". In: *Invent. Math.* 207.3 (2017), pp. 1301–1375.

damaris.meier@unifr.ch