Percolation on isoradial graphs

Ioan Manolescu Joint work with Geoffrey Grimmett

University of Geneva

15 August 2013

Ioan Manolescu (University of Geneva)

Percolation on isoradial graphs

15 August 2013 1 / 25

ヘロン ヘロン ヘヨン ヘヨン

Under $\mathbb{P}_{\mathbf{p}}$, an edge e is $\begin{cases} \text{open with probability } p_e \\ \text{closed with probability } 1 - p_e \end{cases}$

Under $\mathbb{P}_{\mathbf{p}}$, an edge e is $\begin{cases} \text{open with probability } p_e \\ \text{closed with probability } 1 - p_e \end{cases}$

Under $\mathbb{P}_{\mathbf{p}}$, an edge e is $\begin{cases} \text{open with probability } p_e \\ \text{closed with probability } 1 - p_e \end{cases}$

Under $\mathbb{P}_{\mathbf{p}}$, an edge e is $\begin{cases} \text{open with probability } p_e \\ \text{closed with probability } 1 - p_e \end{cases}$

Under $\mathbb{P}_{\mathbf{p}}$, an edge e is $\begin{cases} \text{open with probability } p_e \\ \text{closed with probability } 1 - p_e \end{cases}$

Under $\mathbb{P}_{\mathbf{p}}$, an edge e is $\left\{ \right.$

open with probability p_e closed with probability $1 - p_e$

Under $\mathbb{P}_{\mathbf{p}}$, an edge e is $\left\{ \right.$

open with probability p_e closed with probability $1 - p_e$

・ロト ・ 一ト ・ モト ・ モト

Under $\mathbb{P}_{\mathbf{p}}$, an edge e is $\left\{ \right.$

open with probability p_e closed with probability $1 - p_e$

() < </p>

Question: is there an infinite connected component?

Question: is there an infinite connected component?

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Question: is there an infinite connected component?

Question: is there an infinite connected component?

Ioan Manolescu (University of Geneva)

Isoradial percolation

Each face of G is inscribed in a circle of radius 1.

 \mathbb{P}_{G} percolation with p_{e} :

$$\frac{p_e}{1-p_e} = \frac{\sin(\frac{\pi-\theta(e)}{3})}{\sin(\frac{\theta(e)}{3})}.$$

Bond Percolation on \mathbb{Z}^2

soradiality:
$$p = \frac{1}{2}$$

Theorem (Kesten 80)

- $p \leq \frac{1}{2}$, a.s. no infinite cluster;
- $p > \frac{1}{2}$, a.s. existence of an infinite cluster.

Method:
self-duality + RSW + sharp-threshold
$$\mathbb{P}_{\frac{1}{2}}\left(\bigcirc\right) = \frac{1}{2} \Rightarrow \mathbb{P}_{\frac{1}{2}}\left(\bigcirc\right) \ge c \Rightarrow \mathbb{P}_{\frac{1}{2}+\epsilon}(0 \leftrightarrow \infty) > 0$$

Bond Percolation on \mathbb{Z}^2

Isoradiality:
$$p = \frac{1}{2}$$

Theorem (Kesten 80)

$$p \leq \frac{1}{2}$$
, a.s. no infinite cluster;

 $p > \frac{1}{2}$, a.s. existence of an infinite cluster.

$\begin{array}{ll} \text{Method:} \\ \text{self-duality} &+ \mathsf{RSW} &+ \mathsf{sharp-threshold} \\ \mathbb{P}_{\frac{1}{2}} \left(\overbrace{\frown} \right) = \frac{1}{2} \Rightarrow \mathbb{P}_{\frac{1}{2}} \left(\overbrace{\frown} \right) \geq c \Rightarrow \mathbb{P}_{\frac{1}{2} + \epsilon}(0 \leftrightarrow \infty) > 0 \end{array}$

The box-crossing property (RSW)

A model satisfies the box-crossing property if for all rectangles *ABCD* there exists $c(BC/AB) = c(\rho) > 0$ s. t. for all *N* large enough:

Equivalent for the primal and dual model.

Theorem

If \mathbb{P}_{p} satisfies the box-crossing property, then it is critical.

The box-crossing property (RSW)

A model satisfies the box-crossing property if for all rectangles *ABCD* there exists $c(BC/AB) = c(\rho) > 0$ s. t. for all *N* large enough:

Equivalent for the primal and dual model.

Theorem

If \mathbb{P}_{p} satisfies the box-crossing property, then it is critical.

(日) (同) (日) (日) (日)

The box-crossing property (RSW)

A model satisfies the box-crossing property if for all rectangles *ABCD* there exists $c(BC/AB) = c(\rho) > 0$ s. t. for all *N* large enough:

Equivalent for the primal and dual model.

Theorem

If \mathbb{P}_p satisfies the box-crossing property, then it is critical.

A D > A B > A B > A

Results I: the box-crossing property

For an isoradial graph G with the percolation measure \mathbb{P}_G , subject to conditions:

Theorem

 \mathbb{P}_{G} satisfies the box-crossing property.

Corollary

 \mathbb{P}_G is critical.

- $\mathbb{P}_{\mathbf{p}}(infinite \ cluster) = 0$,
- $\mathbb{P}_{\mathbf{p}+\epsilon}(\text{infinite cluster}) = 1.$

イロン 不聞と 不同と 不同と

Results I: the box-crossing property

For an isoradial graph G with the percolation measure \mathbb{P}_G , subject to conditions:

Theorem

 \mathbb{P}_{G} satisfies the box-crossing property.

Corollary

 \mathbb{P}_{G} is critical.

- $\mathbb{P}_{\mathbf{p}}(infinite \ cluster) = 0$,
- $\mathbb{P}_{\mathbf{p}+\epsilon}(\text{infinite cluster}) = 1.$

・ロト ・回ト ・ヨト ・

Arm exponents

For a critical percolation measure $\mathbb P,$ as $n \to \infty,$ we expect:

• one-arm exponent $\frac{5}{48}$:

$$\mathbb{P}(\mathrm{rad}(C_0) \ge n) = \mathbb{P}(A_1(n)) \approx n^{-\rho_1},$$

• 2*j*-alternating-arms exponents $\frac{4j^2-1}{12}$:

$$\mathbb{P}[A_{2j}(n)] \approx n^{-\rho_{2j}}$$

Moreover ρ_i does not depend on the underlying model.

イロト イヨト イヨト イヨト

Power-law bounds are given by the box-crossing property.

Critical exponents

For \mathbb{P}_p critical we expect: Exponents at criticality.

Volume exponent $\delta = \frac{91}{5}$: $\mathbb{P}_{\mathbf{p}}(|C_0| = n) \approx n^{-1-1/\delta}$.

Connectivity exponent $\eta = \frac{5}{24}$: $\mathbb{P}_{\mathbf{p}}(0 \leftrightarrow x) \approx |x|^{-\eta}$.

Radius exponent $\rho = \frac{48}{5}$: $\mathbb{P}_{p}(\operatorname{rad}(C_{0}) = n) \approx n^{-1-1/\rho}$.

$$(
ho = rac{1}{
ho_1})$$

Exponents near criticality.

Percolation probability $\beta = \frac{5}{36}$: $\mathbb{P}_{\mathbf{p}+\epsilon}(|C_0| = \infty) \approx \epsilon^{\beta}$ as $\epsilon \downarrow 0$.

Correlation length $\nu = \frac{4}{3}$: $\xi(\mathbf{p} - \epsilon) \approx \epsilon^{-\nu}$ as $\epsilon \downarrow 0$, were $-\frac{1}{n} \log \mathbb{P}_{\mathbf{p} - \epsilon}(\operatorname{rad}(C_0) \ge n) \rightarrow_{n \to \infty} \frac{1}{\xi(\mathbf{p} - \epsilon)}$.

Mean cluster-size $\gamma = \frac{43}{18}$: $\mathbb{P}_{\mathbf{p}+\epsilon}(|C_0|; |C_0| < \infty) \approx |\epsilon|^{-\gamma} \text{ as } \epsilon \to 0.$ Gap exponent $\Delta = \frac{91}{36}$: $\frac{\mathbb{P}_{\mathbf{p}+\epsilon}(|C_0|^{k+1}; |C_0| < \infty)}{\mathbb{P}_{\mathbf{p}+\epsilon}(|C_0|^k; |C_0| < \infty)} \approx |\epsilon|^{-\Delta}.$ for $k \ge 1$, as $\epsilon \to 0$.

ヘロト 人間ト 人間ト 人間ト

Results II: arm exponents

For an isoradial graph G with the percolation measure \mathbb{P}_G , subject to conditions

Theorem

For $k \in \{1, 2, 4, \ldots\}$ there exist constants $c_1, c_2 > 0$ such that:

$$c_1\mathbb{P}_{\mathbb{Z}^2}[A_k(n)] \leq \mathbb{P}_G[A_k(n)] \leq c_2\mathbb{P}_{\mathbb{Z}^2}[A_k(n)],$$

for $n \in \mathbb{N}$.

Results II: arm exponents

For an isoradial graph G with the percolation measure \mathbb{P}_G , subject to conditions

Theorem

For $k \in \{1, 2, 4, \ldots\}$ there exist constants $c_1, c_2 > 0$ such that:

$$c_1\mathbb{P}_{\mathbb{Z}^2}[A_k(n)] \leq \mathbb{P}_G[A_k(n)] \leq c_2\mathbb{P}_{\mathbb{Z}^2}[A_k(n)],$$

for $n \in \mathbb{N}$.

Corollary

The one arm exponent and the 2*j* alternating arm exponents are universal for percolation on isoradial graphs.

G isoradial graph

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

G isoradial graph

イロト イロト イヨト イヨト

Ioan Manolescu (University of Geneva)

G isoradial graph G^* dual isoradial graph

G isoradial graph G^* dual isoradial graph

・ロト ・ 日 ・ ・ ヨ ト ・

∃⇒

G isoradial graph G^* dual isoradial graph G^\diamond diamond graph

G isoradial graph G^* dual isoradial graph G^\diamond diamond graph

G isoradial graph G^* dual isoradial graph G^\diamond diamond graph

G isoradial graph G^* dual isoradial graph G^\diamond diamond graph

G isoradial graph G^* dual isoradial graph G^\diamond diamond graph

G isoradial graph G^* dual isoradial graph G^\diamond diamond graph
Isoradial Graphs

G isoradial graph G^* dual isoradial graph G^\diamond diamond graph Track system

Isoradial Graphs

G isoradial graph G^* dual isoradial graph G^\diamond diamond graph Track system

Conditions for isoradial graphs.

Bounded angles condition:

There exist $\epsilon_0 > 0$ such that for any edge $e, \theta_e \in [\epsilon_0, \pi - \epsilon_0]$.

Conditions for isoradial graphs.

Bounded angles condition:

There exist $\epsilon_0 > 0$ such that for any edge $e, \theta_e \in [\epsilon_0, \pi - \epsilon_0]$.

Square grid property:

Families of "parallel" tracks $(s_i)_{i \in \mathbb{Z}}$ and $(t_i)_{i\in\mathbb{Z}}$.

The number of intersections on s_i between t_i and t_{i+1} is uniformly bounded by a constant I. (same for t).

Examples: Penrose tilings and no square grid

・ロト ・ 一ト ・ モト ・ モト

Examples: Penrose tilings and no square grid

・ロト ・聞ト ・ヨト ・ヨト

Examples: Penrose tilings and no square grid

・ロト ・聞ト ・ヨト ・ヨト

Examples: Penrose tilings and no square grid

Examples: Penrose tilings and no square grid

イロト イヨト イヨト イヨト

E 15 August 2013 13 / 25

Ioan Manolescu (University of Geneva)

Examples: Penrose tilings and no square grid

・ロト ・聞ト ・ヨト ・ヨト

Ioan Manolescu (University of Geneva)

Star-triangle transformation

$$\kappa_{\triangle}(\mathbf{p}) = p_0 + p_1 + p_2 - p_0 p_1 p_2 = 1.$$

Take ω , respectively ω' , according to the measure on the left, respectively right. The families of random variables

$$\left(x \stackrel{\omega}{\leftrightarrow} y : x, y = A, B, C\right), \quad \left(x \stackrel{\omega'}{\leftrightarrow} y : x, y = A, B, C\right),$$

have the same joint law.

Ioan Manolescu (University of Geneva)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Coupling

where
$$P = (1 - p_0)(1 - p_1)(1 - p_2).$$

Path transformation

∃⇒

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star-triangle transformations.

Open paths are preserved (unless the deleted edge was part of the path).

Strategy

Proposition

If two isoradial square lattices have same transverse angles for the vertical/horizontal tracks, and one has the box-crossing property, then so does the other.

Strategy

Proposition

If two isoradial square lattices have same transverse angles for the vertical/horizontal tracks, and one has the box-crossing property, then so does the other.

・ロト ・ 日 ・ ・ ヨ ・ ・

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.

・ロト ・回ト ・ヨト ・ヨ

・ロト ・回ト ・ヨト ・

・ロト ・回ト ・ヨト ・ヨ

 $\mathbb{P}_{gen}(C_{\mathrm{h}}[B(\rho N, N)]) \geq \mathbb{P}_{sq}(C_{\mathrm{h}}[B(I\rho N, N)])\mathbb{P}_{sq}(C_{\mathrm{v}}[B(N, N)])^{2}$

Transport of the arm exponents

... using the same strategy as for the box-crossing property.

Square lattices

Square lattices

Square lattices

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Square lattices

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Square lattices

▲□▶ ▲圖▶ ▲温▶ ▲温≯

Square lattices

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Square lattices

 $c_1\mathbb{P}_{reg}(A_k(n)) \leq \mathbb{P}_{irreg}(A_k(n))$

Square lattices

 $c_1\mathbb{P}_{reg}(A_k(n)) \leq \mathbb{P}_{irreg}(A_k(n))$

Square lattices

 $c_1 \mathbb{P}_{reg}(A_k(n)) \leq \mathbb{P}_{irreg}(A_k(n)) \leq c_2 \mathbb{P}_{reg}(A_k(n)).$

 $c_1\mathbb{P}_{sq}(A_k(n)) \leq \mathbb{P}_{gen}(A_k(n)) \leq c_2\mathbb{P}_{sq}(A_k(n)).$

Thank you!