Percolation on isoradial graphs

Ioan Manolescu
Joint work with Geoffrey Grimmett

University of Geneva

15 August 2013
Under \mathbb{P}_p, an edge e is \{ open with probability p_e, closed with probability $1 - p_e$ \}
Under \mathbb{P}_p, an edge e is \{ open with probability p_e \\ closed with probability $1 - p_e$ \}
Percolation

Under \mathbb{P}_p, an edge e is \[
\begin{cases}
\text{open with probability } p_e \\
\text{closed with probability } 1 - p_e
\end{cases}
\]
Under \mathbb{P}_p, an edge e is
\[
\begin{cases}
\text{open with probability } p_e \\
\text{closed with probability } 1 - p_e
\end{cases}
\]
Under \mathbb{P}_p, an edge e is \begin{align*}
\text{open with probability } p_e \\
\text{closed with probability } 1 - p_e
\end{align*}
Under \mathbb{P}_p, an edge e is \begin{align*}
\begin{cases}
\text{open with probability } p_e \\
\text{closed with probability } 1 - p_e
\end{cases}
\end{align*}
Under \mathbb{P}_p, an edge e is open with probability p_e and closed with probability $1 - p_e$.
Under \mathbb{P}_p, an edge e is \begin{cases} \text{open with probability } p_e \\ \text{closed with probability } 1 - p_e \end{cases}
Homogeneous percolation on \mathbb{Z}^2: all edges have intensity $p \in [0, 1]$.

Question: is there an infinite connected component?
Homogeneous percolation on \mathbb{Z}^2: all edges have intensity $p \in [0, 1]$.

Question: is there an infinite connected component?

0
\[\begin{array}{c}
\text{Subcriticality:} \\
\text{No infinite cluster}
\end{array} \quad \bullet \quad \begin{array}{c}
\text{Supercriticality:} \\
\text{Existence of infinite cluster}
\end{array} \]

1
Homogeneous percolation on \mathbb{Z}^2: all edges have intensity $p \in [0, 1]$.

Question: is there an infinite connected component?

- **Subcriticality:**
 - No infinite cluster
 - Exponential tail for cluster size
 - Trivial large scale behaviour!

- **Supercriticality:**
 - Existence of infinite cluster
 - Unique infinite cluster
 - Exponential tail for distance to infinite cluster
 - Trivial large scale behaviour!
Homogeneous percolation on \mathbb{Z}^2: all edges have intensity $p \in [0, 1]$.

Question: is there an infinite connected component?

- **Subcriticality:**
 - No infinite cluster
 - Exponential tail for cluster size
 - Trivial large scale behaviour!

- **Criticality:**
 - Scale invariance
 - Large scale limit
 - Universality

- **Supercriticality:**
 - Existence of infinite cluster
 - Unique infinite cluster
 - Exponential tail for distance to infinite cluster.
 - Trivial large scale behaviour!
Isoradial percolation

Each face of G is inscribed in a circle of radius 1.

\mathbb{P}_G percolation with p_e:

$$\frac{p_e}{1 - p_e} = \frac{\sin\left(\frac{\pi - \theta(e)}{3}\right)}{\sin\left(\frac{\theta(e)}{3}\right)}.$$

![Graph](image-url)
Isoradial Percolation

Bond Percolation on \mathbb{Z}^2

Isoradiality: $p = \frac{1}{2}$

Theorem (Kesten 80)

$p \leq \frac{1}{2}$, a.s. no infinite cluster;

$p > \frac{1}{2}$, a.s. existence of an infinite cluster.

Method:

self-duality $+$ RSW $+$ sharp-threshold

$$\mathbb{P}^{\frac{1}{2}}(\square) = \frac{1}{2} \Rightarrow \mathbb{P}^{\frac{1}{2}}(\text{rectangle}) \geq c \Rightarrow \mathbb{P}^{\frac{1}{2} + \epsilon}(0 \leftrightarrow \infty) > 0$$
Bond Percolation on \mathbb{Z}^2

Isoradiality: $p = \frac{1}{2}$

Theorem (Kesten 80)

$p \leq \frac{1}{2}$, a.s. no infinite cluster;

$p > \frac{1}{2}$, a.s. existence of an infinite cluster.

Method:

self-duality + RSW + sharp-threshold

$\mathbb{P}_{\frac{1}{2}}\left(\square\right) = \frac{1}{2} \Rightarrow \mathbb{P}_{\frac{1}{2}}\left(\square\right) \geq c \Rightarrow \mathbb{P}_{\frac{1}{2}+\epsilon}(0 \leftrightarrow \infty) > 0$
The box-crossing property (RSW)

A model satisfies the box-crossing property if for all rectangles $ABCD$ there exists $c(BC/AB) = c(\rho) > 0$ s. t. for all N large enough:

$$\in [c, 1 - c]$$

Equivalent for the primal and dual model.

Theorem

If \mathbb{P}_p satisfies the box-crossing property, then it is critical.
The box-crossing property (RSW)

A model satisfies the box-crossing property if for all rectangles $ABCD$ there exists $c(BC/AB) = c(\rho) > 0$ s. t. for all N large enough:

$$\mathbb{P} \begin{bmatrix} A \\ B \\ \rho N \\ C \end{bmatrix} N \in [c, 1 - c]$$

Equivalent for the primal and dual model.

Theorem

If \mathbb{P}_p satisfies the box-crossing property, then it is critical.
The box-crossing property (RSW)

A model satisfies the box-crossing property if for all rectangles $ABCD$ there exists $c(BC/AB) = c(\rho) > 0$ s. t. for all N large enough:

$$\in [c, 1 - c]$$

Equivalent for the primal and dual model.

Theorem

If P_p satisfies the box-crossing property, then it is critical.
Results I: the box-crossing property

For an isoradial graph G with the percolation measure \mathbb{P}_G, subject to conditions:

Theorem

\mathbb{P}_G satisfies the box-crossing property.

Corollary

\mathbb{P}_G is critical.

- $\mathbb{P}_p(\text{infinite cluster}) = 0$,
- $\mathbb{P}_{p+\epsilon}(\text{infinite cluster}) = 1$.
Results I: the box-crossing property

For an isoradial graph G with the percolation measure \mathbb{P}_G, subject to conditions:

Theorem

\mathbb{P}_G satisfies the box-crossing property.

Corollary

\mathbb{P}_G is critical.

- $\mathbb{P}_p(\text{infinite cluster}) = 0$,
- $\mathbb{P}_{p+\epsilon}(\text{infinite cluster}) = 1$.
Arm exponents

For a critical percolation measure \(P \), as \(n \to \infty \), we expect:

- one-arm exponent \(\frac{5}{48} \):
 \[
 P(\text{rad}(C_0) \geq n) = P(A_1(n)) \approx n^{-\rho_1},
 \]

- \(2j \)-alternating-arms exponents \(\frac{4j^2 - 1}{12} \):
 \[
 P[A_{2j}(n)] \approx n^{-\rho_{2j}}.
 \]

Moreover, \(\rho_i \) does not depend on the underlying model.

Power-law bounds are given by the box-crossing property.
Critical exponents

For \mathbb{P}_p critical we expect:

Exponents at criticality.

Volume exponent $\delta = \frac{91}{5}$:
$$\mathbb{P}_p(|C_0| = n) \approx n^{-\frac{1}{\delta} - 1}.$$

Connectivity exponent $\eta = \frac{5}{24}$:
$$\mathbb{P}_p(0 \leftrightarrow x) \approx |x|^{-\eta}.$$

Radius exponent $\rho = \frac{48}{5}$:
$$\mathbb{P}_p(\text{rad}(C_0) = n) \approx n^{-1 - \frac{1}{\rho}}.$$

(\rho = \frac{1}{\rho_1})

Exponents near criticality.

Percolation probability $\beta = \frac{5}{36}$:
$$\mathbb{P}_{p+\epsilon}(|C_0| = \infty) \approx \epsilon^\beta \text{ as } \epsilon \downarrow 0.$$

Correlation length $\nu = \frac{4}{3}$:
$$\xi(p - \epsilon) \approx \epsilon^{-\nu} \text{ as } \epsilon \downarrow 0, \text{ were }$$
$$-\frac{1}{n} \log \mathbb{P}_{p-\epsilon}(\text{rad}(C_0) \geq n) \to_{n \to \infty} \frac{1}{\xi(p-\epsilon)}.$$

Mean cluster-size $\gamma = \frac{43}{18}$:
$$\mathbb{P}_{p+\epsilon}(|C_0|; |C_0| < \infty) \approx |\epsilon|^{-\gamma} \text{ as } \epsilon \to 0.$$

Gap exponent $\Delta = \frac{91}{36}$:
$$\frac{\mathbb{P}_{p+\epsilon}(|C_0|^{k+1}; |C_0| < \infty)}{\mathbb{P}_{p+\epsilon}(|C_0|^k; |C_0| < \infty)} \approx |\epsilon|^{-\Delta} \text{ for } k \geq 1, \text{ as } \epsilon \to 0.$$
Results II: arm exponents

For an isoradial graph G with the percolation measure \mathbb{P}_G, subject to conditions

Theorem

For $k \in \{1, 2, 4, \ldots \}$ there exist constants $c_1, c_2 > 0$ such that:

$$c_1 \mathbb{P}_{\mathbb{Z}^2}[A_k(n)] \leq \mathbb{P}_G[A_k(n)] \leq c_2 \mathbb{P}_{\mathbb{Z}^2}[A_k(n)],$$

for $n \in \mathbb{N}$.
Results II: arm exponents

For an isoradial graph G with the percolation measure \mathbb{P}_G, subject to conditions

Theorem

For $k \in \{1, 2, 4, \ldots\}$ there exist constants $c_1, c_2 > 0$ such that:

$$c_1 \mathbb{P}_{\mathbb{Z}^2}[A_k(n)] \leq \mathbb{P}_G[A_k(n)] \leq c_2 \mathbb{P}_{\mathbb{Z}^2}[A_k(n)],$$

for $n \in \mathbb{N}$.

Corollary

The one arm exponent and the $2j$ alternating arm exponents are universal for percolation on isoradial graphs.
Isoradial Graphs

G isoradial graph
Isoradial Graphs

G isoradial graph
Isoradial Graphs

G isoradial graph
Isoradial Graphs

G isoradial graph

G^* dual isoradial graph
Isoradial Graphs

G isoradial graph

G^* dual isoradial graph
Isoradial Graphs

G isoradial graph

G^* dual isoradial graph

G^\diamond diamond graph
Isoradial Graphs

G isoradial graph

G^* dual isoradial graph

G^\diamond diamond graph
Isoradial Graphs

G isoradial graph

G^* dual isoradial graph

G^\Diamond diamond graph
Isoradial Graphs

G isoradial graph

G^* dual isoradial graph

G^{\Diamond} diamond graph
Isoradial Graphs

G isoradial graph

G^* dual isoradial graph

G^{\Diamond} diamond graph
Isoradial Graphs

- G isoradial graph
- G^* dual isoradial graph
- G^\Diamond diamond graph
Isoradial Graphs

- G isoradial graph
- G^* dual isoradial graph
- G^{\Diamond} diamond graph

Track system
Isoradial Graphs

G isoradial graph

G^* dual isoradial graph

G^{\Diamond} diamond graph

Track system
Conditions for isoradial graphs.

Bounded angles condition:
There exist \(\epsilon_0 > 0 \) such that for any edge \(e \), \(\theta_e \in [\epsilon_0, \pi - \epsilon_0] \).
Conditions for isoradial graphs.

Bounded angles condition:
There exist $\epsilon_0 > 0$ such that for any edge e, $\theta_e \in [\epsilon_0, \pi - \epsilon_0]$.

Square grid property:
Families of "parallel" tracks $(s_i)_{i \in \mathbb{Z}}$ and $(t_j)_{j \in \mathbb{Z}}$.
The number of intersections on s_i between t_j and t_{j+1} is uniformly bounded by a constant I. (same for t).
Examples: Penrose tilings and no square grid
Star–triangle transformation

\[\kappa_\triangle(p) = p_0 + p_1 + p_2 - p_0 p_1 p_2 = 1. \]

Take \(\omega \), respectively \(\omega' \), according to the measure on the left, respectively right. The families of random variables

\[\left(x \xrightarrow{\omega} y : x, y = A, B, C \right), \quad \left(x \xrightarrow{\omega'} y : x, y = A, B, C \right), \]

have the same joint law.
Coupling

\[P = (1 - p_0)(1 - p_1)(1 - p_2). \]
Path transformation
Track exchange

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star–triangle transformations.
Track exchange

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star–triangle transformations.
Track exchange

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star–triangle transformations.
Track exchange

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star–triangle transformations.
Track exchange

Two parallel tracks \(s_1 \) and \(s_2 \) with no intersection between them. We may exchange \(s_1 \) and \(s_2 \) using star–triangle transformations.
Track exchange

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star–triangle transformations.
Track exchange

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star–triangle transformations.
Track exchange

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star–triangle transformations.
Track exchange

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star–triangle transformations.
Track exchange

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star–triangle transformations.
Track exchange

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star–triangle transformations.
Track exchange

Two parallel tracks \(s_1 \) and \(s_2 \) with no intersection between them. We may exchange \(s_1 \) and \(s_2 \) using star–triangle transformations.
Track exchange

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star–triangle transformations.
Track exchange

Two parallel tracks s_1 and s_2 with no intersection between them. We may exchange s_1 and s_2 using star–triangle transformations.
Proof for box-crossing property
From \mathbb{Z}^2 to isoradial square lattice.

- **Initial configuration**
- **Principal outcome**
- **Secondary outcome**
- **Probability of secondary outcome**

Open paths are preserved (unless the deleted edge was part of the path).
Strategy

Proposition

If two isoradial square lattices have same transverse angles for the vertical/horizontal tracks, and one has the box-crossing property, then so does the other.
Strategy

Proposition

If two isoradial square lattices have same transverse angles for the vertical/horizontal tracks, and one has the box-crossing property, then so does the other.
Transport of horizontal crossings

Construct a mixed isoradial square lattice:
"regular" in the gray part, "irregular" in the rest.
Transport of horizontal crossings

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.
Transport of horizontal crossings

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.
Transport of horizontal crossings

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.
Transport of horizontal crossings

Construct a mixed isoradial square lattice:
"regular" in the gray part, "irregular" in the rest.
Transport of horizontal crossings

Construct a mixed isoradial square lattice:
"regular" in the gray part, "irregular" in the rest.
Transport of horizontal crossings

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.
Transport of horizontal crossings

Construct a mixed isoradial square lattice: ”regular” in the gray part, ”irregular” in the rest.
Transport of horizontal crossings

Construct a mixed isoradial square lattice: "regular" in the gray part, "irregular" in the rest.
Transport of horizontal crossings

Construct a mixed isoradial square lattice:
"regular" in the gray part, "irregular" in the rest.
Transport of horizontal crossings

Construct a mixed isoradial square lattice:
”regular” in the gray part, ”irregular” in the rest.
Track stacking

\[\mathbb{P}_{\text{gen}}(C_h[B(\rho N, N)]) \geq \mathbb{P}_{\text{sq}}(C_h[B(I\rho N, N)] \mathbb{P}_{\text{sq}}(C_v[B(N, N)])^2 \]
Transport of the arm exponents . . .

. . . using the same strategy as for the box-crossing property.
Square lattices

\[c_1 P_{\text{reg}}(A_k(n)) \leq P_{\text{irreg}}(A_k(n)) \]
Square lattices

\[c_1 \mathbb{P}_{\text{reg}}(A_k(n)) \leq \mathbb{P}_{\text{irreg}}(A_k(n)) \]
Proof for box-crossing property

Arm exponents

Square lattices

\[c_1 P_{\text{reg}}(A_k(n)) \leq P_{\text{irreg}}(A_k(n)) \leq c_2 P_{\text{reg}}(A_k(n)). \]
From square lattices to general graphs

\[c_1 \mathbb{P}_{sq}(A_k(n)) \leq \mathbb{P}_{gen}(A_k(n)) \leq c_2 \mathbb{P}_{sq}(A_k(n)). \]
Thank you!