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Linear preferential attachment: the model

Initial tree: T
(S)
n0 = S (where n0 = |S |)

T
(S)
n+1 is obtained from T

(S)
n by adding an edge to a random vertex v ∈ T

(S)
n ,

chosen proportionally to its degree.

Questions:

Does the process mix?

For S1 6= S2, does dTV(T
(S1)
n ; T

(S2)
n )→ 0 as n→∞?

How does T
(S)
n look like when n is very large? Scaling limit?
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Recognise the seed

Question: For S1 6= S2,

does dTV(T
(S1)
n ; T

(S2)
n )→ 0 as n→∞?
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Recognise the seed

Question: For S1 6= S2,

does dTV(T
(S1)
n ; T

(S2)
n )→ 0 as n→∞? It may. . .

Example:
T (S2)
3 = S2T (S1)

2 = S1
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Recognise the seed

Question: For S1 6= S2, with |S1| =|S2| ≥ 3

does dTV(T
(S1)
n ; T

(S2)
n )→ 0 as n→∞? NO!

Ioan Manolescu (University of Geneva) LPAM 9th December 2014 3 / 14



Recognise the seed

Question: For S1 6= S2, with |S1| =|S2| ≥ 3

does dTV(T
(S1)
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Idea of Bubeck, Mossel, Rácz:
Study the degree sequence of Tn: Deg(Tn) = {deg(v) : v ∈ Tn}.

Ioan Manolescu (University of Geneva) LPAM 9th December 2014 3 / 14



Recognise the seed

Question: For S1 6= S2, with |S1| =|S2| ≥ 3

does dTV(T
(S1)
n ; T

(S2)
n )→ 0 as n→∞? NO!

Idea of Bubeck, Mossel, Rácz:
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For seeds S1 6= S2 with |S1| = |S2| but Deg(S1) 6= Deg(S2),

dTV(Deg(T (S1)
n ); Deg(T (S2)

n )) /−→ 0.

Proof: The degree sequence is given by a Pólya urn.

The tail of max Deg(T
(S)
n ) depends on Deg(S).

Problem: This strategy can not distinguish between seeds with same degree

sequences.

S1 S2
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Question: For S1 6= S2, with |S1| =|S2| ≥ 3
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dTV(Deg(T (S1)
n ); Deg(T (S2)

n )) /−→ 0.

Proof: The degree sequence is given by a Pólya urn.

The tail of max Deg(T
(S)
n ) depends on Deg(S).

Conclusion: Need some geometric observable to distinguish T
(S1)
n form T

(S2)
n
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How to define a limit of Tn? Convergence in Gromov–Hausdorff topology?
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How to define a limit of Tn? Convergence in Gromov–Hausdorff topology?

Diameter of Tn: log n. Maximal degree of Tn:
√

n.

No non-trivial compact scaling limit!
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How to define a limit of Tn? Convergence in Gromov–Hausdorff topology?

Solution: consider the loop tree Loop(Tn)

Ioan Manolescu (University of Geneva) LPAM 9th December 2014 4 / 14



How to define a limit of Tn? Convergence in Gromov–Hausdorff topology?

Solution: consider the loop tree Loop(Tn)

Ioan Manolescu (University of Geneva) LPAM 9th December 2014 4 / 14



How to define a limit of Tn? Convergence in Gromov–Hausdorff topology?

Solution: consider the loop tree Loop(Tn) −→ diameter:
√

n.

Ioan Manolescu (University of Geneva) LPAM 9th December 2014 4 / 14



How to define a limit of Tn? Convergence in Gromov–Hausdorff topology?

Solution: consider the loop tree Loop(Tn) −→ diameter:
√

n.

Theorem

n−1/2 · Loop(T
(S)
n )

a.s. for G.H.−−−−−−−→
n→∞

L(S),

where L(S) is a random compact metric space called the ”Bownian looptree”.
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How to define a limit of Tn? Convergence in Gromov–Hausdorff topology?

Solution: consider the loop tree Loop(Tn) −→ diameter:
√

n.

Theorem

n−1/2 · Loop(T
(S)
n )

a.s. for G.H.−−−−−−−→
n→∞

L(S),

where L(S) is a random compact metric space called the ”Bownian looptree”.

The loop tree is well defined for plane trees. How do we embed T
(S)
n ?

Uniformly. . .

Ioan Manolescu (University of Geneva) LPAM 9th December 2014 4 / 14



The plane LPAM and Rémy’s algorithm
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The plane LPAM and Rémy’s algorithm

Gromov - Hausdorff

CRT

Rn + ordered leaves
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The plane LPAM and Rémy’s algorithm

X0 = root

X1 X2
X3

X4

X5

Gromov - Hausdorff
+ points X0, X1, . . .

CRT + uniform points

Rn + ordered leaves
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The plane LPAM and Rémy’s algorithm

X0 = root

X1 X2
X3

X4

X5

Gromov - Hausdorff
+ points X0, X1, . . .

CRT + uniform points

Gromov - Hausdorff

Glue points

L = Glue(CRT;X0, X1, . . . )

Glue infinitely
many points

Rn + ordered leaves Glue(Rn)
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Rn = nth step in Rémy’s algorithm. X n
0 , . . . ,X

n
n = leaves in order of appearance.

Theorem (Rémy ’85; Curien & Haas ’13)

Then Rn is a uniform tree with n edges and X n
0 , . . . ,X

n
n is a uniform ordering of

its leaves.
Moreover, for any k fixed,

n−1/2 · (Rn; X n
0 , . . . ,X

n
k )

a.s.for k−pointed G .H.−−−−−−−−−−−−−→
n→∞

2
√

2 · (CRT ; X0, . . . ,Xk),

where X0,X1, . . . are i.i.d. points in the CRT, chosen according to its mass
measure.

Consequence:

n−1/2 · Glue(Rn; X n
0 , . . . ,X

n
k )

a.s. for G.H.−−−−−−−→
n→∞

2
√

2 · Glue(CRT ; X0, . . . ,Xk).

Theorem

n−1/2 · Loop(T(
n )

a.s. for G.H.−−−−−−−→
n→∞

2
√

2 · L,

where L is the limit of Glue(CRT ; X0, . . . ,Xk) as k →∞.
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The plane LPAM and Rémy’s algorithm

Gromov - Hausdorff

CRT

Rn + ordered leaves

Gromov - Hausdorff

Glue k points

Glue k points

Glue(Rn;Xn
1 . . . , Xn

k )

L = Glue(CRT;X0, . . . , Xk)

X0 = root

X1 X2
X3

X4

X5

+ points X0, . . . , Xk

+ (k + 1) uniform points
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Properties of the loop tree

Theorem

L has a.s. Hausdorff dimension 2.

Big faces touch each other!
(In Tn the vertices of large degree are at finite distance.)

Ioan Manolescu (University of Geneva) LPAM 9th December 2014 8 / 14



In the previous, we looked at T(
n with seed (.

For general seeds S , with N corners:

T
(S)
n is obtained by:

sample N variables αn
1, . . . , α

n
N with Pólya urn distribution,

sample N independent Ln
1, . . . , L

n
N of LPAMs started from ( with resp.

αn
1, . . . , α

n
N vertices;

attach each Ln
i in a corner of S .
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In the previous, we looked at T(
n with seed (.

For general seeds S , with N corners:

n−1/2 · Loop(T (S)
n )

a.s. for G.H.−−−−−−−→
n→∞

2
√

2 · L(S).

where L(S) is obtained by:

sample N variables α1, . . . , αN with Dirichlet distribution (1/2, . . . , 1/2),

sample N i.i.d. instances of L: L1, . . . , LN ,

glue each loop tree αiLi on an edge of Loop(S).
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Back to distinguishing the seeds

Which observable to use?

Number of embeddings of a given (small) tree:

A tree τ may be embedded in Dτ (T
(S)
n ) ways in T

(S)
n .

Do Dτ (T
(S1)
n ) and Dτ (T

(S2)
n ) have different asymptotics?

n−? · Dτ (T (S)
n )→ d(S)?
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For technical conditions, we will work with decorated trees.

Dτ (T ) = number of embeddings.

1

1

22

For S1 6= S2 with n0 = |S1| = |S2| ≥ 3, there exists a decorated tree τ such that

.

Theorem

For S1 6= S2 with |S1|, |S2| ≥ 3, dTV(T
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For technical conditions, we will work with decorated trees.

Dτ (T ) = number of embeddings.

We may expect:

n−|τ |/2 · Dτ (T (S)
n )→ d(S),

with d(S) a random variable that depends on S .
Because of the small stubs, there may be logarithmic cor-
rections.
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{cn(τ, τ ′) : τ ′ 4 τ, n ≥ 2} such that
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is a martingale for any seed S, and is bounded in L2.
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Idea of proof: recurrence for Dτ(Tn)

For any τ , there exist constants {c(τ, τ ′) : τ ′ ≺ τ} such that

E
[
Dτ

(
T

(S)
n+1

)∣∣T (S)
n

]
=

(
1 +

|τ |
2n − 2

)
Dτ

(
T (S)
n

)
+

1

2n − 2

∑
τ ′≺τ

c(τ, τ ′)Dτ ′
(
T (S)
n

)
.

When τ = 1 we have D 1 (T
(S)
n ) = 2n − 2.
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Using this recurrence formula, we show the existence of the martingales Mτ (T
(S)
n )
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Related model

Affine reinforcement: For δ > −1,
T

(S),δ
n+1 is obtained from T

(S),δ
n by adding an edge to a vertex v chosen with

probability proportional to deg(v) + δ.

Maximal degree: n1/(2+δ).

Conjectures: • n−1/(2+δ) · Loop(T
(S),δ
n )→ L(S),δ.
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Maximal degree: n1/(2+δ).

Conjectures: • n−1/(2+δ) · Loop(T
(S),δ
n )→ L(S),δ.

Choose red edges with prob. 1 + α and the other with prob 1− α; α = 1/(2 + δ)

L(,δ should come from a fragmentation tree of Hausdorff dimension 2 + δ.

Ioan Manolescu (University of Geneva) LPAM 9th December 2014 13 / 14



Related model

Affine reinforcement: For δ > −1,
T

(S),δ
n+1 is obtained from T

(S),δ
n by adding an edge to a vertex v chosen with

probability proportional to deg(v) + δ.

Maximal degree: n1/(2+δ).

Conjectures: • n−1/(2+δ) · Loop(T
(S),δ
n )→ L(S),δ.

• dTV(T
(S1),δ
n ; T

(S2),δ
n ) /−→ 0 for S1 6= S2.

Ioan Manolescu (University of Geneva) LPAM 9th December 2014 13 / 14



Related model
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n+1 is obtained from T
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n by adding an edge to a vertex v chosen with

probability proportional to deg(v) + δ.

Maximal degree: n1/(2+δ).

Conjectures: • n−1/(2+δ) · Loop(T
(S),δ
n )→ L(S),δ.

• dTV(T
(S1),δ
n ; T

(S2),δ
n ) /−→ 0 for S1 6= S2.

In our proof the exchangeability of the corners played an essential role! We expect
a similar result.

For δ =∞ (vertex chosen uniformly) - result obtained by Bubeck, Eldan, Mossel,
Rácz.
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n+1 is obtained from T
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n by adding an edge to a vertex v chosen with

probability proportional to deg(v) + δ.

Maximal degree: n1/(2+δ).

Conjectures: • n−1/(2+δ) · Loop(T
(S),δ
n )→ L(S),δ.

• dTV(T
(S1),δ
n ; T

(S2),δ
n ) /−→ 0 for S1 6= S2.

• Is all the asymptotic information on T
(S)
n contained in L(S)?
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Thank you!
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