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Abstract

Uniform integer-valued Lipschitz functions on a domain of size N of the trian-
gular lattice are shown to have variations of order

√

logN .
The level lines of such functions form a loop O(2) model on the edges of the

hexagonal lattice with edge-weight one. An infinite-volume Gibbs measure for the
loop O(2)model is constructed as a thermodynamic limit and is shown to be unique.
It contains only finite loops and has properties indicative of scale-invariance: macro-
scopic loops appearing at every scale. The existence of the infinite-volume measure
carries over to height functions pinned at the origin; the uniqueness of the Gibbs
measure does not.

The proof is based on a representation of the loop O(2) model via a pair of spin
configurations that are shown to satisfy the FKG inequality. We prove RSW-type
estimates for a certain connectivity notion in the aforementioned spin model.
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1 Introduction
Height functions occupy a central role in statistical mechanics models on lattices. Indeed,
the Ising, six-vertex and dimer models are only some of the lattice models involving height
function representations. The predicted conformal invariance of these models is tightly
linked to the convergence of their associated height functions to the Gaussian Free Field
(GFF) or variations of it. Both statements were proved only in a handful of cases, and
remain fascinating conjectures in general.

In this paper we study integer-valued height functions defined on the vertices of the
two-dimensional triangular lattice T, or equivalently on the faces of the hexagonal lat-
tice H. It is then natural to impose that height functions are Lipschitz, that is functions
whose difference between any two adjacent vertices is at most 1; see Figure 1. More
specifically, for any finite domain D of H, we will consider a uniformly chosen Lipschitz
function among those with values 0 outside of D . The question of interest is the behaviour
of such a function, especially as the domain D increases towards H.

Our goal is to show that the variance of the value at the origin of a uniformly chosen
Lipschitz function is of order logN , where N is the radius of the largest ball centred
at the origin and contained in D . This result, termed delocalisation (or logarithmic
delocalisation to be precise) is in agreement with the conjectural convergence of uniform
Lipschitz functions to the GFF.

The essential tool here is a re-interpretation of the uniform Lipschitz functions as the
loop O(2) model, which in turn is represented as the superposition of two site percolations
on T interacting with each other – below we view these as ±-spin assignments. This
double-spin representation is obtained by colouring the loops of the loop O(2) model in
two colours (as was done in [7]), then deriving a spin configuration from the families of
loops of each colour. This may be viewed as the infinite-coupling-limit of the Ashkin–
Teller model on the triangular lattice [26].

The loop O(n) model is defined on collections of non-intersecting simple cycles (loops)
on a finite domain D of H and has two real parameters n,x > 0. The probability of each
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configuration is proportional to n to the number of loops times x to the number of edges
in it. The loop O(n) model has a rich conjectural phase diagram [31, 4] that remains
mostly open; see [35] for an overview of the topic.

For n = 2, the model is expected to exhibit macroscopic loops when x ≥ 1√
2
and

exponential decay of loop sizes when x < 1√
2
. The former is confirmed in this paper

for x = 1 and in [13] for x = 1√
2
. The latter behaviour is shown to hold for x < 1√

3
+ ε

for some ε > 0 in [21]. The correspondence between the loop O(2) model and Lipschitz
functions holds for any x > 0, but the corresponding height functions are not uniform:
they are weighted by x to the number of pairs of adjacent faces of H having different
values. The regime of exponential decay of loop sizes corresponds to localisation for the
height function; that of macroscopic loops corresponds to logarithmic delocalisation.

A main difficulty in the study of the loop O(n) model is the lack of monotonicity and
positive association. These type of properties are however expected to hold in convenient
representations of the model, as illustrated by the present paper and by [13]. Indeed, a
core ingredient of our arguments is the FKG inequality, which we show for the marginals
of the double-spin representation. We then develop Russo–Seymour–Welsh (or RSW)-
type results for these marginals, which translate to similar statements for the loop and
height function models.

The RSW theory was initially developed for percolation [36, 38], and later generalised
to other models via more robust arguments (see for instance [3, 17, 11, 42, 10]). It has
become increasingly clear that for the latter type of arguments to apply the essential
feature of the model is an instance of the FKG inequality. Indeed, other restrictions
such as independence, symmetries and planarity have been, in some forms, relaxed in
recent works. In this paper we do yet another step towards generalising this approach by
considering a case where the Spatial Markov property applies only in a limited way.

The FKG inequality mentioned above extends to the case of certain non-uniform
distributions on Lipschitz functions (corresponding to the loop O(2) model with x < 1)
and more generally to the loop O(n) model with n ≥ 2, x ≤ 1√

n−1
. Thus, we hope that this

instance of the FKG inequality, together with the strategy of our proofs can be useful in
other studies of the loop O(n) model.

Finally, we want to emphasise that in this work we do not attempt to prove conver-
gence to the GFF. In general, the RSW theory can be viewed as a robust technique based
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Figure 1: Lipschitz function — values at any two adjacent faces differ by at most 1.
Level lines are shown in bold; they form a loop configuration distributed according to the
loop O(2) measure with edge-weight one.

3



on geometric constructions, but is not expected to lead to subtle convergence results. In-
deed the seminal proofs of convergence of [37, 27, 40, 41, 9, 8] are all based on some form
of exact solvability, which is missing in our case.

1.1 Uniform Lipschitz functions

Let H denote the hexagonal lattice, embedded in R2 with the origin 0 being the center of
a face and the distance between the centres of any adjacent faces being 1. Write F (H)

for the set of faces of H. A subgraph D = (V (D),E(D)) of H without isolated vertices
is called a domain if there exists a self-avoiding polygon in H denoted by ∂ED such
that E(D) is the set of edges surrounded by ∂ED (excluding those of ∂ED). Denote
by F (D) the set of faces adjacent to at least one edge of D . The inner (and outer) face
boundary of D , written ∂inD (and ∂outD , respectively) is the set of faces of D (and H∖D ,
respectively) bounded by at least one edge in ∂ED . The faces strictly in the interior of D
are Int(D) = F (D) ∖ ∂inD .

For a domain D , a Lipschitz function on D with zero boundary conditions is an
integer-valued function φ on the faces of D with the constraint that

• if u, v ∈ F (D) are two adjacent faces, then ∣φ(u) − φ(v)∣ ≤ 1;

• for each u ∈ ∂inD we have φ(u) = 0.
Since D is finite, only finitely many such functions exist. Write πD for the uniform
measure on such functions, and let ΦD denote a random variable with law πD .

Theorem 1.1.
(i) There exist constants c,C > 0 such that, for any finite domain D with 0 ∈ D ,

c log dist(0,D c) ≤ Var(ΦD(0)) ≤ C log dist(0,D c).

(ii) For any increasing sequence of domains (Dn)n≥1 with 0 ∈ D1 and H = ⋃nDn, the
sequence of variables ΦDn−ΦDn(0) converges in law as n→∞ to a random Lipschitz
function ΦH ∶ H→ Z that is equal to 0 at 0. Write πH for the law of ΦH.

(iii) There exists c,C > 0 such that, for any distinct x, y ∈ F (H),

c log ∣x − y∣ ≤ Var(ΦH(x) −ΦH(y)) ≤ C log ∣x − y∣.

The same holds for ΦD for any domain D containing the ball of radius 2∣x − y∣
around x.

One may wish to study height functions with different values imposed on the boundary
via so-called boundary conditions. While we do not attempt to provide the most general
form of our result, let us briefly mention some direct generalisations. First, for constant
boundary conditions – that is if we study uniform height functions with φ(u) = c for
all u ∈ ∂inD – the law obtained is that of c + ΦD , and the results above adapt readily.
Versions of the results above may also be deduced for “flat” boundary conditions, that
is boundary conditions whose maximum and minimum differ by at most a constant,
independently of D . The results for such boundary conditions may be obtained using the
FKG inequality for the height function; we refer the reader to the upcoming paper [15]
for formulations and proofs of such results in a slightly different context.
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In addition to the theorem above, RSW-type statements may be proved for ΦD , see
Theorem 5.6. These may be used to prove bounds on the tail of 1√

logN
ΦD(0) in a domain

where dist(0,D c) = N .

To the best of our knowledge this is the first instance when a uniformly distributed
Lipschitz function is proven to have logarithmically diverging variance. Previously known
results establish that the variance is bounded (referred to as localisation) in high dimen-
sions [32], or when the underlying graph is a tree [33] or an expander [34]. The conjectured
convergence of the height function to the GFF indicates that localisation should also hold
on lattices in dimensions three and above.

Recently it was established in [13] that the variance is logarithmic in a very similar
setup — also on the hexagonal lattice, though the distribution is not uniform but instead
the probability of a function φ is proportional to (1/

√
2)#{u∼v∶φ(u)≠φ(v)}. This result follows

from [13, Thm. 1] for n = 2.
On the square lattice Z2, one may also consider the related model of graph homo-

morphisms from Z2 to Z, which are defined as functions on the faces of Z2 restricted to
differ by exactly one between any two adjacent faces. These functions may be viewed as
height functions of the six-vertex model that has parameters a, b, c > 0. When a = b = 1
and c > 0 is general, the height functions are weighted by cn5+n6 , where n5+n6 is the num-
ber of vertices of Z2 for which the four adjacent faces contain only two values. For the
uniform model c = 1 (termed square ice) a non-quantitative delocalisation result is proved
in [6] based on an approach described in [39]. In [14] a dichotomy theorem similar to our
Theorem 4.1 is developed and logarithmic delocalisation is shown. In [22] logarithmic
delocalisation at c = 2 and localisation for c > 2 are shown, based on the Baxter–Kelland–
Wu coupling [2] with the random-cluster model and results of [17] and [12], where the
order of the phase transition in the latter model is computed. In the upcoming [15], the
logarithmic delocalisation result is generalised to all c ∈ [1,2].

Convergence of the height function of the dimer model to the GFF was proven in
a seminal work by Kenyon [27] and was recently extended to the case of a weak in-
teraction [20]. On the square lattice, this corresponds to graph homomorphisms to Z
with c ≈

√
2. Proving convergence of delocalised discrete-valued height functions outside

of the free-fermion solution remains a major open problem.
The case of real-valued height functions is better understood. In particular, con-

vergence to the GFF was established for uniformly convex symmetric potentials (under
additional regularity assumptions) [29] and the delocalisation was proven for some non-
convex nearest-neighbour potentials [30].

1.2 The loop O(2) model

Let D be a domain of H. A loop configuration on D is a subgraph of D in which
every vertex has even degree. Thus, a loop configuration is a disjoint union of loops
(i.e., subgraphs which are isomorphic to cycles) that are contained entirely in D . In
particular, none of these loops contain edges of ∂ED . Denote by L (D) the set of all loop
configurations on D .

The loop O(2) model on D with edge-weight 1 (and empty boundary conditions) is
the measure PD on L (D) given by

PD(ω) =
1

Z(D)
2`(ω),
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∂outD

∂inD

γ = ∂ED

Int(D)

Figure 2: A loop configuration in a domain D bounded by the path γ. The domain D
is formed of all the edges strictly in the interior of γ. Loops inside D are contained in
the interior of γ and are not allowed to intersect γ. The hexagons or ∂inD and ∂outD are
marked by light and dark gray, respectively.

where `(ω) is the number of loops in ω. The normalising constant Z(D), chosen so
that PD is a probability measure, is called the partition function.

Write Λn for the domain defined by a self-avoiding contour going around the set of
faces at distance n from 0 (for the graph distance on the dual H∗ = T of H). A sequence
of domains (Dn)n≥1 is said to converge to H if, for all k, all except finitely many domains
of (Dn)n≥1 contain Λk.

Theorem 1.2 (Existence of Gibbs measure and delocalisation).
(i) For any increasing sequence of domains (Dn)n≥1 converging to H, PDn has a limit

denoted by PH.

(ii) The measure PH is supported on even subgraphs of H that contain only finite loops.

(iii) The measure PH is ergodic and invariant under translations and rotations by π/3.

(iv) There exists c > 0 such that, for any even integer n and any finite domain D
containing Λn, or for D = H,

PD(there exists a loop in Λn surrounding Λn/2 ) ≥ c. (1.1)

Moreover, there exists ρ < 1, such that, for any finite domain D , if we set n =

dist(0, ∂ED), we have

PD(there exist two loops surrounding Λρn) ≤ 1 − c. (1.2)

(v) Write ND for the number of loops surrounding 0, contained in some domain D .
There exist constants c,C > 0 such that for any domain D ,

c log dist(0,D c) ≤ ED(ND) ≤ C log dist(0,D c), (1.3)

where ED denotes the expectation with respect to PD . The same holds if we re-
place ED(ND) with EH(ND). In particular, PH-a.s., there are infinitely many loops
surrounding the origin.
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Any limit of measures of the type PD is supported on even subgraphs of H. Such
graphs are in general disjoint unions of loops and infinite paths on H. Thus, point (ii) of
the above states that no infinite path exists PH-a.s.

Point (iv) of the theorem above resembles a RSW-type statement for the loops of
the O(2) model; indeed, it stems from an actual RSW result for a related model (see
Corollary 5.2). Due to the imperfect correspondence between the models, the upper
bound of (1.2) takes this slightly odd form. We believe that a similar bound should
apply to any ρ < 1 (with c depending on ρ), for any n and for a single loop instead of
two. This statement is of an independent interest as it would in particular imply, via
Aizenman–Burchard [1], tightness of interfaces under Dobrushin 0/1 boundary conditions.

Point (v) is a direct consequence of (iv). Moreover, bounds on the deviation of ND

from log dist(0,D c) may be obtained in a straightforward manner.
Finally, we discuss the issue of Gibbs measures for the loop O(2) model. Consider

a measure η on {0,1}H supported on even configurations. Recall that these are disjoint
unions of bi-infinite paths and finite loops. Let ω be a configuration in the support of η
and D be a finite domain. Then ω ∩D c induces certain connections between the vertices
of ∂ED . Indeed, each such vertex may be connected to another such vertex, to infinity,
or be isolated. These connections constitute a boundary condition on D . Formally we
describe boundary conditions as follows.

For ξ1 and ξ2 two restrictions to D c of even configurations on H, write ξ1 ∼ ξ2 if they
induce the same connections on ∂ED . A measure η on even configurations on H is called
a Gibbs measure for the loop O(2) model with edge weight 1 if, for any finite domain D
of H and any restriction ξ of an even configuration to D c,

η(ω ∩D = ω0 ∣ω ∩D c ∼ ξ) =
1

Zξ
D

2#finite loops of ω0 ∪ ξ that intersect D 1{ω0 ∪ ξ is even} (DLR)

for all ω0 ∈ {0,1}E(D). The above equation needs only to hold when the conditioning is
not degenerated. Write PξD for the measure on {0,1}E(D) described by the right-hand side
above; it is the loop O(2) measure on D with boundary conditions ξ. It is immediate
that PξD does not depend on the choice of ξ within its equivalency class for ∼.

Notice that the infinite paths do not contribute to the right-hand side of (DLR). One
may be tempted to add a term of the form (n′)#infinite paths of ω0 ∪ ξ0 that intersect D in (DLR)
for some n′ > 0. This would be superfluous, as the number of infinite paths intersecting D
is imposed by the boundary conditions.

Theorem 1.3 (Uniqueness of Gibbs measure). There exists only one Gibbs measure for
the loop O(2) model on H with edge-weight 1, namely PH.

In particular, any Gibbs measure is supported on configurations formed entirely of
finite loops. Notice that we do not require that the Gibbs measure be translation invariant
or ergodic for it to be equal to PH. However, we do not claim that for any sequence
of domains Dn converging to H and any sequence of boundary conditions ξn on these
domains, PξnDn tends to PH. This is a stronger statement than Theorem 1.3; we believe it
to be true, but have no proof. It may appear surprising, but limits of measures PξnDn need
not be Gibbs in the sense of (DLR). Theorem 1.3 does not imply the uniqueness of the
Gibbs measure for height functions. We will discuss more on this point in the following
section.
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The loop model studied here is part of the larger class of loop O(n) models with
edge weight x, where n and x are positive parameters. The loop O(n) model with edge-
weight x in a domain D is the measure on loop configuration given by

PD ,n,x(ω) =
1

Z(D , n, x)
x∣ω∣n`(ω),

where ∣ω∣ is the number of edges in ω and Z(D , n, x) is called the partition function.
Results similar to Theorems 1.2 and 1.3 were proved in [13, Theorems 1 and 2] for

the loop O(n) model with n ∈ [1,2] and x = 1√
2+
√

2−n
. They are based on the (single)

spin representation of the loop O(n) model, which is shown to satisfy the FKG inequality
for n ≥ 1 and x ≤ 1/

√
n. This is then used to prove a dichotomy similar to our Theorem 4.1.

For x = 1√
2+
√

2−n
and n ∈ [1,2], the parafermionic observable is then used to exclude

exponential decay of loops, thus proving the equivalent of Theorem 1.2. The uniqueness
of the Gibbs measure is shown via the stronger statement which we are unable to prove
here: convergence to the unique infinite-volume measure of finite-volume measures on
any increasing sequence of domains, with any boundary conditions.

The point n = 2, x = 1 is clearly outside of the FKG regime determined in [13],
and a more complicated spin representation is required. This representation will involve
two spin configurations, and will therefore be sometimes referred to as the double-spin
representation (see Section 2 for precise definitions).

Let us also mention that [16] proves that for n large enough and any x > 0, the loops
of the loop O(n) model with edge-weight x exhibit exponential decay. Moreover, for nx6

large enough, it is shown that at least three distinct, linearly independent infinite-volume
Gibbs measures exist. For nx6 small enough (and n large) it was shown in the same
paper that at least one Gibbs measure exists, but its uniqueness (though expected) was
not proved.

1.3 Relation between the loop O(2) model and random Lipschitz
functions

Fix a domain D . For a Lipschitz function ϕ on D , define an edge configuration ωϕ
by ωϕ(e) = 1 if and only if the two faces separated by e have different values of ϕ. It is
straightforward to check that ωϕ is indeed a loop configuration.

Proposition 1.4. (i) If Φ has law πD , then ωΦ has law PD .

(ii) Given some loop configuration ω, the law of Φ conditionally on ωΦ = ω is obtained
as follows: define Ð→ω by choosing a clockwise or a counter-clockwise orientation
uniformly and independently for each loop ` of ω. Then, for each face u of D , set

Φ(u) = `↻(
Ð→ω ;u) − `↺(

Ð→ω ;u), (1.4)

where `↻(
Ð→ω ;u) and `↺(

Ð→ω ;u) stand for the number of clockwise (resp. counter-
clockwise) oriented loops of Ð→ω surrounding u.

Proof The correspondence between oriented loop configurations and Lipschitz functions
defined by (1.4) is in fact a bijection. Indeed, the reverse mapping can be defined as
follows: given a Lipschitz function ϕ ∶ D → Z, each loop of the corresponding (unoriented)
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loop configuration ωϕ is oriented clockwise if the values of ϕ inside of the loop are higher
than those outside, and is oriented counter-clockwise otherwise.

The push-forward of πD under this bijection is a uniform measure on all oriented loop
configurations on D . Considering the projection on the set of unoriented loop config-
urations we obtain PD , since each loop has two possible orientations. This proves (i),
and (ii) follows readily. ◻

Using the correspondence between Lipschitz functions and loop configurations de-
scribed above, Theorem 1.1 follows easily from Theorem 1.2.

Proof of Theorem 1.1 (assuming Theorem 1.2) (i) By Proposition 1.4 (ii), a
random Lipschitz function ΦD distributed according to πD can be sampled from a random
loop configuration ω distributed according to PD by orienting each loop of ω uniformly and
independently. Then ΦD(0) has the distribution of a simple random walk on Z with ND

steps, where ND is the number of loops in ω surrounding 0. Thus, Var(ΦD(0)) = ED(ND).
The conclusion follows from (1.3).
(ii) Using the coupling from Proposition 1.4, we get that for any u ∈ F (D), the value
of ΦD(u) −ΦD(0) is a function of number of loops separating u from 0 and their orien-
tations. By items (i) and (ii) of Theorem 1.2 the infinite-volume limit of PD exists and
consists only of finite loops. Thus, the infinite-volume limit of ΦD −ΦD(0) also exists.
(iii) We will prove the statement for ΦH; that for ΦD is proved in the same way. Similarly
to the previous items, we have

Var(ΦH(x) −ΦH(y)) = EH(Nx∖y +Ny∖x), (1.5)

where Nx∖y stands for the number of loops surrounding x but not y and Ny∖x for those
surrounding y but not x.

For the lower bound, notice that Nx∖y is larger than the number of loops surround-
ing x and contained in Λ∣x−y∣. Thus, by (1.3), EH(Nx∖y) ≥ c log ∣x − y∣ for some universal
constant c > 0. The desired lower bound on Var(ΦH(x) −ΦH(y)) follows.

For the upper bound, define Γ to be the outermost loop surrounding x but not y,
provided such a loop exists. Let γ be a possible realisation of Γ and let Int(γ) be the
interior of the domain delimited by γ. Notice that the event {Γ = γ} is measurable
in terms of the configuration on and outside γ. Therefore, conditionally on Γ = γ, the
restriction of PH to Int(γ) is the uniform measure among all loop configuration in Int(γ),
which is to say it is equal to PInt(γ). Thus

EH(Nx∖y) = P(Nx∖y > 0) +∑
γ

EInt(γ)(NInt(γ)(x)) ⋅ PH(Γ = γ),

where the sum is over all possible realisations γ of Γ and NInt(γ)(x) in the right hand side
stands for the number of loops surrounding x and contained in Int(γ). Now, since y ∉

Int(Γ), dist(x, Int(γ)c) ≤ ∣x − y∣ for any path γ appearing in the sum. Thus, (1.3) proves
that EH(NInt(γ)(x)) ≤ 1 +C log ∣x − y∣ for some universal constant C.

The same holds for EH(Ny∖x). Using this and (1.5), we obtain the desired upper
bound on Var(ΦH(x) −ΦH(y)). ◻

Let us briefly comment on the uniqueness of infinite-volume measures for Lipschitz
functions. One may think that, due to Theorem 1.3, πH should be the only infinite-volume
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measure with the property that its restriction to any finite domain is uniform among
Lipschitz functions that take the value 0 at the origin. This is not the case. Indeed, the
correspondence between the loop and Lipschitz functions models is not perfect, and does
not allow us to deduce this.

Moreover the claim is false, as an infinite family of infinite-volume measures for uni-
form Lipschitz functions is expected to exist, one for each global “slope”. The loop repre-
sentation of any of these contains infinite paths and is not Gibbs in the sense of (DLR).

Structure of the paper The rest of the paper is entirely dedicated to the loop O(2)
model with x = 1. In Section 2 we derive a representation of the loop model in terms of
two loop O(1) configurations conditioned not to intersect. These are in turn represented
in terms of spin configurations that are shown to satisfy the FKG inequality and a certain
form of Spatial Markov property.

In Section 3 this spin representation is used to construct an infinite-volume, ergodic
loop O(2) measure. The infinite-volume measure is then shown to be unique (in some
sense that will be made precise later). In doing so, we show that 0 is surrounded by in-
finitely many loops. For height functions, this corresponds to the delocalisation of Φ(0) or
equivalently to the divergence of covariances. At this stage, the delocalisation/divergence
is not quantitative.

Section 4 contains a dichotomy theorem. In the language of uniform Lipschitz func-
tions, the dichotomy theorem roughly states that the covariance between two points either
is bounded or diverges logarithmically in the distance between the points.

Finally, in Section 5, the non-quantitative delocalisation result and the dichotomy
theorem are used to prove Theorem 1.2. Theorem 1.3 is also proved here. Moreover, we
provide an RSW result for height functions in Section 5.4.

The paper is structured so as to isolate the different ingredients of our argument; some
of them may be useful for the analysis of the loop O(n) model with other values of n
and x, or other similar models. We further discuss in Section 2.1 the various properties
of the loop O(2) model that are necessary for our proof.

Notation Below is a list of notation used throughout the paper. Some of it was already
mentioned, some is new.

Recall that H denotes the hexagonal lattice; its dual is the triangular lattice, writ-
ten H∗ = T. We will call edge-path any finite or infinite sequence of adjacent edges of H
with no repetitions. A face-path is a sequence of adjacent faces of H with no repetitions,
or equivalently it is a path on T that does not visit the same vertex twice.

Domains D = (V (D),E(D)) are interior of edge-polygons of H. The edges of the
polygon form the edge-boundary of D , written ∂ED . The faces of H adjacent to ∂ED and
inside ∂ED (outside, respectively) form the inner face boundary of D , written ∂inD (and
the outer face-boundary written ∂outD , respectively). The set of faces of H inside ∂ED
is written F (D); those not adjacent to ∂ED form the interior of D , denoted by Int(D) =

F (D) ∖ ∂inD . The dual D∗ = (V (D∗),E(D∗)) of D is the induced subgraph of T with
vertex set F (D).

An edge configuration on D is an element ω ∈ {0,1}E(D); it is identified to the graph
with vertex set V (D) and edge-set {e ∈ E(D) ∶ ω(e) = 1}. Write u ω

←→ v to indicate that
two vertices u, v of V (D) are connected in ω. The same notation applies to H and D∗.

A spin configuration on D is an element σ ∈ {−,+}F (D); the notation extends to H.
Below we will use two superposing spin configurations. We identify one as red, the other
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as blue and denote the relevant spins by { , } and { , } for legibility.
For a red-spin configuration σ ∈ { , }F (D) and two faces u, v ∈ F (D), write u ←→ v

(or u in D
←ÐÐ→ v when the choice of D is unclear) to indicate that there exists a face-path

in D starting at u and ending at v, formed entirely of faces with σ-spin . Such a
path will be called a -path or simple- path. Connected components for this notion of
connectivity are called -clusters.

A double- path will be an edge-path for which all adjacent faces have spin ; con-
nections by double- paths will be denoted by ←→. The same applies to spins , and .

Write /←→ for the negation of ↔.
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2 1+1 = 2
Fix a domain D . Choose a loop configuration ω according to PD and colour each loop
of ω in either red or blue, with equal probability, independently for each loop. Extend PD

to include this additional randomness. Write ωr and ωb for the configurations of blue and
red loops. Then, for any two disjoint loop configurations ωr, ωb,

PD(ωr, ωb) =
1

Z(D)
2`(ω)(1

2
)
`(ωr)

(1
2
)
`(ωb)

=
1

Z(D)
.

In other words, PD is the uniform distribution on pairs of loop configurations (ωr, ωb)
that do not to intersect.

In the context of Lipschitz functions, one may think of ωr as the level lines with
higher value on the inside and ωb as those with higher value on the outside (that is the
clockwise and counter-clockwise, respectively, oriented loops in the language of (1.4)).
While accurate, this interpretation is not relevant below.

Keeping the idea of colouring loops as the intuition, in the next section we introduce
a measure on pairs of red and blue ±1 spin configurations. Though this measure is
tightly linked to the loop O(2) measure on pairs of red and blue loops and under certain
boundary conditions these two measures will be shown to coincide, we emphasise that
this is not always the case.

To shorten notation, we will use the symbols , to denote the values of red spins
and , for blue spins.

2.1 Spin representation

Define µD to be the uniform measure on all pairs of spin configurations σr ∈ { , }F (D)

and σb ∈ { , }F (D) such that for every two adjacent faces u, v ∈ F (D) at least one of
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the equalities σr(u) = σr(v) and σb(u) = σb(v) holds. We call such configurations σr, σb
coherent and denote this relation by σr ⊥ σb.

Given a spin configuration σ ∈ {±1}D , define ω(σ) to be set of edges of D separating
adjacent faces bearing different spin in σ. Then ω(σ) consists of disjoint loops and paths
linking boundary vertices in D .

The correspondence σ ↦ ω(σ) is a classical tool in the study of the Ising model,
called the high temperature representation (see for instance [19, Sec. 3.10.1]). If σ is
chosen according to a Ising distribution, then ω(σ) has the law of a loop O(1) model,
with parameter x depending on the temperature of the Ising measure. For the loop O(n)
model with general values of n, this correspondence was used in [13] with the name cluster
representation.

The following proposition describes the relation between µD and PD . Define

µD ∶= µD(⋅ ∣σr ≡ on ∂inD and σb ≡ or σb ≡ on ∂inD), (2.1)

where ≡ should be understood as “equal everywhere to”. The notation µD comes from
Theorem 2.3, where these boundary conditions are shown to be equivalent to setting
on the interior boundary of D and on its exterior boundary.

Proposition 2.1. If the couple (σr, σb) has law µD , then the couple (ω(σr), ω(σb)) has
law PD . In particular ω(σr) ∪ ω(σb) has the law of the loop O(2) model on D .

Proof The map σr ↦ ω(σr) is a bijection between spin configurations σr ∈ { , }F (D)

that are equal to on ∂inD and all loop configurations on D . Indeed, due to the constant
spin of σr on ∂inD , ω(σr) is indeed a loop configuration. Moreover, the reverse mapping
is the following: a loop configuration ω on D is mapped to the spin configuration σr ∈
{ , }F (D) that is equal to (resp. ) at all faces of D that are surrounded by an even
(resp. odd) number of loops of ω.

Similarly, the map σb ↦ ω(σb) defined on the set of spin configurations σb ∈ { , }F (D)

that are constant on ∂inD and taking values in L (D) is two to one, due to its invariance
under global spin flip.

The condition σr ⊥ σb corresponds to ω(σr) ∩ω(σb) = ∅. Thus, µD induces a uniform
measure on all pairs (ω(σr), ω(σb)) of non-intersecting red and blue loop configurations
on D , that is PD . As described above, the marginal of this measure on the non-coloured
loop configuration ω(σr) ∪ ω(σb) is the loop O(2) measure on D . ◻

Remark 2.2. Extensions of the statement to all x ≠ 1 are possible and result in non-
uniform measures on pairs of spin configurations. As already mentioned, the correspon-
dence between double-spins and loops does not extend to general boundary conditions for
the loop O(2) model.

We will show below that, under µD , the marginals σr and σb satisfy the FKG in-
equality. Moreover the spin measures of the type µD satisfy the Spatial Markov property
in the following sense. If D ′ is a domain contained in some larger domain D , then the
restriction of µD to D ′, conditionally on the spins σr, σb outside D ′, is entirely determined
by the values of σr and σb on ∂outD .

It may be tempting to think that these two observations suffice to apply the tech-
niques developed for the random-cluster model to our setting (such as those of [17, 18]).
Unfortunately this is easier said than done. Indeed, many of these techniques use a form
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of monotonicity of boundary conditions. In our case, it is unclear how to compare bound-
ary conditions consisting of pairs of spins, as the FKG inequality applies only individually
to the single-spin marginals of µD .

To circumvent this difficulty, we will focus our study on one of the single-spin marginals
of µD ; we arbitrarily choose the red-spin marginal, and call it νD . As already stated, this
measure satisfies the FKG inequality, but fails to have a general spatial Markov property.
However, we show in Theorem 2.3 and Corollary 2.4 that a limited version of the spatial
Markov property applies to νD , under certain restrictions.

One may attempt to apply the same strategy to other values of n and x. Our ar-
gument is quite intricate, and different parts of it use different properties of the double
spin representation described above. The paper is organised to separate the different
arguments, so as to facilitate the identification of blocks that may be applied to other
models. Below is brief list of the essential properties of the double spin representation
and their uses.

• The FKG inequality for the red-spin marginal is crucial and is used extensively
throughout the proof. As mentioned in Remark 2.11 (iii), the FKG inequality
extends to the red-spin marginal of a certain double spin representation of the
loop O(n) model with parameters n ≥ 2 and x ≤ 1√

n−1
.

• That x = 1 is essentially only used for the spatial Markov property. In its current
form, the property does not apply to x ≠ 1.

• The symmetry between the red and blue spin marginals (which, in light of Re-
mark 2.11 (iii) boils down to n = 2) is akin to a self-duality property, and is used
to prove RSW type estimates (see Lemma 3.8).

Finally, let us mention that it is expected that the loop O(2) model for n = 2 and x ≥ 1/
√

2
has a similar behaviour to the case x = 1, that is macroscopic loops exist at every scale.
However, for all n > 2 and any x > 0 or n = 2 and x < 1/

√
2, loops are expected to exhibit

exponential decay. Thus, parts of our proof need to fail for more general values of n
and x. The dichotomy theorem of Section 4 (or similar statements) may be expected to
hold for all values of n and x, but no proof is generally available.

2.2 Spatial Markov property

In general, the measures νD , that is the red-spin marginals of µD , do not have the spatial
Markov property. However, a version of this property holds in certain cases. Recall the
definition (2.1) of µD and set

µD ∶= µD(⋅ ∣σr ≡ on ∂inD).

Let νD and νD , respectively, be the marginals on σr of the above two measures. Define
the measures µD , µD , µD etc. in a similar ways, and write ν etc. their red-spin
marginals.

Theorem 2.3 (Spatial Markov property). Let D ,D ′ ⊂ H be two domains such that ∂ED ⊂

E(D ′). Let τr ∈ { , }F (D
′) and τb ∈ { , }F (D

′) be two coherent spin configurations on D ′.
(i) if τr = on ∂inD ∪ ∂outD , then

µD ′[σr, σb ∣σr = τr on F (D ′) ∖ Int(D), σb = τb on F (D ′) ∖ F (D)]
D
= µD ; (2.2)
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(ii) if τr = on ∂inD , τr = on ∂outD and s ∶= τb(u) for some u ∈ ∂outD , then

µD ′[σr, σb ∣σr = τr on F (D ′) ∖ Int(D), σb = τb on F (D ′) ∖ F (D)] (2.3)
D
= µD (⋅ ∣σb(v) = s for some v ∈ ∂inD),

where symbol D
= means that the two measures are equal when σr and σb are restricted to D .

Proof All measures under consideration are uniform over sets of coherent pairs (σr, σb)
that agree with the corresponding boundary conditions. Thus, it is enough to show that
the two sets corresponding to the two sides of (2.2), and of (2.3), respectively, are equal.
(i) Consider a pair of coherent configurations σr ∈ { , }F (D) and σb ∈ { , }F (D) con-

tributing to the RHS of (2.2); let us show that they also contribute to the LHS. By
definition, σr ≡ on ∂inD , which is to say that σr = τr on ∂inD . It remains to check
that, if σr and σb are completed by τr and τb, respectively, on F (D ′) ∖F (D), they
are coherent on D ′. For edges of E(D) and E(D ′) ∖ (E(D) ∪ ∂ED), the coherence
condition follow from the coherence of σr with σb and that of τr with τb, respec-
tively. For edges of ∂ED the statement holds because both faces adjacent to each
such edge are in σr.

The reverse direction is straighforward since each pair of configurations σr ∈ { , }F (D)

and σb ∈ { , }F (D) contributing to the LHS of (2.2) is coherent and satisfies σr ≡
on ∂inD .

(ii) The values of τr imply that τb is constant on ∂inD ∪∂outD . Similarly, the definition
of µ requires that σb be constant on ∂inD in the RHS of (2.3). The values of τb
and σb on ∂inD are the same because of the condition τb(u) = σb(v) = s for some u ∈
∂inD and v ∈ ∂outD . Thus, the pairs (τr, τb) and (σr, σb) agree on ∂inD and as a
consequence these boundary values impose the same distribution on the LHS and
the RHS of (2.3).

◻

Summing equalities of Theorem 2.3 over all possibilities for σb, we get the following
corollary for the red-spin marginals of the measures.

Corollary 2.4 (Spatial Markov property for ν). Let D ,D ′ be two domains such that ∂ED ⊂

E(D ′). Let τr ∈ { , }F (D
′). Then the following statements hold:

(i) if τr ≡ on ∂inD ∪ ∂outD , then

νD ′(σr ∣σr = τr on F (D ′) ∖ Int(D))
D
= νD (σr);

(ii) if τr ≡ on ∂inD and τr ≡ on ∂outD , then

νD ′(σr ∣σr = τr on F (D ′) ∖ Int(D))
D
= νD (σr),

where by symbol D
= we mean that the two measures are equal when σr is restricted to D .
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Remark 2.5. It is tempting to think that the above Spatial Markov property holds for any
boundary conditions on ∂inD ∪ ∂outD . This is not the case. One significant example is
that of the boundary conditions consisting of four arc of alternating spins , , , .
Indeed, these boundary conditions are coherent with non-intersecting loop configurations1
(ωr, ωb) where ωb contains

• paths between the arcs ,

• paths between the arcs or

• none of the above.
The three cases above are mutually exclusive. Depending on the red configuration out-
side D one or both of the first two cases may be excluded.

2.3 FKG inequality

In this section we show that the red-spin marginals ν of the measures µ satisfiy the FKG
inequality. This property is crucial to all our proofs. Similar properties were found in [13]
for the single-spin representation of the loop O(n) for a certain range of parameters and
in [22] for a spin representation of height functions on Z2 arising from the six-vertex
model.

Fix some domain D . We start by introducing a partial order on { , }F (D). Given
two elements σ, τ ∈ { , }F (D) we say that σ ≤ τ if σ(u) ≤ τ(u) for every u ∈ F (D),
where by convention ≤ . An event A ⊂ { , }F (D) is called increasing if for any σ ∈ A
and τ ∈ { , }F (D) such that σ ≤ τ , we have τ ∈ A.

A probability measure P on { , }F (D) is said to satisfy the FKG inequality (or called
positively associated) if for any two increasing events A,B ⊂ { , }F (D), we have

P(A ∩B) ≥ P(A) ⋅ P(B). (2.4)

Recall that the marginal of µD on the red spin configurations is denoted by νD .

Theorem 2.6. The measure νD satisfies the FKG inequality (2.4).

Before proving the FKG inequality, let us compute νD . For a spin configuration σ
on D , let θ(σ) ∈ {0,1}E(D

∗) be the set of all edges e = uv ∈ E(D∗) such that σ(u) ≠ σ(v).
If σ is associated to a loop configuration ω, then e∗ ∈ θ(σ) if and only if e is present
in ω. For readers familiar with the notion of duality in percolation (where the dual
configuration is written ω∗), we mention that θ(σ) = (ω∗)c. See Figure 3 for an example.
Denote by k(θ(σ)) the number of connected components of θ(σ); note that isolated
vertices of D∗ (that is faces of D) are also counted as connected components.

Proposition 2.7. (i) The law of σr under µD is given by

νD(σr) =
1

ZD
2k(θ(σr)), (2.5)

where ZD is a normalising constant.

(ii) The law of σb on D under the conditional measure µD(. ∣σr) is obtained by colouring
independently and uniformly the clusters of θ(σr) in either or .

1Here, due to the atypical boundary conditions, the configurations ωr and ωb are allowed to induce
odd degrees for vertices on the boundary of D . Then they are formed of disjoint loops and paths with
endpoints on the boundary of D .
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Figure 3: Left: A red-spin configuration on a domain D and the associated loops. The
pink faces correspond to red spin 9+, while the gray ones to red spin 9−. The graph θ(σr)
is drawn in black. Right: A blue-spin configuration coherent with the red one.

Proof Let σr ∈ { , }F (D) and consider any σb ∈ { , }F (D) that is coherent with σr.
For any two faces u, v ∈ F (D) corresponding to vertices in V (D∗) that are connected
by an edge in θ(σr), we have σb(u) = σb(v). Thus, σb has a constant value on each
connected component of θ(σr). Moreover, there is no restriction on values of σb on
different connected components of θ(σr). Thus, there are exactly 2k(θ(σr)) blue spin
configurations coherent with σr, and (i) follows readily. In addition, when conditioned
on σr, the measure on these blue spin configurations is uniform, thus asserting (ii). ◻

Remark 2.8. A straightforward adaptation of the proof above shows that, for A ⊂ F (D),
the law of σr under µD(. ∣σb ≡ on A ) is given by 1

Z 2kA (θ(σr)), where kA (θ(σr)) is
the number of connected components of θ(σr) when all components intersecting A are
counted as a single one. When A is connected, kA (θ(σr)) may be viewed as the number
of connected components of the configuration obtained by adding to θ(σr) all edges between
pairs of adjacent faces of A .

As a consequence

νD (σr) =
1

ZD

2k(θ(σr))1{σr≡ on ∂inD} and νD (σr) =
1

ZD

2k∂D(θ(σr))1{σr≡ on ∂inD},

where k∂D(θ(σr)) is the number of connected components of θ(σr), where all components
intersecting ∂inD are counted as a single one.

We are in a position to prove Theorem 2.6.

Proof of Theorem 2.6 By [25, Thm. 4.11], it is enough to show the FKG lattice
condition, which states that, for any two spin configurations σ and σ̃,

νD(σ ∨ σ̃)νD(σ ∧ σ̃) ≥ νD(σ)νD(σ̃), (2.6)

where σ ∨ σ̃, σ ∧ σ̃ ∈ { , }T are defined by σ ∨ σ̃(u) = max(σ(u), σ̃(u)) and σ ∧ σ̃(u) =
min(σ(u), σ̃(u)) for every u ∈ T. Moreover, by [24, Thm. (2.22)], it is enough to show (2.6)
for any two configurations which differ for exactly two faces. That is, that for any σ ∈

{ , }F (D) and u, v ∈ F (D) two distinct faces,

νD(σ ) ⋅ νD(σ ) ≥ νD(σ ) ⋅ νD(σ ), (2.7)
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where σab is the configuration coinciding with σ except (possibly) at u and v, and such
that σab(u) = a and σab(v) = b. By Proposition 2.7, the ratio of the LHS and RHS of (2.7)
is written

νD(σ )νD(σ )

νD(σ )νD(σ )
= 2k(θ(σ ))+k(θ(σ ))−k(θ(σ ))−k(θ(σ )). (2.8)

Our goal is thus to show that

k(θ(σ )) + k(θ(σ )) − k(θ(σ )) − k(θ(σ )) ≥ 0. (2.9)

First we will treat the simple case where σ is such that u /←→ v in σ and u /←→ v in σ .
Then u and v are not adjacent and there exist two paths or circuits, one of the other
of , that separate u from v in D . Hence, there exists a path or loop γ in ω(σ) that
separates u from v and does not contain any edges of the faces u or v. For any choice
of a, b ∈ { , }, edges in T that cross γ belong to θ(σab), thus forming a path or a circuit
of edges in θ(σab) that separates u from v. The effect on k(θ(σ)) of switching the spin
at v from to is then independent of the value of the spin at u:

k(θ(σ )) − k(θ(σ )) = k(θ(σ )) − k(θ(σ )).

As a consequence, the LHS of (2.9) is zero.
We move on to the case where u and v are connected by a path of or by a path

of . Before diving into the core of the proof, we need to eliminate a degenerate case:
when u and v are neighbouring faces and no face of D is adjacent to both u and v.
Then D may be split into two domains Du and Dv containing all faces connected to u
in D ∖ {v} and those connected to v in D ∖ {u}, respectively. It is then immediate to
see that the number of connected components of θ(σ ) intersecting Du is the same as
that for θ(σ ). The same statement applies to θ(σ ) and θ(σ ). A similar statement
may be formulated for Dv, by pairing θ(σ ) with θ(σ ) and θ(σ ) with θ(σ ). Finally,
in θ(σ ) and θ(σ ), faces u and v are in the same connected component, while in θ(σ )

and θ(σ ) they are in different components. Thus, we find

k(θ(σ )) + k(θ(σ )) − k(θ(σ )) − k(θ(σ )) = 2 ≥ 0.

Henceforth we may assume that, if u and v are neighbours, then there exists at least
one face of D adjacent to both u and v. Moreover, we will suppose that u and v are
connected by a path of in σ or by a path of in σ . By symmetry, we may limit
our study to the case where u is connected to v in σ by a -path; when u and v are
neighbours, we may choose the path to contains at least one vertex other than u and v.

Denote by P the -cluster of u (and implicitly of v as well) in σ ; denote by M the
union of all -clusters in σ that are adjacent to u or v. Both P and M are fixed sets
of faces of D . Then all the connected components of θ(σ ), θ(σ ), θ(σ ), and θ(σ )

that do not intersect P ∪M are the same in these four configurations, and thus cancel
out in (2.9). It remains to study the contribution of connected components of θ(.) that
do intersect P ∪M .

For a spanning subgraph Θ of D∗, define kP (Θ) to be the number of connected
components of Θ that intersect P , and kM(Θ) as number of connected components that
intersect M and do not intersect P . Clearly, kP (Θ) + kM(Θ) is equal to the number of
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connected components in Θ that intersect P ∪M . Thus, is suffices to prove the following
two inequalities:

kP (θ(σ )) + kP (θ(σ )) − kP (θ(σ )) − kP (θ(σ )) ≥ 0, (2.10)
kM(θ(σ )) + kM(θ(σ )) − kM(θ(σ )) − kM(θ(σ )) ≥ 0. (2.11)

We start by proving the easier inequality (2.11). Four types of components contribute
to kM(θ(σ )): those who contain faces adjacent to both u and v, those who contain
faces adjacent to u but not v, those who contain faces adjacent to v but not u, and those
containing no faces adjacent to u or v. Write K{u,v}, K{u}, K{v} and K∅ for the number
of components in each category above. By the definition of kM and the fact that u, v ∈ P ,
any connected component contributing to kM(θ(σ )) is such that all its faces that are
adjacent to u or v have spin in σ . When turning the spin of u from to , all
components of the type K{u,v}, K{u} become connected to u, and thus cease to contribute
to kM . The same holds for v, and we find:

kM(θ(σ )) =K{v} +K∅, kM(θ(σ )) =K{u} +K∅, and kM(θ(σ )) =K∅.

Using that kM(θ(σ )) =K{u,v}+K{u}+K{v}+K∅, we find that the LHS of (2.11) is equal
to K{u,v}, hence is non-negative.

Let us now prove (2.10). Denote by Eu,Ev ⊂ E(D∗) the sets of all edges linking u
(resp. v) to adjacent vertices in V (D∗). The next claim constitutes the core of the proof
and, as we will see below, implies readily (2.10).

Claim 2.9. The following equalities hold:

kP (θ(σ )) = kP (θ(σ ) ∪Eu), (2.12)
kP (θ(σ )) = kP (θ(σ ) ∪Ev), (2.13)
kP (θ(σ )) = kP (θ(σ ) ∪Eu ∪Ev). (2.14)

Proof We start by showing (2.12). Note that

θ(σ ) ⊂ θ(σ ) ∪Eu and [θ(σ ) ∪Eu] ∖ θ(σ ) = {uw ∈ E(D∗) ∶ σ (w) = }.

Thus, it remains to show that for any face w ∼ u,

(σ (w) = and w
θ(σ )
←ÐÐ→ P ) ⇒ w

θ(σ )
←ÐÐ→ u. (2.15)

Figure 4, left diagram, helps illustrate the construction below. Consider a face w

neighbouring u, such that σ (w) = and w
θ(σ )
←ÐÐ→ P . Let γ = (γ0, . . . , γn) be a simple

path of θ(σ ) with γ0 = w, γn ∈ P and such that γ0, . . . , γn−1 ∉ P . By our assump-
tion σ (w) = , we have w ∉ P , so n ≥ 1. Continue γ by a face-path γn, γn+1, . . . , γm
contained in P and with γm = u. (Note that we do not require that the path γn . . . , γm
be contained in θ(σ ).) Then it is necessary that σ (γm−1) = , hence γm−1 ∈ P , which
is to say n <m. Finally set γm+1 = w.

Then γ is a non-trivial simple cycle on T. Since the domain D is simply connected, γ
delimits a simply connected domain which we denote by Dγ. The boundary of P ∖ {u}
intersects γ at two places: the midpoint of the edge γm−1γm and the midpoint of the
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γ0 = w

γn−1

γn

γm = u χ

P

γ0 = w

γn−1γn

γm = u

P

v = γkχ2

χ1

P

γ0 = v
γm = u

P

χ

Figure 4: The constructions used in the proofs of (2.12) (left) and (2.14) (centre and
right). Spins 9+ are pink and 9− are gray; only spins of interest are depicted. The path γ
(black bold) uses faces of alternating spins until it enters P , then it continues on P , whose
faces (except for v in the central and right diagrams) are of spin 9+. The paths χ, χ1 and χ2

(in red) are part of the boundary of P and separate faces of distinct spins. Their dual
edges contain paths linking u to γn, u to v and v to γn, respectively.

edge γn−1γn. Thus the boundary of P ∖ {u} contains a path χ that is contained in Dγ

and that connects these two midpoints of edges.
Finally notice that, for any two adjacent faces a, b with a ∈ P ∖ {u} and b ∉ P ∖ {u},

we have σ (a) = and σ (b) = , hence ab ∈ θ(σ ). Applying this to faces on either
side of χ, we find that all edges of T crossing χ are contained in θ(σ ). In particular,
we deduce that u is connected in θ(σ ) to γn, hence also to w. This completes the proof
of (2.12). The same argument proves (2.13).

We turn to the proof of (2.14). We will prove this in two steps:

kP (θ(σ )) = kP (θ(σ ) ∪Eu) = kP (θ(σ ) ∪Eu ∪Ev) (2.16)

The second equality above is implied by (2.13). Indeed, we have proved that no edge of
{vw ∈ E(D∗) ∶ σ (w) = } may connect two distinct clusters contributing to kP (θ(σ )).
That is also true for clusters contributing to kP (θ(σ )∪Eu), since the latter configuration
dominates the former.

The first equality of (2.16) is similar to (2.12), with the only difference that it applies
to σ rather than σ . This apparent detail complicates the proof slightly as u is not
necessarily connected to all points of P by paths of in σ . The middle and right
diagram of Figure 4 helps illustrate the argument below.

As for (2.12), the proof goes through the equivalent of (2.15). Fix a face w neigh-
bouring u with σ (w) = and which belongs to a connected component of θ(σ ) that
intersects P . Our goal is to prove that w is connected to u in θ(σ )

In a first instance let us suppose that w ≠ v. Then, as in the proof of (2.12), we
may produce a path w = γ0, . . . , γn, . . . , γm = u such that γ0, . . . , γn−1 ∉ P , γn, . . . , γm ∈ P
and γ0, . . . , γn uses only edges of θ(σ ). If such a path may be constructed to not
include v, then we choose γ such, and the same reasoning as in (2.12) (applied with P∖{v}

instead of P ) allows us to conclude that u
θ(σ )
←ÐÐ→ γn

θ(σ )
←ÐÐ→ w.

Suppose now that no path γ with the properties above and which avoids v exists.
Then pick γ to visit v at some index k ≥ n and with k <m− 1 (see Figure 4, center). We
have k ≥ n since v ∈ P ; we may pick k <m− 1 since, even when u and v are adjacent, u is
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connected to v by a non-trivial path of , and we include this path in γ. It is also true
that k > n, since σ (γk−1) = necessarily. Let Dγ be the domain delimited by γ.

Consider the boundary of P ∖{u, v} inside the domain Dγ; it intersects the boundary
of Dγ at four points: the midpoint of the edges γn−1γn, γk−1γk, γkγk+1 and γm−1γm.
Since no path γ avoiding v exists, the boundary of P ∖ {u, v} contains two non-empty
segments χ1 and χ2 which connect γn−1γn to γk−1γk and γkγk+1 to γm−1γm, respectively.
By the choice of χ1 and χ2 as parts of the boundary of P ∖ {u, v}, all edges of T that

intersect χ1 and χ2 are present in θ(σ ). In particular, we find u
θ(σ )
←ÐÐ→ v and v

θ(σ )
←ÐÐ→ w,

which implies that u is connected to w in θ(σ ).
Finally let us study the case when w = v and hence u and v are adjacent (see Figure 4,

right). Then, due to our assumption that u and v are connected by a non-trivial path
of in σ , we may choose a face-path γ = γ0, . . . , γm with m ≥ 2, γ0 = v, γm = u
and σ (γk) = for all 1 ≤ k < m. The cycle γ ∪ {uv} delimits a simply connected
domain Dγ. By considering the interface between P and the cluster of u in σ , we
deduce the existence of an edge-path χ on E(Dγ) with on one side and on the
other, that starts on an edge adjacent to v and ends on one adjacent to u. This implies

that u
θ(σ )
←ÐÐ→ v, and the proof is complete. ◻

Using Claim 2.9, (2.10) becomes

kP (θ(σ )) − kP (θ(σ ) ∪Eu) ≥ kP (θ(σ ) ∪Ev) − kP (θ(σ ) ∪Eu ∪Ev). (2.17)

The LHS above is the number of distinct connected components in θ(σ ) that contain at
least one endpoint of an edge of Eu minus one. The RHS is the same number for θ(σ )∪Ev
instead of θ(σ ). Clearly, the former is greater or equal than the latter, and the proof
of (2.10) is finished. ◻

Below we formulate several corollaries about the FKG inequality under various bound-
ary conditions that we are going to use in the proofs.

Corollary 2.10. The FKG inequality (2.4) holds also in the following cases:
(i) for the red-spin marginal of µD , when the red spins are conditioned to take given

values on a set of faces of D and the blue spins are conditioned to be on a
connected set of faces of D . More precisely, for σr chosen according to µD(.∣σr =
σ0 on A and σb ≡ on B), where A is any set of faces of D , σ0 is any red spin
configuration on A , and B is a connected set of faces of D ;

(ii) for the measures νD , νD , νD and νD .

Proof (i) First let us show the FKG inequality when A is empty. As described in
Remark 2.8, conditioning the blue spins to be on B boils down to counting all connected
components of θ(σr) that intersect B as a single one. When B is connected, this may
be achieved by adding to θ(σr) all edges linking pairs of neighbouring vertices in B. The
proofs of (2.12), (2.13) and (2.14) adapt directly to this situation. Indeed, as already
discussed in the proof above, adding edges to θ(σr) only helps in proving (2.12), (2.13)
and (2.14). The rest of the proof of Theorem 2.6 applies directly.

Next assume that A is non-empty and σ0 is given. The FKG lattice condition
for µD(.∣σr = σ0 on A and σb ≡ on B) is a subset of the inequalities that constitute
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the FKG lattice condition for µD(.∣σb ≡ on B). Since the latter were proved to hold,
so do the former.
(ii) Let D ′ be a domain containing F (D)∪∂outD . Then νD ′ satisfies the FKG inequality.
By point (i) and the Spatial Markov property (Corollary 2.4), the FKG inequality also
applies to νD , νD , νD and νD . ◻

Remark 2.11. (i) The FKG inequality does not apply to σr under µD(.∣σb ≡ on B)

when B is not connected. A counter-example is provided by a domain formed of
six faces in a line, with B being formed of the first and last face, u and v being the
second and fifth face, respectively, and σ being the red spin configuration formed of
alternating and spins.

Nor does the FKG inequality apply to the red spin marginal of µD(.∣σb ≡ on B+ and σb ≡
on B−), where B+ and B− are disjoint sets of faces of D .

(ii) The proof of the FKG inequality only uses limited features of the hexagonal lattice.
Indeed, it adapts to any planar trivalent graph whose set of faces forms a simply
connected domain. It is however worth mentioning that the condition of simply
connectedness is essential. Indeed, counter-examples may be given for sets of faces
of H which are not simply connected: the counter-example of point (i) above may
easily be adapted.

(iii) A similar instance of the FKG inequality extends to the loop O(n) model with n ≥ 2
and x ≤ 1/

√
n − 1, when the red spin configuration is obtained by colouring loops in

red with probability 1/n and in blue otherwise, independently. The only difference
in the proof is that the term 2k(θ(σ)) in (2.5) should be replaced by the partition
function of the Ising model on the graph obtained by collapsing each cluster of θ(σr)
into a single vertex. The FKG property of the FK-Ising representation then leads
to the analogue of (2.17). We do not give further details of this generalisation as
it is irrelevant here; the reader is referred to [22], where similar ideas are used to
prove a FKG statement for the spin representation of a six-vertex model.

2.4 Comparison between boundary conditions

Above he have introduced a number of boundary conditions for the positively associated
measure νD . As for the random cluster model or other positively associated models, the
boundary conditions may have an increasing or decreasing effect on the measure.

For two measures ν1, ν2 on { , }F (where F is some non-empty set), say that ν1

stochastically dominates ν2, written ν1 ≥st ν2, if for any increasing eventA ⊂ { , }F , ν1(A) ≥

ν2(A).

Corollary 2.12 (Comparison between boundary conditions).
(i) Let D be a domain and let A ⊂ F (D). Let σ1 ≤ σ2 be two (red) spin configurations

on A . Then νD(. ∣σr = σ1 on A ) ≤st νD(. ∣σr = σ2 on A ).

(ii) For any domain D the following comparison inequalities hold:

νD ≤st νD ≤st νD ≤st νD . (2.18)
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Proof (i) Write A = A=⊔A≠, where A= is the set of faces where σ1 and σ2 agree and A≠

that where they disagree. By the ordering σ1 ≤ σ2, we deduce that σ1 is constantly on A≠

while σ2 is constantly on this set. Due to the positive association of νD(. ∣σr = σ1 on A=)

shown in Corollary 2.10,

νD(. ∣σr = σ1 on A ) = νD(. ∣σr = σ1 on A= and σr ≡ on A≠)

≤st νD(. ∣σr = σ1 on A= and σr ≡ on A≠)

= νD(. ∣σr = σ2 on A ).

(ii) Let us begin with the first and last inequalities of (2.18). Let D ′ be a domain
containing F (D) ∪ ∂outD . By point (i) above,

νD ′[. ∣σr ≡ on ∂inD and σr ≡ on F (D ′) ∖ F (D)]

≤st νD ′[. ∣σr ≡ on ∂inD ∪ (F (D ′) ∖ F (D))].

The Spatial Markov property (Corollary 2.4) translates the above to νD ≤st νD . The first
inequality of (2.18) is proved in the same way.

We move on to the middle inequality of (2.18). Considering (2.3) and the symmetry
of blue spins, this inequality may be written as

µD(⋅ ∣σr = on ∂inD , σb = on ∂inD) ≤st µD(⋅ ∣σr = on ∂inD , σb = on ∂inD),

where the stochastic ordering refers only to the red-spin marginal. Clearly, the set ∂inD
is connected in H∗, thus the inequality follows from Corollary 2.10 (i). ◻

Let D be a domain with vertices a, b, c, d on its boundary ∂ED , arranged in counter-
clockwise order, and such that the edges incident to a, b, c and d all belong to ∂ED or
to E(D). Call (ab) the segment of ∂ED between a and b, when going around D in the
counter-clockwise direction. Define (bc), (cd) and (da) similarly.

Let µa b c d a
D be the uniform measure on pairs of coherent red and blue spin configu-

rations on D with the property that σr is equal to on all faces of ∂inD adjacent to (ab)
or (cd) and on all other faces of ∂inD . The condition above also imposes that the blue
spins of the two faces of ∂inD that are adjacent to a are equal, and the same for the pairs
of faces adjacent to b, c and d. Other than this, there is no restriction for the blue spins
on ∂inD . The marginal on red spins of the above is denoted by νa b c d a

D .
Fix now a larger domain D ′ with D ⊂ D ′ (possibly with ∂ED ∩ ∂ED ′ ≠ ∅). We say

that a configuration τr on D ′ ∖ Int(D) imposes boundary conditions a b c d a on D if
all the faces adjacent to (ab) ∪ (cd) but not to (bc) ∪ (da) have spin in τr and all those
adjacent to (bc) ∪ (da) but not to (ab) ∪ (cd) have spin . The faces of ∂inD ∪ ∂outD
that are adjacent to both (bc) ∪ (da) and (ab) ∪ (cd) may have spins or in τr2 (see
Figure 5).

As already discussed in Remark 2.5, the spatial Markov property does not apply to the
boundary conditions a b c d a. Indeed, the connectivity of the edges of θ(τr) that are
adjacent to a, b, c and d influences the measure in D and is not determined by the spins
on ∂inD ∪∂outD . It may be that certain configuration σb are awarded positive probability
in µa b c d a

D , but null probability in µD ′(. ∣σr = τr on D ′ ∖ Int(D)). However, if we limit
ourselves to the red-spin marginal, the Radon-Nikodim derivative of the second measure
with respect to the first may be shown to be uniformly bounded.

2Due to the choice of a, b, c and d, all such faces are on ∂outD ; their spins have no influence on the
measure induced in D .
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DD′

a
b

cd

Figure 5: Two domains D ⊂ D ′ bounded by the black and grey contours, respectively.
The configuration in D ′ ∖ Int(D) imposes boundary conditions a9+b9−c9+d9−a on D .

Lemma 2.13. (i) Let D be a domain and a, b, c, d be points on ∂ED as above. Let D ′ be
a domain containing D and τr be a red spin configuration on D ′ ∖ Int(D), that imposes
boundary conditions a b c d a on D . Then, for any configuration ςr ∈ { , }F (D),

1
23 ν

a b c d a
D (ςr) ≤ νD ′[σr = ςr on D ∣σr = τr on F (D ′) ∖ Int(D)] ≤ 23 νa b c d a

D (ςr).

(ii) Moreover, if a, b, c, d ∈ ∂ED ∩ ∂ED ′ and the arcs (bc) and (da) of ∂ED and ∂ED ′

coincide, then

νa b c d a
D ≥st ν

a b c d a
D ′ ,

by which we mean that the former stochastically dominates the restriction to D of the
latter.
(iii) Finally, if a′, b′, c′, d′ ∈ ∂ED are another set of four points with the same properties
as a, b, c, d and such that (bc) ⊂ (b′c′) and (da) ⊂ (d′a′), then

νa b c d a
D ≥st ν

a′ b′ c′ d′ a′
D .

Proof (i) Both measures in the statement are supported on configuration ςr ∈ { , }F (D)

that agree with τr on ∂inD . By Proposition 2.7, for any such configuration ςr,

νa b c d a
D (ςr) =

1

Za b c d a
D

2k(θ(ςr)) and (2.19)

νD ′[σr = ςr on D ∣σr = τr on F (D ′) ∖ Int(D)] =
1

Z̃
2kD(θ(ςr∪τr)), (2.20)

where Za b c d a
D , Z̃ are normalising constants and kD(θ(ςr∪τr)) is the number of connected

components of θ(ςr ∪ τr) that intersect D . Indeed, the number of connected components
that do not intersect D does not depend on ςr, hence cancel out.

Observe that θ(ςr ∪ τr) contains more connections than θ(ςr), hence fewer connected
components. However, in θ(ςr), there are at most four distinct connected components
that may be connected in θ(ςr ∪ τr). Thus,

k(θ(ςr)) − 3 ≤ kD(θ(ςr ∪ τr)) ≤ k(θ(ςr)).

By summing the above over all configuration σr in the support of νa b c d a
D , we find 1

8Z
a b c d a
D ≤

Z̃ ≤ Za b c d a
D . Inserting the last two inequalities in (2.19) provides the desired bound.
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(ii) We have
νa b c d a

D = νa b c d a
D ′ (. ∣σr ≡ on D ′ ∖ Int(D)).

The FKG inequality implies the desired stochastic domination.

(iii) Let A+ be the faces of ∂inD that are adjacent to (a′b′) or (c′d′) and A− be the faces
of ∂inD that are adjacent to (bc) or (da). Set A≠ = ∂inD ∖ (A+ ∪A−). Then

νa b c d a
D = νD(. ∣σr ≡ on A+ ∪A≠ and σr ≡ on A−) and

νa
′ b′ c′ d′ a′

D = νD(. ∣σr ≡ on A+ and σr ≡ on A− ∪A≠).

Corollary 2.12 (i) implies that the first measure dominates the second. ◻

3 Infinite-volume measure: existence and uniqueness
In this section we construct an infinite-volume Gibbs measure for the loop O(2) model.
As for the Ising, Potts or FK models, the infinite-volume limit will be created as a limit
of finite-volume measures. The existence of the limit rests on the monotonicity of the
measures νD in their boundary conditions.

Theorem 3.1 (Existence of limiting measure). For any increasing sequence of domains
(Dn)n≥0 with ⋃n≥0 Dn = H, the sequence of measures µDn

converges to a measure µH
on { , }F (H). Moreover, the µH is invariant under translations and rotations by mul-
tiples of π/3, ergodic with respect to translations, and has positively associated blue- and
red-spin marginals.

The same argument may be used to construct measures µH , µH and µH as limits
of finite-volume measures with the proper boundary conditions. Below we prove that
these measures are all equal to a single measure µH. We also show that the measures µD

converge to µH as D increases to H.
For the double-spin representation, the theorem below may be understood as a par-

tial uniqueness theorem; see Remark 3.3 for more on why it is not a complete uniqueness
theorem. For Lipschitz functions, the theorem below amounts to non-quantitative delo-
calisation: it proves that the value at 0 is not tight as the domain increases to H, but
does not offer the speed at which its variance increases.

For n ≥ 1, let Circ (n) be the event that there exists a simple closed path of edges
of H surrounding Λn with the property that the red spin of all faces adjacent to any of
its edges is . The events Circ (n), Circ (n) and Circ (n) are defined similarly.

Theorem 3.2 (Uniqueness of infinite-volume measure / Delocalisation). For any n ≥ 1,

µH (Circ (n)) = µH (Circ (n)) = µH (Circ (n)) = µH (Circ (n)) = 1. (3.1)

In particular µH = µH = µH = µH , and we will simply write µH.
Also, for any sequence of finite domains Dn that increases to H, the measures µDn

, µDn
, µDn

and µDn
all converge to µH.

Remark 3.3. The theorem above states that any finite-volume measure with any red
boundary condition converges to µH. However, we do not claim this for mixed red and
blue boundary conditions.
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It may be tempting to believe that, for any assignment of red and blue spins ξrn, ξbn
on ∂inDn, the measure µDn conditioned to have spins ξrn and ξbn on ∂inDn also converge
to µH. Unfortunately this is not the case: counter examples may be created where the
boundary conditions ξrn, ξbn force one single configuration inside the domain.

The rest of the section is dedicated to the proofs of the two theorems above. The
RSW theorem developed in Section 3.2 will be of great use also in Section 4.

3.1 Infinite-volume measure for red marginal

We will work here only with the red-spin marginals ν of the measures µ.

Theorem 3.4 (Limiting measure for red spins). For any increasing sequence of domains
(Dn)n≥0 with ⋃n≥0 Dn = H, the sequence of measures νDn

converges to a measure νH
on { , }F (H). Moreover νH is translation-invariant, ergodic with respect to translations
and positively associated.

Proof Let D and D̃ be two finite domains, with D ⊂ D̃ . Due to the FKG inequality
(Theorem 2.6) and to the Spatial Markov property (Theorem 2.3) for the boundary
conditions ,

νD ≥st νD ′ ,

where the above only refers to the restrictions of the measures to D . Thus, the sequence
of measures (νDn

)n≥0 is decreasing, hence converges to a measure on { , }F (H), which
we denote by νH .

Since the limit exists for any sequence of domains, it necessarily is the same for
any sequence of domains (Dn)n≥0. In particular, the same limit is obtained for any
sequence (Λn+z)n≥1 with z ∈ V (H), which implies that νH is invariant under translations.

That νH is positively associated for increasing events depending only on the state of
finitely many faces follows by passing to the limit. The property extends to arbitrary
increasing events by the monotone class theorem (see [24, Prop. 4.10]).

In order to prove that νH is ergodic, we will show that it has the following mixing
property. The measure νH is said to be mixing if, for any events A,B, if τx(B) denotes
the translation of B by some x ∈ V (H),

lim
∣x∣→∞

νH (A ∩ τx(B)) = νH (A)νH (B). (3.2)

The above implies that νH is ergodic with respect to translations, as explained in [24,
Cor. 4.23]. By the monotone class theorem, it suffices to prove (3.2) for events A and B
that are increasing and only depend on finitely many faces. We do this below.

Let A,B be increasing events depending only on the states of faces in some finite
domain of H. Fix ε > 0. Then there exists N ≥ 1 such that νH (A) ≥ νΛN

(A) − ε
and νH (B) ≥ νΛN

(B)−ε. Then, for any x ∈ V (H) with ∣x∣ > 2N+2, by positive association
of νH and (2.2),

νH (A ∩ τx(B)) ≤ νH [A ∩ τx(B) ∣σr ≡ outside Int(ΛN) ∪ τx(Int(ΛN))]

= νΛN
(A)νΛN

(B)

≤ νH (A)νH (B) + 2ε.
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Conversely, positive association implies that

νH (A ∩ τx(B)) ≥ νH (A)νH (B).

These two inequalities and the fact that ε > 0 is arbitrary imply (3.2), and hence the
ergodicity of νH . ◻

3.2 Crossing estimates for double-plus percolation (weak ver-
sion)

We will work in the rest of the paper with two percolation models derived from spin
configurations. Let us describe them for a red spin configuration σr on H; the definitions
adapt readily to blue spins, to − instead of +, and to domains of H.

The first corresponds to connections via face-paths of spins . This percolation, along
with its paths, clusters etc. will be referred to as simple- ; connections between two sets
of faces A and B are denoted by A←→ B. This notion was implicitly used in the proof of
Theorem 2.6.

The second is termed double- percolation. The double-plus configuration dp(σr) ∈
{0,1}E(H) associated to σr is formed of the edges of H whose two adjacent faces have
spins . We regard dp(σr) as a bond percolation on H and use the ensuing notion of
connectivity. In particular, for sets A and B of vertices, we write A ←→ B for the event
that there exists an edge-path in dp(σr) with one endpoint in A and the other in B.
More generally, we call a double- path, or a double-path of spin , a path of edges
in dp(σr). All notions related to this percolation (clusters, crossings, circuits etc.) will
be referred to as double- . Thus, the event Circ (n) of Theorem 3.2 may be described
as the existence of a double- circuit surrounding Λn. The appeal of this second, more
restrictive percolation model is that double- circuits isolate the inside from the outside
in the sense of the Spatial Markov property (2.2).

Since σr is positively correlated under µD , so is dp(σr). Indeed any event A which
is increasing for dp(σr) is also increasing for σr. A double-minus configuration dm(σr) ∈
{0,1}E(H) is defined in a similar way and is also positively correlated under µD . We want
to stress however that the union dp(σr) ∪dm(σr) is not necessarily positively correlated.

Write Parm,n for the set of faces of H with centres at k + `eiπ/3 with 0 ≤ k ≤ m
and 0 ≤ ` ≤ n (see Figure 6). They form a domain approximately shaped as a parallelo-
gram. Its boundary ∂EParm,n may be partitioned into four sides called Bottom(m,n),
Right(m,n), Top(m,n) and Left(m,n), defined as their name indicates. To be pre-
cise, Right(m,n) and Left(m,n) start and end with vertical edges. Below we will also use
the notation Bottom(m,n), Right(m,n), Top(m,n) and Left(m,n) to refer to the faces
of ∂inParm,n ∪ ∂outParm,n that are adjacent to these sections of ∂EParm,n. Faces in the
corners of Parm,n belong to two such sets.

Write C h(m,n) (and C v(m,n)) for the event that there exits a face-path in Parm,n
formed only of faces with spin , with the first face adjacent to the left side of Parm,n
and the last face adjacent to the right side (and top and bottom sides, respectively). Call
such face-paths horizontal (respectively, vertical) simple- crossings of Parm,n.

Write C h (m,n) (and C v (m,n)) for the event that there exits a path of edges of dp(σr)
contained in Parm,n with one endpoint on the left side of Parm,n and the other on the
right side (and top and bottom sides, respectively); for technical reasons, we ask that
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the endpoints of the paths not be corners of Parm,n. We call such paths horizontal (and
vertical, respectively) double- crossings of Parm,n.

The Russo-Seymour-Welsh (or RSW for short) theory first appeared in the simultane-
ous works of Russo and Seymour and Welsh for Bernoulli percolation [36, 38]. Its ultimate
conclusion is that rectangles are crossed with probability bounded by constants that only
depend on the rectangles’ aspect-ratios, not their sizes. Such crossing probability bounds
were obtained for Bernoulli percolation using two separate arguments:

• a self-duality argument proves that the probability of crossing a square of any size
is 1/2 (or more generally bounded uniformly away from 0);

• the so-called RSW lemma proves that crossing a rectangle of aspect ratio 2 in the
long direction is bounded by a function of the probability of crossing a square of
(roughly) the same size.

The same two step procedure will be used below for the double- percolation. While for
bond percolation on Z2 with parameter 1/2 the first point is immediate due to self-duality,
in our context a more complex argument is needed. The second point also requires special
attention, due to the lack of independence and even of a general Spatial Markov property.
A weak version of the RSW lemma is obtained easily using a general argument due to
Tassion [42] (see Proposition 3.10 below). A more elaborate statement is proved later on
(see Proposition 4.7); it requires considerable work.

3.2.1 Crossings of symmetric domains

This part contains results on crossing of symmetric domains; they are akin to the conse-
quences of self-duality for site percolation on the triangular lattice or bond percolation
on Z2. Two type of crossings will be treated: simple- crossings and double- crossings.
We start with the former, where self-duality applies as for percolation.

Lemma 3.5. Let D be a domain containing Parn,n ∪ ∂outParn,n for some n. Let ζ ∈

{ , }F (D) be such that ζ ≡ on Bottom(n,n) ∪Top(n,n). Then

µD[C v(n,n) ∣σr = ζ outside Int(Parn,n)] ≥
1
3 . (3.3)

Proof Fix D , ζ and n. Drop n from the notation Par, Bottom and Top. First observe
that by the monotonicity in boundary conditions (Corollary 2.12 (i)), the LHS of (3.3)
is minimal when ζ ≡ on D ∖ (Bottom(n,n) ∪Top(n,n)). We will assume this to be the
case. All faces of Bottom(n,n)∪Top(n,n) have spin in ζ as required by the proposition;
we will switch the sign of the two left-most faces of Top(n,n) to – this only decreases
further the LHS of (3.3).

For σr a red spin configuration on Int(Par), write σr ∪ ζ for the configuration on D
obtained by completing σr with ζ on D ∖ Int(Par). Write τ(σr) for the configuration
obtained by applying the symmetry with respect to the line eiπ/6R to −σr. It is a known
fact (see duality of site-percolation on T [28, Sec. 1.2]) that either σr ∈ C v(n,n) or τ(σr) ∈
C v(n,n).

Recall from Proposition 2.7 that µD (σr ∪ ζ) is proportional to 2k(θ(σr∪ζ)). Also notice
that θ(τ(σr)∪ζ) is easily determined in function of θ(σr ∪ζ). Indeed, the configuration ζ
restricted to ∂inPar ∪ ∂outPar is (almost) invariant under τ . Thus, θ(τ(σr) ∪ ζ) restricted
to Par ∪ ∂outPar is the reflection with respect to the line eiπ/6R of θ(σr ∪ ζ). See Figure 6.
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Figure 6: A configuration σr of red spins (9+ is depicted in red, 9− in gray) on Int(Parn,n)
with the configuration ζ on ∂inPar∪∂outPar. In the left image no simple-9+ crossing exists
between the red arcs Top and Bottom. The right image is τ(σr)∪ζ; it contains a simple-9+
crossing between these arcs. Observe that θ(τ(σr) ∪ ζ) is the reflection of θ(σr ∪ ζ) with
respect to the diagonal of the rhombus. In this concrete example k[θ(σr∪ζ)]−k[θ(τ(σr)∪
ζ)] = 1 because the clusters of Top and Bottom are linked together after the reflection
but not before.

All other edges have same state in θ(τ(σr) ∪ ζ) and θ(σr ∪ ζ): they are determined
by ζ and are quite simple. Indeed, in θ(ζ), all faces except those in the corners of ∂outPar
are isolated points. Moreover, the top corners of ∂outPar are connected, as are the bottom
ones.

It follows that, for any σr, ∣k[θ(σr ∪ ζ)] − k[θ(τ(σr) ∪ ζ)]∣ ≤ 1. Thus

µD(σr ∪ ζ) ≥
1
2 µD(τ(σr) ∪ ζ). (3.4)

By summing the above over σr ∈ C v(n,n) we find

µD[C v(n,n) ∣σr = ζ outside Int(Par)] ≥ 1
2µD[C v(n,n)c ∣σr = ζ outside Int(Par)].

This proves the desired bound. ◻

Next we turn to double- crossings. The absence of such a crossing does not induce
the existence of a double- crossing, and we may not apply the same argument as above.
We do however have a similar statement.

Lemma 3.6. For anym,n ≥ 1, and any pair of coherent configurations σr ∈ { , }F (Parm,n)

and σb ∈ { , }F (Parm,n), either Parm,n is crossed horizontally by a double path of constant
red spin, or it is crossed vertically be a double path of constant blue spin. That is

[C v (m,n) ∪C v (m,n)] ⊂ [C h (m,n) ∪C h (m,n)]
c
. (3.5)

Proof Recall that dp(σr),dm(σr),dp(σb),dm(σb) ⊂ E(Parm,n) denote the sets of double
plus and double minus edges in σr and σb, respectively. Also, recall that to each edge e ∈
E(H) we associate its dual e∗ ∈ E(T) that is defined as the unique edge on T that
intersects e. For a set S ⊂ E(H) we denote by S∗ ⊂ T the set of edges dual to the edges
in S.

By duality between H and T, either dp(σr) ∪ dm(σr) contains a left-right crossing
of Parm,n, or [E(Parm,n) ∖ (dp(σr) ∪ dm(σr))]

∗ contains a top-bottom crossing of Parm,n.

28



First consider the case when dp(σr) ∪ dm(σr) contains a left-right crossing of Parm,n.
Any such crossing consists either entirely of edges of dp(σr) or entirely of edges of dm(σr).
Indeed, edges of dp(σr) and dm(σr) can never share a vertex. In conclusion, in this case
at least one of C h (m,n) and C h (m,n) occurs.

It remains to consider the case when [E(Parm,n) ∖ (dp(σr) ∪ dm(σr))]
∗ contains a

top-bottom crossing of Parm,n. Let γ∗ be such a crossing.
For each edge e ∈ E(D), let N(e) ⊂ E(Parm,n) denote the set of edges consisting

of e and all edges in E(Parm,n) that share a vertex with e. Then, if e∗ ∈ γ∗, we claim
thatN(e) ⊂ dp(σb)∪dm(σb). Indeed, the two faces of Parm,n separated by e have opposite
red spin, hence same blue spin. Moreover, the blue spins of the two faces adjacent the
endpoints of e but not containing e in their boundary must also coincide with the spins
on either side of e.

It remains to observe that the union of N(e) taken over all e such that e∗ ∈ γ∗ contains
a top-bottom crossing of Parm,n. Thus dp(σb) ∪ dm(σb) contains a top-bottom crossing
of Parm,n, and thus either C v (m,n) or C v (m,n) occurs. ◻

Remark 3.7. It is obvious from the proof that Lemma 3.6 may be generalised to other
domains with four arcs marked on the boundary.

Later we will also use the fact that, if an annulus ΛN ∖Λn does not contain a circuit
around Λn of either double- or double- , then Λn is connected to Λc

N by a double-path
of constant blue spin.

Lemma 3.8. For any n ≥ 1 and any domain D containing Parn,n and symmetric with
respect to one of the diagonals of Parn,n,

µD [C h (n,n)] ≥ 1
4 .

Proof By Lemma 3.6 we have

1 ≤ µD [C h (n,n)] + µD [C h (n,n)] + µD [C h (n,n)] + µD [C h (n,n)]

= 2µD [C h (n,n)] + 2µD [C h (n,n)]

≤ 4µD [C h (n,n)].

In the equality we used the fact that the blue spin marginal of µD is 1
2(νD + νD ) and

that µD [C h (n,n)] = µD [C h (n,n)] ; in the last line we used that νD ≥st νD . This
provides the desired result. ◻

Corollary 3.9. For any n ≥ 1

νH [C h (n,n)] ≥ 1
4 .

Proof For any domain D as in Lemma 3.8, by the monotonicity of boundary conditions,

νD [C h (n,n)] ≥ 1
4 .

By taking the limit of the above as D grows to H, we obtain the desired bound. ◻
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3.2.2 Sub-sequential RSW

Proposition 3.10 (RSW). We have

lim sup
n→∞

νH [C h (2n,n)] > 0. (3.6)

As a consequence lim supn→∞ νH [Circ (n,2n)] > 0.

The proof of Proposition 3.10 uses a technique introduced by Tassion in [42]. Indeed,
the main argument of [42, Thm. 1] shows that lim infn→∞ νH (C h(n,n)) > 0 (which is
the result of Corollary 3.9) implies (3.6). This technique applies to general percolation
measures with the FKG property and sufficient symmetry. Our model fits in this frame-
work and the relevant part of the proof of [42, Thm. 1] applies readily. We simply point
out that, in order to harness the symmetries of the hexagonal lattice, one should apply
the argument using crossings of hexagonal domains between opposite sides, rather than
crossings of squares or lozenges.

Note that [42, Thm. 1] actually claims a stronger result than (3.6), where lim sup is
replaced by lim inf. This improvement requires an additional ingredient which is lacking
here. For now we are content with the above sub-sequential form of RSW.

A stronger statement (with the lower bound valid for all n) will be proved in Section 4
– see Proposition 4.7. All the ingredients for it are already available, however the proof
is tedious and is not necessary at this point. The argument of [42] is elegant, short and
quite robust, and suffices to prove Theorem 3.2; we prefer it for now.

Proof The argument of [42, Thm. 1] requires minor modifications because the hexagonal
lattice in invariant under rotations of π/3, unlike the square one, which is invariant under
rotations of π/2. We briefly sketch the adapted argument below.

Write T and B for the top and bottom horizontal sections of ∂Λn, and let C v (Λn)

be the event that T and B are connected to each other by a double- path contained
in Λn. From Corollary 3.9, using standard applications of the FKG inequality and the
invariance of Λn under rotations by multiples of π/3, we deduce that νH [C h (2n,n)] is
bounded away from 0 uniformly in n.

Following [42], define 2αn as the maximal width of a centred interval I on B such that

νH [I
in Λn

←ÐÐÐ→ T] ≤ νH [B ∖ I
in Λn

←ÐÐÐ→ T].

Call Λ̃n the vertical translate of Λn by n/2 and T̃ the corresponding translate of T.
Then, using the same argument as in [42, Lemma 2.2] (see also Figure 7), αn ≤ 2α3n/4 ≤ n/4
implies that

νH [B
in Λn∪Λ̃n

←ÐÐÐÐÐ→ T] > c,

for some constant c > 0 independent of n. Through additional standard applications of the
FKG inequality, the above implies in turn that νH [C h (4n,2n)] and νH [Circ (2n,4n)]
are bounded below by strictly positive quantities depending only on c. Moreover, if αn >
n/4, then lower bounds on νH [C h (4n,2n)] and νH [Circ (2n,4n)] follow by simple con-
siderations, similar to those of the start of the proof of [42, Lemma 2.2].

Finally, since 0 ≤ αn ≤ n for all n, there exist infinitely many values of n such that αn ≤
2α3n/4, and the proof is complete. ◻

Corollary 3.11. Under νH , 0 is surrounded a.s. by an infinite number of disjoint circuits
of double- .

30



Λn

Λ̃n

2α 3
4n

Figure 7: The construction that proves that if αn ≤ 1
2α3n/4, then Λn ∪ Λ̃n is crossed

vertically with uniformly positive probability.

Proof Suppose the opposite, that is that with positive νH -probability, 0 is surrounded
by a finite number of disjoint double- circuits. Since νH is ergodic and the above event
is translation invariant, it occurs with probability 1.

Set N = min{n ≥ 1 ∶ Circ (n) does not occur}; observe that N is a random variable
that is, by our assumption, νH -a.s. finite. Then there exists n0 such that

νH (N ≥ n0) < lim sup
n→∞

νH [Circ (n)],

since the right-hand side is strictly positive by Proposition 3.10. Using that, for all n > n0,

νH (N ≥ n0) ≥ νH [Circ (n)],

we obtain a contradiction. ◻

Corollary 3.12. The graph θ(σr) contains νH -a.s. no infinite cluster.

Proof Observe that a double- -circuit in σr blocks connections in θ(σr). More precisely,
if σr ∈ Circ (n), then all clusters of θ(σr) that intersect Λn are finite. Now Corollary 3.11
states that νH (Circ (n)) = 1 for all n, which implies by the observation above that θ(σr)
contains no infinite cluster a.s. ◻

3.3 Joint infinite-volume measure

We now turn to the existence of limiting measures for the joint law of the red and blue
spins, that is Theorem 3.1.

The crucial property here is that by Lemma 2.7, conditionally on σr, σb is obtained
by colouring independently and uniformly the clusters of θ(σr) in either or . This
procedure may also be applied in infinite-volume for red-spin configurations sampled
according to νH . The absence of infinite clusters in θ(σr) is used to show that the result
of this procedure in a finite but large volume is close to that in infinite-volume.
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Proof of Theorem 3.1 Let (Dn)n≥0 be an increasing sequence of domains with⋃n≥0 Dn =

H. Recall from Theorem 3.4 that the red-spin marginals of µDn
converge to an ergodic

translation-invariant limiting measure denoted by νH . Let µH be the measure obtained
by sampling σr according to νH , then awarding to all faces of each cluster of θ(σr) a blue
spin uniformly chosen in { , }, independently for each cluster. Let us prove that µDn
converges to µH .

Fix k ∈ N and ε > 0. We will show that the total-variation distance between the
restrictions of µDn

and µH to Λk is smaller than 2ε, provided that n is large enough.

Let K ≥ k be such that νH (Λk

θ(σr)
←ÐÐ→ Λc

K) < ε. Due to Corollary 3.12, it is always
possible to choose K with this property.

Now, let N = N(ε,K) be such that, for any n ≥ N , the distance in total variation
between the restrictions of νDn

and νH to ΛK is smaller than ε. Thus, one may couple νDn
and νH to produce configurations σr, σ′r in such a way σr = σ′r on ΛK with probability at
least 1 − ε. Moreover, by choice of K, with probability at least 1 − 2ε, σr = σ′r on ΛK and
there is no connected component of θ(σr) that intersects both Λk and Λc

K . On this event,
the connected components of θ(σr) and θ(σ′r) that intersect Λk are identical. Using the
same blue spin assignment for these components, we have produced a coupling of µDn
and µH that is equal inside Λk with probability at least 1 − 2ε, which was our goal.

Since ε > 0 and k are arbitrary, we conclude that µDn
converges to µH .

The translation invariance of µH follows from that of νH . Since µΛn
is invariant under

rotations by multiples of π/3 and converges to µH , the latter is also invariant under such
rotations. The ergodicity of µH follows from that of νH and from the absence of infinite
clusters in θ(σr). ◻

Proposition 3.13. Under µH , σb contains a.s. no infinite -cluster and no infinite -
cluster. As a consequence, ωb is formed entirely of finite loops µH -a.s.

The proof below is a straightforward application of the uniqueness argument of Burton
and Keane [5] and of Zhang’s argument for non-coexistence of clusters (see [23, Lem 11.12]
for an illustration of this argument which was never published by Zhang himself).

Proof To start, observe that under µH the number N of infinite -clusters is a.s.
constant. This is a direct consequence of the ergodicity of σb under this measure. The
same applies to infinite -clusters.

The technique introduced by Burton–Keane in [5] applies readily to the blue-spin
marginal under µH . Indeed, this marginal satisfies the finite-energy property required by
[5]. As a consequence we obtain that either N = 0 µH -a.s. or N = 1 µH -a.s.

Finally, let us prove that N = 0 µH -a.s. by contradiction. Assume that N = 1 µH -
a.s. Then, by the symmetry of the blue-spin marginal, the number of -infinite clusters
is also equal to 1 a.s. Thus, there exists some n ≥ 1 such that µH (Λn ←→ ∞) > 1 − 1/46.
Write ∂1Λn, . . . , ∂6Λn for the six sides of ∂Λn in counter-clockwise order. Then

µH (Λn /←→∞) = µH (
6

⋂
j=1

{∂jΛn

in Λcn
←ÐÐÐ→∞}c) ≥ µH ({∂1Λn

in Λcn
←ÐÐÐ→∞}c)

6
.

The inequality is due to the FKG property for σb and to the invariance of the measure
under rotations by π/3. Thus we find

µH (∂1Λn

in Λcn
←ÐÐÐ→∞) ≥ 1 − (1 − µH (Λn /←→∞))

1/6
> 3/4.
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The same holds for any side of Λn and also for -connections instead of ones.
Define the event A ∶= {∂1Λn

in Λcn
←ÐÐÐ→ ∞} ∩ {∂3Λn

in Λcn
←ÐÐÐ→ ∞} and A ∶= {∂2Λn

in Λcn
←ÐÐÐ→

∞} ∩ {∂4Λn

in Λcn
←ÐÐÐ→∞}. Using the union bound, we find

µH (A ∩A ) > 0.

Now notice that when the above event occurs, then necessarily either there exist two
infinite -clusters or two infinite -clusters. This contradicts the uniqueness of the infinite
cluster proved above.

Finally, the existence of an infinite path in ωb implies the existence of both infinite
and clusters, which was excluded above. ◻

3.4 Uniqueness of infinite-volume measure: proof of Theorem 3.2

Proof of Theorem 3.2 Let us first prove that µH -a.s., there exist infinitely many loops
surrounding the origin in the loop representation of (σr, σb). To that end, it is enough
to show that for any n, µH -a.s. there exists at least one loop surrounding Λn. Fix n and
consider the union of all - and -clusters that intersect Λn. Due to Proposition 3.13,
all these clusters are finite. The outer boundary of their union is then a finite blue loop
surrounding Λn. Hence, 0 is surrounded a.s. by infinitely many loops.

Let us now prove (3.1). Fix n. By the above, µH -a.s. there exist infinitely many
loops surrounding Λn which may be ordered starting from the inner most. Since each
loop is blue or red with probability 1/2 independently, there exist a.s. four consecutive
loops γ1, . . . , γ4 surrounding Λn that have colours red, blue, red, blue, in this order, from
inside out. Then both γ1 and γ3 have constant blue spins on all faces adjacent to them,
but that for γ1 is opposite to that for γ3. That is, either γ1 is double- and γ3 is double-
or γ1 is double- and γ3 is double- . Similarly, of γ2 and γ4, one is double- and the
other is double- . This proves (3.1).

A direct consequence of µH (Circ (n)) = 1 is that the restriction of νH to Λn is
dominated by νH . Thus νH = νH . Moreover, due to the monotonicity of boundary
conditions, for any sequence of finite domains Dn that increases to H, the measures νDn
and νDn

, as well as the red-spin marginals of µDn
, µDn

, µDn
and µDn

all converge to νH .
Finally, due to the procedure that selects blue spins knowing the red spins, we conclude

that µξDn ÐÐ→n→∞
µH for all boundary conditions ξ ∈ { , , , , , , , }. ◻

4 A dichotomy theorem
Below we state a dichotomy result similar to those of [17] and [18]. The result states that
the model is in one of two states: co-existence of phases (see case (i) of Corollary 4.2) or
(stretched)-exponential decay of diameters for clusters of one phase inside the other (see
case (ii)). In Section 5, we show that the latter case contradicts Theorem 3.2.

Compared to the setting of [17] and [18], the present model exhibits considerable
additional difficulties due to the lack of a general Spatial Markov property and to the ab-
sence of monotonicity in the boundary conditions . These difficulties appear in several
places, most notably in proving a crossing estimate inside mixed boundary conditions
(Corollary 4.14) and in eliminating case (ii).
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Theorem 4.1. There exist constants ρ > 2 and C > 1 such that, if for n ≥ 1 we set
αn = µΛρn

[Circ (n,2n)], we have

α(ρ+2)n ≤ Cα
2
n for all n ≥ 1. (4.1)

Corollary 4.2. For ρ > 2 given by the above, one of the two following statements holds
(i) infnαn > 0 or

(ii) there exist constants c,C > 0 and n0 ≥ 1 such that αn ≤ Ce−n
c for all n = (ρ + 2)kn0

with k ∈ N.

The constant ρ in Theorem 4.1 will be chosen large enough to accommodate cer-
tain geometric constructions used in the proof. Its choice only affects scenario (ii) of
Corollary 4.2, which we will see is contradictory. Thus, any value of ρ suffices for our
purposes.

4.1 Preparation: measure in cylinder

Write [a, b] × [c, d] for the set of faces of H with centres inside [a, b] × [c, d]. Any such
rectangle is a domain of H and we will treat it as such. Its boundary may be split into four
segments: bottom, top, left and right. We do not give precise definitions, but mention
that the left and right sections start and end with vertical edges (see Figure 8 for an
illustration).

For n,m ∈ N, let Rectm,n be the rectangle [−m,m − 1
2] × [0, n]. Write / for

the boundary conditions on Rectm,n where all faces adjacent to the bottom of ∂Rectm,n
have red spin and all other faces adjacent to ∂Rectm,n have red spin . As for other
boundary conditions, these may be defined only on Rectm,n, with no reference to the
outside faces. One may however check that, since there are only two arcs of different sign
on the boundary, these boundary conditions do satisfy the Spatial Markov property.

We will also consider the cylinder Cylm,n obtained by identifying the left and right
boundaries of Rectm,n. Write / for the boundary conditions on Cylm,n which are
double- on the bottom and double- on the top. That is µ /

Cylm,n
is the uniform measure

on pairs of coherent spin configurations (σb, σr) on Cylm,n with the property that all faces
adjacent to the top boundary of Cylm,n have σr = and all those adjacent to the bottom
have σr = . No restriction on the blue spins of the boundary faces is imposed.

It is immediate that the Spatial Markov property applies to µ /

Cylm,n
in the same way

as for planar domains. In particular, µ
/

Rectm,n
is related to µ /

Cylm,n
by the following.

Lemma 4.3. Fix m,n ≥ 1 and let Lv be the right boundary of Rectm,n. Then Lv is also
an edge-path of Cylm,n, and

µ
/

Rectm,n
= µ

/

Cylm,n
(. ∣σr ≡ on faces adjacent to Lv).

While Cylm,n is not a planar domain, the FKG inequality applies to it.

Lemma 4.4. For any m,n ≥ 1, the red-spin marginal of µ /

Cylm,n
satisfies the FKG lattice

condition and is positively associated.

34



0

Figure 8: Left: The rectangle Rectm,n with boundary conditions 9+9+/9−9−. The dashed
lines are the left and right boundaries; in Cylm,n they are identified to each other. Right:
The cylinder Cylm,n may be drawn in the plane as depicted; its top and bottom are
marked by bold lines. The resulting graph is trivalent, all its faces except the interior
one are hexagons, and their union is simply connected. The FKG lattice condition may
be proved for this graph in the same way as for domains of the hexagonal lattice. The
measure µ9+9+/9−9−

Cylm,n
is obtained as a conditioning of the measure on the depicted graph: all

faces adjacent to the bottom have red spin 9−, while all those adjacent to the top have
red spin 9+.

Proof We will not give a full proof of this, only a sketch. Notice that Cylm,n∪∂outCylm,n,
may be embedded in the plane and rendered simply connected by adding a face of de-
gree 4m below the bottom of ∂outCylm,n, as drawn in Figure 8, right diagram. Write D
for the planar graph obtained by this procedure. Then a straightforward adaptation of
Theorem 2.6 (see also remark 2.11 (ii)) shows that the FKG lattice condition also holds
for µD .

As explained in Corollary 2.10, conditioning on the value of red spins on a given
set conserves the FKG lattice condition for the red spin marginal. In particular, the
red-spin marginal of µD conditioned on the event that all faces adjacent to the top
of Cylm,n have σr ≡ while all those adjacent to the bottom have σr ≡ also satisfies the
FKG lattice condition. Finally, the Spatial Markov property states that the conditional
measure above is identical to µ /

Cylm,n
(when restricted to Cylm,n). ◻

4.2 Strong RSW theory

As promised in Section 3.2.2, we will now prove a stronger RSW result. Variations of it
may be envisioned; we will state it in the form most useful to us. We start with a general
lemma that allows to lengthen crossings of long rectangles. The main result of the section
(Proposition 4.7) is given afterwards. It will be stated and proved for the cylinder, but
may also be deduced in other settings.

4.2.1 Lengthening crossings

Recall the definition of Parm,n and its boundary segments Top and Bottom from Sec-
tion 3.2.
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R1 R2 R3

b

a

c

d

Figure 9: Left: The parallelogram Par3n,n contains three disjoint translations R1, R2

and R3 of Par3n,n. Given the outside configuration ζ, R1 and R3 contain simple-9+ vertical
crossings with probability at least 1/2. Conditionally on the existence of such crossings, R2

contains a vertical double-9+ crossing with probability at least 1/4. Right: The latter
statement is proved by working in the symmetric domain D, which is crossed vertically
by a double-9+ path with probability 1/4 at least.

Lemma 4.5. Let D be a domain and n be such that Par3n,n ∪ ∂outPar3n,n ⊂ D . Fix some
red spin configuration ζ on D with the property that all faces of Bottom(3n,n)∪Top(3n,n)
are awarded spins . Then

µD[C v (3n,n) ∣σr = ζ outside Int(Par3n,n)] ≥ 1/36. (4.2)

The previous lemma may be used to glue crossings of long rectangles as described
below.

Corollary 4.6. Let D be a domain such that Par5n,n ⊂ D . Then

µD(C h (5n,n)) ≥ 1
288µD(C h (4n,n))µD(C h [(n,0) + Par4n,n]), (4.3)

where (n,0) + Par4n,n is the translate of Par4n,n by n units to the right.

Due to the Spatial Markov property, the statements of Lemma 4.5 and Corollary 4.6
also apply to measures with boundary conditions such as µD .

Proof of Lemma 4.5 By the FKG inequality, the LHS of (4.2) is minimal when ζ ≡
on D ∖ (Bottom(3n,n) ∪Top(3n,n)). We may assume this below.

Observe that Par3n,n may be partitioned into three translations of Parn,n; call them R1, R2

and R3 ordered from left to right (see Figure 9). Due to Lemma 3.5 and the FKG in-
equality,

µD[C v(R1) ∩C v(R3) ∣σr = ζ outside Int(Par3n,n)] ≥
1
9 . (4.4)

If C v(R1) occurs, let ΓL be the left-most simple- vertical crossing of R1. Formally,
let ΓL be the edge-path running along the left side of the spin-crossing. Also, let ΓR be
the right-most simple- vertical crossing of R3 when C v(R3) occurs.

Fix two possible realisations γL, γR of ΓL,ΓR. Let D0 be the domain formed of the
faces of Rect3n,n between γL and γR. The events ΓL = γL and ΓR = γR are both measurable
in terms of the configuration outside D0.
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Consider the line ` running through the bottom left and upper right corner of R2 and
let ρ be the orthogonal symmetry with respect to `; note that H is invariant under ρ.
Let D be the domain formed of the faces of D0 and those of ρ(D0).

Let a, b, c, d be the corners of R2 ordered in counter-clockwise order, starting from the
top-left corner. Write (bc) and (da) for the arcs of ∂D in counter-clockwise order. Then,
due to the monotonicity in boundary conditions and the FKG inequality,

µD[C v (R2) ∣ΓL = γL and ΓR = γR and σr = ζ outside Int(Par3n,n)]

= µD [C v (R2) ∣σr ≡ on Bottom(3n,n) ∪Top(3n,n)] ≥ µD [(bc) ←→ (ad)] ≥ 1/4.

The equality is due to the specific to the boundary conditions induced by ΓL, ΓR and ζ
on D0 (a brief analysis is needed to ensure that the is no multiplicative constant appearing
between the two sides). The first inequality is due to the FKG inequality and the inclusion
of events; the last one is due to Lemma 3.8. Averaging the above over all possible values
of ΓL and ΓR and using (4.4), we obtain the desired bound. ◻

Proof of Corollary 4.6 Let Γ+
L and Γ−

L be the top and bottom most, respectively,
double- horizontal crossings of Par4n,n. Define Γ+

R and Γ−
R similarly for the rectan-

gle (n,0) + Par4n,n. When both Par4n,n and (n,0) + Par4n,n are crossed horizontally by
double- paths, then either Γ+

L intersects or is higher than Γ−
R inside the middle parallel-

ogram (0, n) + Par3n,n, or Γ−
L intersects or is lower than Γ+

R. As a consequence,

µD(Γ+
L intersects or higher than Γ−

R) + µD(Γ−
L intersects or lower than Γ+

R) (4.5)

≥ µD(C h (4n,n) ∩C h [(n,0) + Par4n,n]) ≥ µD(C h (4n,n))µD(C h [(n,0) + Par4n,n]).

In the last inequality we used the FKG property. We focus next on the first term in the
LHS above.

For any realisation of Γ+
L and Γ−

R with the former intersecting or higher than the
latter, if Γ+

L and Γ−
R intersect or if they are connected to each other by a double- path,

then µD(C h (5n,n)) occurs. Below we will show that, conditionally on Γ+
L and Γ−

R, the
two paths intersect or are connected by a double- path with positive probability. The
case where the paths intersect is trivial; we assume henceforth that Γ+

L and Γ−
R are disjoint.

Notice that Γ+
L is measurable in terms of the spins of the faces of Par4n,n above it, and Γ−

R

is measurable in terms of the spins of the faces of (n,0) + Par4n,n below it. Let U be the
set of all faces of Par5n,n which are in neither of the two categories above.

Let a be the right endpoint of Γ+
L and c be the left endpoint of Γ−

R. Orient Γ+
L from

left to right and Γ−
R from right to left. Let b be the last point of intersection of Γ+

L with
the left side of (n,0)+Par3n,n, and d be the last point of intersection of Γ−

R with the right
side of (n,0) + Par3n,n. Write D for the domain contained in (n,0) + Par3n,n, delimited
at the top by the section of Γ+

L between b and a, and at the bottom by the section of Γ−
R

between d and c.
Let H be the event that there exists an edge-path γ contained in D, connecting the

arcs (ab) and (cd) of ∂ED, such that all faces of U ∩ D adjacent to it are of red spin .
Then, by the FKG inequality and the properties (i) and (ii) of Lemma 2.13,

µD(H ∣Γ+
L,Γ

−
R) ≥

1
8µ

a b c d
D (H) ≥ 1

8µ
a b c d
D ((ab)

in D
←ÐÐ→ (cd)).

The second inequality is due to the inclusion between the two events. Notice also that
when H occurs, Γ+

L,Γ
−
R are necessarily connected by a double- path.
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Γ+
L

Γ−
R

U
a

c

b

d
D

Figure 10: Left: the paths Γ+
L and Γ−

R are measurable in terms of the hashed regions;
its complement is U. Right: The domain D is delimited by parts of Γ+

L and Γ−
R. Any

crossing between the arcs (ab) and (cd) in D induces a connection between Γ+
L and Γ−

R.

Now, applying again Lemma 2.13, we conclude that

µa b c d
D ((ab)

in D
←ÐÐ→ (cd)) ≥ µa

′ b′ c′ d′
Par3n,n

[C v (3n,n)],

where a′, b′, c′ and d′ are the corners of the parallelogram, ordered in counter-clockwise
order, starting from the top left. The RHS of the above is bounded below by 1/36, as
proved in Lemma 4.5. Combining the last two displayed equations, we find

µD(Γ+
L

in U
←ÐÐ→ Γ−

R ∣Γ+
L,Γ

−
R) ≥

1
288 .

Averaging over all values of Γ+
L and Γ−

R as above, we find

µD(C h (5n,n)) ≥ 1
288µD(Γ+

L intersects or higher than Γ−
R).

The same bound holds for the second term in (4.5), and (4.3) follows.
◻

4.2.2 Statement of the strong RSW

The notions of simple and double horizontal and vertical crossings adapt readily to rect-
angular domains [a, b] × [c, d]. Use the notations C h

. ([a, b] × [c, d]) and C v
. ([a, b] × [c, d])

for the existence of such crossings.

Proposition 4.7 (strong RSW). There exists a function ψ ∶ (0,1] → (0,1] such that, for
all N,M,n, k ≥ 1 with n + k ≤ N and 2n <M ,

µ
/

CylM,N
[C h ([−2n,2n] × [k, k + n])] ≥ ψ(µ

/

CylM,N
[C v ([−3n,3n] × [k, k + n])]). (4.6)

In other words, the above tells us that if wide rectangles are crossed vertically with
positive probability (that is in the easy direction), then they are also crossed horizontally
(i.e. in the hard direction) with positive probability. This is a typical RSW result in that
it relates probabilities of crossings in the easy direction to those of crossings in the hard
direction. What is remarkable is that the measure to which it applies, namely µ /

CylM,N
,

is not rotationally invariant. Thus, vertical crossings are “orthogonal” to horizontal ones.
The exact aspect ratio of the two rectangles (4 and 6, respectively) is not essential; they
have been chosen to simplify statements later on.

The proof of Proposition 4.7 is quite intricate. It is based on similar results from [18],
but with additional difficulties due to the two layers of spins necessary for the Spatial
Markov property (see Theorem 2.3). A very similar version appears in [14]. The next
section is dedicated to proving Proposition 4.7.
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4.2.3 Proof of Proposition 4.7

The structure is reminiscent of a proof by contradiction: assuming that (4.6) fails (more
precisely that C h ([−2n,2n] × [k, k + n]) has probability below a certain threshold), we
prove that double- vertical crossings of [−3n,3n] × [k, k + n] have some particular be-
haviour. This is done in a series of lemmas (Lemmas 4.8, 4.9, 4.10 and 4.11) – the title of
each lemma indicates a constraint that vertical crossings need to satisfy for (4.6) to fail.
Then we prove that two typical vertical crossings of [−3n,3n] × [k, k + n] with starting
points sufficiently close to each other are connected with positive probability by a double-
path (see Lemma 4.12). Proposition 4.7 follows from this last statement. Lemma 4.12

is the heart of the proof; it relies on the construction of a symmetric domain, similarly
to what was done for Lemma 4.5.

Fix n, k,M,N as in the proposition. We will work with n large; the function ψ in
the proposition may be adjusted to incorporate all small values of n. For ease of writing,
translate the cylinder CylM,N vertically by −k; write µ for the measure with boundary
conditions / on this translated cylinder.

Using this notation, our goal is to prove that, for any C > 0 there exists ∆ > 0
depending only on C, not on n, k, M or N , such that

µ[C v (Rect3n,n)] > C ⇒ µ[C h (Rect2n,n)] > ∆.

For m,h ≥ 0, write Lv(m) for the right boundary of the rectangle Rectm,N and Lh(h)
for the top boundary of RectM,h. That is Lh(h) is approximately a horizontal line at
height h; Lv(m) is a vertical line m units to the right of 0. Let Striph be the set of faces of
the cylinder contained between Lh(0) and Lh(h). Define Midh(m) as the segment of Lh(h)
contained in [−m,m] ×R. See Figure 11 for illustrations.

Below we will talk about double- paths contained in Striph with endpoints inMid0(m)

and Midh(m), respectively. While not explicitly stating it each time, we will always ask
that such a path have trivial winding around the cylinder.

Lemma 4.8 (Endpoints of paths are centred). For any ε > 0 and Cmid > 0 there ex-
ists ∆mid = ∆mid(ε,Cmid) > 0 such that the following holds. Fix m ≤ n and write Hmid(m)

for the event that there exists a double- path in Stripm with one endpoint in Mid0(mε)
and one in Lh(m) ∖Midm(2mε). Then

µ[Hmid(m)] > Cmid⇒ µ[C h (Rect2m,m)] > ∆mid. (4.7)

Proof Fix Cmid and suppose µ[Hmid(m)] > Cmid. Then, by symmetry, with probability
at least Cmid/2 there exists a double- path in Stripm with lower endpoint in Mid0(mε)
and upper end-point on Lh(m), to the right of Lv(2εm). By horizontal symmetry and
translation invariance, the event that there exists a double- path in Stripm with lower
endpoint in (4εm,0)+Mid0(mε) and upper end-point on Lh(m), to the left of Lv(2εm) also
has probability greater than Cmid/2. Notice that when these two events occur, then the
segments Mid0(mε) and (4εm,0)+Mid0(mε) are connected by a double- path contained
in Stripm. Using the FKG inequality and the above considerations, we find

µ[Mid0(mε)
in Stripm

←ÐÐÐÐÐ→ (4εm,0) +Mid0(mε)] ≥
1
4 C

2
mid. (4.8)

For j ∈ Z, let Mj = (2jεm,0) + Mid0(mε). Using again the invariance of µ under
horizontal shift, we find that

µ(Mj−1

in Stripm
←ÐÐÐÐÐ→Mj+1) ≥

1
4 C

2
mid ∀ − 1

ε ≤ j ≤
1
ε .
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Finally, if all the events above occur simultaneously, then C h (Rect2m,m) also occurs. By
the FKG inequality, we find

µ[C h (Rect2m,m)] ≥ µ[
1/ε

⋂
j=−1/ε

{Mj−1

in Stripm
←ÐÐÐÐÐ→Mj+1}] ≥ (Cmid/4)

1+2/ε
=∶ ∆mid.

◻

Lemma 4.9 (Vertical paths wiggle). There exist explicit constants 0 < ρin < ρout with the
following property. For m ≤ n define the events

• H in
wig(m) is the event that there exists a double- path contained in Stripm, fromMid0(ρinm)

to Midm(ρinm) that does not cross Lv(ρinm) or that does not cross Lv(−ρinm);

• H out
wig (m) is the event that there exists a double- path contained in Stripm, fromMid0(ρinm)

to Midm(ρinm) that is not contained in Rect(ρoutm,m).
Then, for any Cwig > 0 there exists ∆wig > 0 such that, for any m ≤ n,

µ[H in
wig(m) ∪H out

wig (m)] > Cwig ⇒ µ[C h (Rect2m,m)] > ∆wig. (4.9)

In other words, the lemma tells us that, if vertical crossings of Stripm starting onMid0(ρinm)

and ending on Midh(ρinm) wiggle either too little (when H in
wig(m) occurs) or too much

(when H out
wig (m) occurs), then wide rectangles may be crossed horizontally.

Proof Take ρin = 1/72 and ρout = 4 + ρin. Fix some constant Cwig; the value of ∆wig will
be determined below. If µ[H in

wig(m) ∪H out
wig (m)] > Cwig, then either µ[H in

wig(m)] > Cwig/2
or µ[H out

wig (m)] > Cwig/2.
Suppose the second inequality is valid. If the event H out

wig occurs, one of the rectan-
gles [ρin, ρoutm] × [0,m] or [−ρoutm,−ρin] × [0,m] is crossed horizontally by a double-
path. Thus, due to the invariance of µ under horizontal shift, µ[C h (Rect2m,m)] > Cwig/4.
The implication is therefore proved in this case for any ∆wig ≤ Cwig/4.

It remains to consider the case when µ[H in
wig(m)] > Cwig/2. Then, by symmetry, the

probability that there exists a double- path from Mid0(ρinm) to Midh(ρinm) contained
in Stripm and to the right of Lv(−ρinm) is greater than Cwig/4. Moreover, due to the invari-
ance of µ under horizontal translation and symmetry, with probability at least Cwig/4,
the segment (2ρinm,0) +Mid0(ρinm) may be connected to (2ρinm,0) +Midh(ρinm) us-
ing a double- path contained in Stripm that stays to the left of Lv(3ρinm). The two
events described above are increasing, and due to the FKG inequality, they occur si-
multaneously with probability at least (Cwig/4)2. When both do occur, then the rectan-
gle [−ρinm,3ρinm]×[0,m] is crossed vertically by a path of double- . See Figure 11 - left
diagram.

Let A be the event that both rectangles [−6ρin,−2ρinm] × [0,m] and [2ρin,6ρinm] ×

[0,m] contain double- vertical crossings. Due to the FKG inequality, invariance under
horizontal translation, and the above estimate, we find that µ(A ) ≥ (Cwig/4)4.

A rotated version of Lemma 4.5 (and Corollary 4.6) applies to the rectangle Rect6ρinm,m,
and proves that the left-most vertical crossing of [−6ρin,−2ρinm] × [0,m] connects via a
double- path to the right-most vertical crossing of [2ρin,6ρinm]×[0,m] with probability
at least 1/36. (The choice of ρin ensures that this rectangle is sufficiently thin to be
covered by three disjoint translates of Parm/3,m/3 placed one on top of the other. Slight
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Rect6ρinm,m

Figure 11: Left: Using two symmetric instances of H in
wig(m) we create a vertical crossing

of the thin rectangle [−ρinm,3ρinm] × [0,m]. Right: When both [−6ρin,−2ρinm] × [0,m]

and [2ρin,6ρinm] × [0,m] are crossed vertically by double-9+ paths, then these paths may
be connected as in Lemma 4.5: first by simple-9+ paths (thin red lines), then by a double-9+
path (bold red line).

adaptations to the proof need to be made; we leave this to the reader. See also Figure 11
- right diagram.) Using this and the lower bound on the probability of A , we find

µ[(−4ρinm,0) +Mid0(2ρinm)
in Stripm

←ÐÐÐÐÐ→ (4ρinm,0) +Mid0(2ρinm)] ≥ 1
36 (Cwig/4)

4.

The above is akin to (4.8). We conclude as in the proof of Lemma 4.8 that

µ[C h (Rect2m,m)] > ∆wig, (4.10)

for some sufficiently small constant ∆wig > 0 depending only on Cwig and ρin. ◻

The last two lemmas will be used for different scales m ≤ n. The following will only
be used at scale n. To simplify notation, we only state it at this scale.

Lemma 4.10 (Vertical paths have fixed width). Let cloc = 5 and fix any ε ≤ ρin. For k ≥
1, let Gloc(ε, k) be the event that any double- path contained in Stripn with endpoints
in Mid0(εn) and Midn(εn) intersects the vertical line Lv(kεn) but not Lv[(k + cloc)εn].
Then, for any constant Cloc > 0 there exists ∆loc = ∆loc(ε,Cloc) > 0 such that

(µ[Gloc(ε, k)] < 1 −Cloc for all k ≥ ⌊ρin/ε⌋) ⇒ µ[C h (Rect2n,n)] > ∆loc.

Notice that Gloc(ε, k) contains all configurations with no double- path connect-
ing Mid0(εn) to Midn(εn) inside Stripn. Indeed, the condition is trivially satisfied.

Proof Fix ε ≤ ρin and Cloc > 0; to simplify notation we will consider ρin/ε to be an
integer. Assume that µ[Gloc(ε, k)] < 1 −Cloc for all k ≥ ρin/ε.

For k ≥ 1, let Ek be the event that there exists a double- path in Stripn with endpoints
in Mid0(εn) and Midn(εn) and which intersects Lv(kεn). Also write E0 for the event
that Mid0(εn) and Midn(εn) are connected by a double- path contained in Stripn, with
no other restriction. The events Ek are increasing each, but form a decreasing sequence.
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Additionally, define Ak as the event that there exists a double- path in Stripn that
connects Mid0(εn) to Midn(εn) and which does not intersect Lv(kεn). Then each Ak is an
increasing event and the sequence Ak is increasing in k. Moreover Gloc(ε, k) = (Ak∪Ek+5)

c.
Notice that E c

0 is contained in all events Gloc(ε, k), hence µ(E0) ≥ Cloc. Set k to be
the smallest index such that µ(Ak) ≥ Cloc/2. The existence of k is guaranteed by the fact
that limj µ(Aj) = µ(E0) ≥ Cloc.

Suppose first that k ≤ ρin/ε. Then, H in
wig(n) ≥ µ(Ak) ≥ Cloc/2, and Lemma 4.9 shows

that µ[C h (Rect2n,n)] is bounded below by some constant that only depends on Cloc.
Henceforth we assume that k > ρin/ε. Then, due to our initial assumption,

1 −Cloc > µ(Gloc(ε, k − 1)) ≥ 1 − µ(Ak−1) − µ(Ek+4) > 1 −Cloc/2 − µ(Ek+4),

which implies µ(Ek+4) > Cloc/2. Write Ãk for the horizontal shift of the event Ak by 4εn.
By the choice of k, we have µ(Ãk) = µ(Ak) ≥ Cloc/2. Using the FKG inequality, we find

µ(Ãk ∩ Ek+4) ≥ µ(Ãk)µ(Ek+4) ≥ (Cloc/2)
2.

Notice now that, if both Ãk and Ek+4 occur, then the paths in the definition of these two
events necessarily intersect. In conclusion

µ[Mid0(εn)
in Stripn

←ÐÐÐÐÐ→ (4εn,0) +Mid0(εn)] ≥ (Cloc/4)
2.

As in the proof of Lemma 4.8, this implies that µ[C h (Rect2n,n)] is larger than some
threshold depending only on ε and Cloc, and the lemma is proved. ◻

In the proof of Proposition 4.7 we will work with two scales: the scale n and a lower
scale m chosen below. Moreover, the endpoints of the vertical paths will be fixed in some
segment of length 2εn where ε > 0 is also chosen below.

Fix m =
ρin

2ρout
n. Then, fix some ε > 0 so that

εn < 1
2ρinm and ρoutm < ρin n − cloc εn. (4.11)

In conclusion, the scales εn, m and n are fixed so that εn is much smaller than m, which
in turn is much smaller than n. All constants below depend on the ratios between these
scales.

Write ΓL and ΓR for the left- and right-most, respectively, double- paths contained
in Stripn, with lower endpoint on Mid0(εn) and top endpoint in Midn(εn) (recall that
these are paths formed of edges of the hexagonal lattice). If no such crossings exists,
set ΓL = ΓR = ∅. We will always orient such paths from their endpoint on Lh(0) towards
that on Lh(n).

When ΓL and ΓR exist and are disjoint, write Int(ΓL,ΓR) for the domain with bound-
ary formed of the concatenation of ΓR, the segment of Lh(n) between the top endpoints
of ΓR and ΓL (from right to left), ΓL (in reverse), and the segment of Lh(0) between the
bottom endpoints of ΓL and ΓR (from left to right). Also let Ext(ΓL,ΓR) be the set of
faces of Stripn which are not strictly inside Int(ΓL,ΓR); precisely, Ext(ΓL,ΓR) contains all
faces of Stripn ∖ Int(ΓL,ΓR) as well as all faces adjacent to ΓL or ΓR.

It is standard that ΓL and ΓR may be explored from their left and right, respectively.
That is, for γL and γR two possible realisations of ΓL and ΓR, respectively, the event {ΓL =
γL and ΓR = γR} is measurable with respect to the state of faces in Ext(γL, γR).
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Our next goal is to show that, whenever ΓL and ΓR exist and behave reasonably well,
they have a positive probability to be connected inside Int(ΓL,ΓR) by a path of double- .
The notion of well-behaved vertical paths is defined below.

For an edge-path Γ contained in Stripn, with starting point in Mid0(εn) and endpoint
in Midn(εn), let Γb be the segment of Γ contained between its starting-point and its first
visit of Lh(m). Let Γt be the segment of Γ between its last visit of Lh(n −m) and its
endpoint.

Define Gwb(k) as the event that any double- path Γ contained in Stripn, with starting
point in Mid0(εn) and endpoint in Midn(εn) is well-behaved (for this value of k), that is
(i) Γb has one endpoint in Midm(2εn) and Γt has one endpoint in Midn−m(2εn);

(ii) Γb and Γt are both contained in Rect(ρoutm,n) but each crosses Lv(ρinm),

(iii) Γ crosses Lv(k εn) but not Lv((k + cloc) εn).
In order to apply our reasoning, we will ask that ΓL and ΓR are well-behaved, that

is, we will ask that Gwb(k) occurs for some k. This is guaranteed by the following result.

Lemma 4.11 (Paths are well-behaved). For any Cwb > 0, there exists a constant ∆wb > 0
such that

(µ[Gwb(k)] < 1 −Cwb for all k ≥ ρin/ε) ⇒ µ[C h (Rect2n,n)] > ∆wb.

Proof Fix Cwb > 0 and assume µ[Gwb(k)] < 1 − Cwb for all k ≥ ρin/ε. Then, one out
of the three conditions defining Gwb(k) fails with probability at least Cwb/3 for every k.
Thus, at least one of the following cases occurs:

• (i) fails with probability at least Cwb/3 for some k. Then Lemma 4.8 states
that µ[C h (Rect2m,m)] > ∆mid for some ∆mid > 0 depending only on Cwb. Using
the horizontal translation invariance of µ, the same bound applies to any horizontal
translate Rect2m,m + j(m,0) of Rect2m,m, with j ∈ Z. Using this and Corollary 4.6,
we find

µ[C h (Rect2n,n)] ≥ µ[C
h (Rect2n,m)] ≥ (c∆mid)

2n/m, (4.12)

for some universal constant c > 0.

• (ii) fails with probability at least Cwb/3 for some k. Then Lemma 4.9 implies
that µ[C h (Rect2m,m)] > ∆wig for some ∆wig > 0 depending only on Cwb. As above,
we conclude that µ[C h (Rect2n,n)] ≥ (c∆wig)

2n/m.

• (iii) fails with probability at least Cwb/3 for all k. Then, by Lemma 4.10 applied
with Cloc = Cwb/3, we deduce µ[C h (Rect2n,n)] > ∆loc.

We conclude that in all cases, µ[C h (Rect2n,n)] is bounded below by a constant depending
only on Cwb, as required. ◻

Now that we proved that some Gwb(k) occurs with high probability, we will show that,
when it does occur, ΓR and ΓL connect to each other. Since ΓR and ΓL are measurable in
terms of the spins in Ext(ΓL,ΓR), the same applies to Gwb(k). Indeed, if ΓL and ΓR satisfy
the conditions of Gwb(k), then so do all double- paths contained in Stripn, from Mid0(εn)
to Midn(εn).
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Lemma 4.12. There exists some universal constant Ccnt > 0 such that, for any possible
realisations γL, γR of ΓL,ΓR with the property that Gwb(k) occurs for some k ≥ ρin/ε and
any red spin configuration ζ such that ΓL = γL and ΓR = γR

µ[γL
in Int(γL, γR)

←ÐÐÐÐÐÐÐ→ γR ∣ΓL = γL, ΓR = γR, Gwb(k), σr = ζ on Ext(γL, γR)] ≥ Ccnt. (4.13)

The conditioning in (4.13) may be reduced simply to {σr = ζ on Ext(γL, γR)}, since
this determines ΓL = γL, ΓR = γR, which in turn implies that Gwb(k) occurs. We included
the latter conditions in (4.13) to emphasise their importance.

The lemma above is the heart of the proof of Theorem 4.7.

Proof Fix γL, γR and ζ as in the statement. Let k ≥ ρin/ε be some value for which Gwb(k)
occurs. We may assume that γL and γR are disjoint, otherwise the conclusion is triv-
ially attained. We will proceed in two steps, first we will create simple- connections
between γL and γR, close to the top and bottom of Stripn, respectively. In a second stage,
we connect γL and γR by a double- path contained between the two simple- paths
shown to exist in the previous step.

Recall that γL and γR are oriented from bottom to top. Let R1 = Rect(ρoutm,m)

and R2 = R1 + (0, n −m) be the vertical translation of R1 contained between Lh(n −m)

and Lh(n). Due to Gwb(k) occuring, γbL and γbR are contained in R1, while γtL and γtR are
contained in R2.
Step 1: Simple- crossings. Let I be the event that γL and γR are connected by
two simple- paths contained in R1 and R2, respectively. We will now prove that I has
positive probability, uniformly in m,n, γL, γR and ζ. We do this for the connection in R1;
the same argument applies in R2. The argument used in this step is exactly that of [18].
Figure 12 contains an illustration of the construction below.

Recall that both γbL and γbR intersect Lv(ρinm) but that their endpoints are inMid0(εn)
and Midm(2εn), hence to the left of Lv(ρinm). Let A be the first point where γL inter-
sects Lv(ρinm) and write γ′L for the subpath of γL from its starting point up to A. Then γbR
contains at least one subpath contained in the part of R1 to the right of Lv(ρinm), which
has both endpoints on Lv(ρinm), one below A and one above A (this is because γbR has
both its endpoints to the left of Lv(ρinm)). Write γ′R for the left-most such path and let C
be the endpoint of γ′R above A.

Write τ for the reflection with respect to Lv(ρinm) (actually, with respect to the
vertical axis {⌊ρinm⌋} ×R). Then τ leaves the lattice invariant.

Observe now that τ(γ′L) intersects γ′R. Indeed, τ(γ′L) runs from A to Lh(0) and is
contained in the region to the right of Lv(ρinm), while γ′R separates A from Lh(0) in this
same region. Let B be the first intersection point of τ(γ′L) with γ′R when starting from A
and let γA be the subpath of τ(γ′L) between A and B. Let γB be the subpath of γ′R
between B and C. Finally set γC = τ(γB), γD = τ(γA) and D = τ(B).

The paths γA, γB, γC and γD only intersect at their endpoints and their concatenation
bounds a domain which we call D .

Let us derive a bound on the crossing probability of D , independently of how D
was formed. Consider the red spin configuration ξ on Cyl consisting only of with the
exception of the faces adjacent to γB and those adjacent to γD, which have spin . By
the same reasoning as in Lemma 3.5 and due to the invariance of D under τ , we obtain

µ(γB
in D

←ÐÐ→ γD ∣σr = ξ on D c ∪ ∂inD) ≥ 1
3 .
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Figure 12: The paths γbL and γbR are drawn in solid lines; the thicker parts are γ′L and γ′R.
The reflections of parts of γ′L and γ′R are in dashed lines. The domain D is shaded.
Observe that any crossing from γB to γD in D induces a connection between γbL and γbR

Write µξD for the conditional measure above.
By Corollary 2.12 and due to the condition ΓL = γL and ΓR = γR, the measure µ[. ∣σr =

ζ on Ext(γL, γR)] restricted to D∩Int(γL, γR) dominates the restriction of µξD to this same
set of faces.

Set A to be the event that there exists a face-path χ in D , with the first and last
faces adjacent to γB and γD, respectively, and such that all faces of χ that are contained
in Int(γL, γR) have spin . Then

µ[A ∣σr = ζ on Ext(γL, γR)] ≥ µ
ξ
D(A ) ≥ µξD(γB

in D
←ÐÐ→ γD) ≥ 1

3 .

Now observe that a path χ as in the definition of A necessarily contains a subpath
contained in Int(γL, γR) with the first and last faces adjacent to γL and γR, respectively.
We conclude that

µ[γL
in Int(γL,γR)∩R1

←ÐÐÐÐÐÐÐÐÐ→ γR ∣σr = ζ on Ext(γL, γR)] ≥
1
3 .

Using the same argument in R2 and the FKG inequality, we obtain

µ[I ∣σr = ζ on Ext(γL, γR)] ≥
1
9 . (4.14)

Step 2: Double- crossing. We will now prove that

µ[γL
in Int(γL,γR)

←ÐÐÐÐÐÐÐ→ γR∣σr = ζ on Ext(γL, γR) and I occurs] ≥ 1
8 . (4.15)

The procedure is similar to that of Step 1, but at scale n rather than m and with some
additional difficulties. We recommend that the reader inspects Figure 13, which contains
the strategy of the proof as well as the relevant notation.

When I occurs, we will denote by Ξ1 and Ξ2 be the lowest and highest, respectively,
paths of simple- from γL to γR, contained in Int(γL, γR). More precisely, define Ξ1 to be
the lowest edge-path contained in Int(γL, γR), with endpoints on γL and γR, respectively,
with the property that all faces above it have spin . Define Ξ2 similarly, only that it is
highest and that all faces below it are required to have spin . By the definition of I
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A

Cχ1

χ2

γ1L

γ1R

R2

R1
B

γ2R

γ2L

A

Cχ1

γ1L

γ1R

τ(γ2L)

τ(γ2R)
τ(χ2)

B

A

C
B D

A

B C D

Figure 13: Top left: the paths γL and γR are connected in R1 and R2 by simple-9+ paths
(in red). The dashed lines delimit Stripm and (0, n −m) + Stripm; Lv((k + cloc) εn) is also
dashed. Top right: The domain D1 contains χ1 and τ(χ2) in its boundary. Bottom
left: the domain D is formed from D1 (blue) and D2 (orange). These two domains are
in different copies of H, glued along the segment [A,C]. Bottom right: a deformation
of D allows to embed it in the plane; it contains Int, whose deformation is shaded. Any
crossing from (AB) to (CD) contains a path from γL to γR in Int.

and the first condition of G (k), Ξ1 and Ξ2 are contained in R1 and R2, respectively,
whenever I occurs.

Let χ1 and χ2 be possible realisations of Ξ1 and Ξ2, respectively, such that I occurs.
Define the domain Int = Int(γL, γR, χ1, χ2) as the set of faces delimited by these four paths.
Also let Ext = Ext(γL, γR, χ1, χ2) be the set of faces outside Int along with those of ∂inInt.
By a standard exploration argument, the event {Ξ1 = χ1,Ξ2 = χ2} is measurable with
respect to the spins on Ext. Fix a red spin configuration ξ on Ext(γL, γR, χ1, χ2) with
ξ = ζ on Ext(γL, γR) and such that Ξ1 = χ1, Ξ2 = χ2. This implies in particular that all
faces of ∂inInt have spin in ξ.

The line Lv(k εn) separates χ1 from χ2 inside the simply connected domain Int. It
follows that there exists at least one segment of Lv(k εn) that is fully contained in Int and
that separates χ1 from χ2 inside this domain. Indeed, Lv(k εn) needs to intersect both γL
to γR in order to separate χ1 from χ2. Consider the intersections of Lv(k εn) with γL
and γR in increasing vertical order; there necessarily exists one intersection with γR
followed by one with γL. The segment of Lv(k εn) between these two intersections has
the desired property.

Let [A,C] be the first such segment when going from χ1 to χ2, where A denotes its

46



higher endpoint (the segments with this property are naturally ordered, for instance by
their end-points on ΓL). Then A is a point of γL while C is a point of γR. Write γ1

L and γ2
L

for the subpaths of γL from the intersection with χ1 to A and from A to the intersection
with χ2, respectively. The same notation applies to γR.

Then [A,C] separates Int into two sub-domains. The first, which we call Int1, has
boundary formed of χ1, γ1

L, [A,C] and γ1
R. The boundary of the second, called Int2, is

the concatenation of χ2, γ2
R, [A,C] and γ2

L.
Let τ be the reflection with respect to the vertical axis Lv(k εn). Now define D1 as the

union of the sets of faces of Int1 and τ(Int2). Then D1 is itself a domain, whose boundary
consists of χ1, τ(χ2), [A,C] and pieces of γ1

L, γ
1
R, τ(γ

2
L) and τ(γ2

R). It is particularly
important that χ1 is fully part of the boundary of D1. This is because τ(Int2) lies entirely
to the right of Lv((k − cloc) εn), and thus does not intersect R1 (property (iii) of well-
behaved paths, see also (4.11)). For similar reasons, τ(χ2) is also fully contained in the
boundary of D1.

Let B be the intersection point of γL and χ1; it is on the boundary of D1. Write D2 =

τ(D1) and D = τ(B). Define the domain D by gluing D1 and D2 along the seg-
ment [A,C]. The result of this operation is not a domain of H. Indeed, D1 and D2

may intersect in H; we will consider them as embedded in two different copies of H that
are then glued along the segment [A,C]. Nevertheless, D is planar (that is, it may be
embedded in the plane after some distortion; see Figure 13) and is simply connected. Ori-
ent ∂ED in counter-clockwise order and write (AB), (BC) etc. for the portions of ∂ED
between A and B, B and C etc.

Let us study the measure with boundary conditions on D . By the same argument
as for Lemma 3.6, either (AB) is connected to (CD) inside D by a path of double-
or double- , or (BC) is connected to (DA) by a path of double- or double- . As in
Lemma 3.8, the domain is symmetric with respect to τ and the boundary conditions
favour the connection with double- . Thus we find

µD [(AB)
in D

←ÐÐÐ→ (CD)] ≥ 1
4 . (4.16)

Observe now that D contains Int. Moreover, any path crossing from (AB) to (CD)

in D contains a subpath which is contained in Int and which has endpoints on γL and γR,
respectively. Indeed, the segment (AB) is above γ1

L, while (CD) is below γ2
R.

Finally, we claim that the restriction of µ(. ∣σr = ξ on Ext) to Int dominates that
of µD . We start off with a heuristic explanation. The key to this argument is to observe
that D may be obtained from Int by “pushing away” parts of the boundary of D , but that
these only belong to γL and γR, not to χ1 or χ2. Since these are double- paths in ξ, the
monotonicity of boundary conditions applies, and we may conclude.

Let us now present a rigorous proof of this domination with a slightly weaker conclu-
sion. As already explained, D is part of two copies of H glued along the segment [A,C].
Let D ′ be a planar domain of this graph that contains D along with all faces adjacent to
it. Then, due to the Spatial Markov property that also applies in this slightly different
setting, µD is the restriction to D of µD ′(. ∣σr ≡ on D ′ ∖D and σr ≡ on ∂inD).

Since D ′ is planar, the FKG inequality holds for µD ′ . Let A − be the set of faces
of ∂outInt adjacent to χ1 or χ2. Let A + be all the other faces of D ′ ∖ Int along with ∂inInt.
Then, by the monotonicity of boundary conditions (Corollary 2.12 (i)) and the considera-
tion above, the restriction of µD to Int is dominated by that of µD ′(. ∣σr ≡ on A + and σr ≡
on A −). Moreover, the latter is equal to the restriction of µ(. ∣σr ≡ on Ext ∖A − and σr ≡
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on A −) to Int. (Here A − is also viewed as a subset of Cyl.) In conclusion

µ[γL
in Int

←ÐÐÐ→ γR ∣σr = ξ on Ext]

≥ µ[γL
in Int

←ÐÐÐ→ γR ∣σr ≡ on Ext ∖A − and σr ≡ on A −]

= µD ′[γL
in Int

←ÐÐÐ→ γR ∣σr ≡ on A + and σr ≡ on A −]

≥ µD [γL
in Int

←ÐÐÐ→ γR]

≥ µD [(AB)
in D

←ÐÐÐ→ (CD)] ≥ 1
4 .

Conclusion. Equations (4.14) and (4.15) imply that

µ[γL
in Int(γL,γR)

←ÐÐÐÐÐÐÐ→ γR∣σr = ζ on Ext(γL, γR)] ≥
1
36 ,

which is the desired bound. ◻

We are finally ready to prove the main result of the section, namely Proposition 4.7.

Proof of Proposition 4.7 Recall from (4.11) that m and ε are fixed. Let Cv =

µ[C v (Rect2n,n)]. The bottom boundary of Rect3n,n may be partitioned into 18/ε seg-
ments of length εn/3. At least one of these segments is connected inside Stripn by a
double- path to Lv(n) with probability at least Cvε/18. Since the measure µ is trans-
lation invariant,

µ[Mid0(εn/6)
in Stripn

←ÐÐÐÐÐ→ Lh(n)] ≥
Cv ε

18
. (4.17)

Let ∆mid be given by Lemma 4.8 with Cmid =
Cvε
36 and ε/6 instead of ε. If µ[C h (Rect2n,n)] >

∆mid the proof is complete. We will therefore assume that µ[Hmid(m)] < Cmid, which along
with (4.17) implies

µ[Mid0(εn/3)
in Stripn

←ÐÐÐÐÐ→Midn(εn/3)] ≥
Cv ε

36
. (4.18)

For j ∈ Z, write M b
j = (j 2

3εn,0)+Mid0(εn/3) and M t
j = (j 2

3εn,0)+Midn(εn/3). Let J

be the event that M b
j is connected to M t

j by a double- path inside Stripn for both j = −1
and j = 1. Using again the translation invariance of µ, the FKG inequality and (4.18),
we find

µ[J ] ≥ (Cvε36 )
2

. (4.19)

Now let ∆wb be the constant given by Lemma 4.11 with Cwb =
1
2
(Cvε

36
)

2
. If µ[C h (Rect2n,n)] >

∆wb we have obtained the result. We may therefore assume the opposite, thus that

µ[Gwb(k)] > 1 −Cwb,

for some k ≥ ρin/ε. By choice of Cwb and using a union bound, we conclude that

µ[J ∩ Gwb(k)] ≥
1
2(

Cvε
72 )

2

= Cwb. (4.20)
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Applying now Lemma 4.12, we find

µ[{ΓL
in Int(ΓL,ΓR)

←ÐÐÐÐÐÐÐ→ ΓR} ∩J ∩ Gwb(k)] ≥ Ccnt ⋅Cwb.

When J occurs, the endpoints of ΓL are contained in M b
−1 and M t

−1, respectively, while
those of ΓR are in M b

1 and M t
1. Thus, when all three events above occur simultane-

ously, M b
−1 and M b

1 are connected inside Stripn by a path of double- . We conclude
that

µ[M b
−1

in Stripn
←ÐÐÐÐÐ→M t

1] ≥ Ccnt ⋅Cwb.

We conclude in the same way as in the proof of Lemma 4.8: the lower bound above
applies also to {M b

j−1

in Stripn
←ÐÐÐÐÐ→ M t

j+1} for all − 3
2ε ≤ j ≤

3
2ε . Using the FKG inequality,

the intersection of all these translations occurs with probability at least (Ccnt ⋅Cwb)
3/ε+1.

When all the events above occur, Rect2n,n contains a double- horizontal crossing. Thus

µ[C h (Rect2n,n)] ≥ (Ccnt ⋅Cwb)
3/ε+1.

Since ε is a universal constant and Ccnt and Cwb only depend on Cv, the above provides
the desired bound. ◻

4.3 Crossing rectangles in mixed boundary conditions

We give two statements that are crucial in the proof of Theorem 4.1. They are crossing
probability estimates similar to those of Proposition 3.10. What is essential here is that
they are in finite domains with mixed boundary conditions.

Proposition 4.13. For C ≥ 3 there exists δ = δ(C) > 0 such that, for all n ≥ 1,

µ
/

CylCn,5n
[C h ([−2n,2n] × [3n,4n])] ≥ δ or µ

/

CylCn,5n
[C v ([−3n,3n] × [3n,4n])] ≥ δ.

Corollary 4.14. For all Ch ≥ 3 and Cv ≥ 1 there exists δ = δ(Ch,Cv) > 0 such that, for
all n ≥ 1,

µ
/

RectChn,Cvn
[C h (RectChn,n)] > δ.

Corollary 4.14 is referred to in [18] as the “pushing” lemma; it is an essential result in
establishing the dichotomy of Corollary 4.2.

The results stated above mimic the structure of the original RSW theory: the first
result serves as an input (such as self-duality in critical bond percolation on Z2 or as
Corollary 3.9 for the weaker RSW statement of Proposition 3.10), the second states
that horizontal crossings may be extended to longer rectangles. The latter follows from
the former in a fairly standard way using Proposition 4.7. For clarity, we will avoid
using Proposition 4.7 in the proof of Proposition 4.13. We start with the proof of the
proposition; the proof of the corollary may be found at the end of the section.
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R

Figure 14: Left: A vertical double-crossing of red plus of Strip2 contains either a vertical
crossing of a 6n × n rectangle or a horizontal one of a 4n × n rectangle. Middle: The
absence of a vertical double-crossing of Strip2 of constant red spin implies the existence
of a double-circuit of constant blue spin. Conditionally on it, we study the probability
that R contains a double crossing of red-plus spins. Right: The symmetric cylinder C̃yl.
The probability that R is crossed (horizontally or vertically) by a double red-plus path is
higher in the right image than in the middle.

Proof of Proposition 4.13 Fix C ≥ 3. We will proceed by contradiction and will
assume that

µ
/

CylCn,5n
[C h ([−2n,2n] × [3n,4n])] < δ and

µ
/

CylCn,5n
[C v ([−3n,3n] × [3n,4n])] < δ, (4.21)

for some constant δ > 0 that we will choose later. It will be obvious that the choice of δ
only depends on C.

Write Cyl for CylCn,5n and µ = µ
/

Cyl . The cylinder is split into five strips of height n:
Stripi = [−Cn − 2,Cn + 2] × [(i − 1)n, in] for i = 1, . . . ,5.

The proof of the proposition is based on two claims that we state and prove below.
The whole argument is summarised in Figure 14.

Claim 4.15. Write Circ (Strip2) for the event that there exists a double- path winding
around Cyl and contained in Strip2. Assuming δ is small enough,

µ[Circ (Strip2)] ≥ 1/4.

Proof The same argument as in the proof of Lemma 3.8 shows that either Strip2 is
crossed vertically by double-path of constant red spins, or it contains a horizontal double-
circuit (winding around the cylinder) of constant blue spins. Thus

µ(Circ (Strip2)) + µ(Circ (Strip2)) + µ(C
v (Strip2)) + µ(C

v (Strip2)) ≥ 1, (4.22)

where Circ is defined similarly to Circ and C v (Strip2) is the event that Strip2 contains
a path of double- with one endpoint on its bottom and one on its top.

If C v (Strip2) occurs, then at least one of the rectangles [kn, (k + 6)n] × [2n,3n]
with −C ≤ k < C is crossed vertically by a double- path, or one of the rectangles [kn, (k+
4)n] × [2n,3n] with −C ≤ k < C is crossed horizontally by a double- path. Due to our
assumptions (4.21) and to the monotonicity with respect to boundary conditions, all of
the crossing events above occur with probabilities at most δ. Thus,

µ[C v (Strip2)] ≤ 4Cδ.
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The same argument applies to double- crossings and we find

µ[C v (Strip2)] ≤ 4Cδ.

For this second inequality, the monotonicity of boundary conditions was not used, but
rather the invariance of µ under vertical reflection composed with red spin flip.

Assume now that δ ≤ 1
16C . Then the first two terms of (4.22) sum up to at least 1/2.

Moreover, µ is invariant under blue spin flip, hence these two terms are equal. In conclu-
sion, each is larger than 1/4. ◻

Claim 4.16. Let R = [−2n,2n] × [3n,4n]. Then

µ[C h (R)∣Circ (Strip2)] + µ[C
v (R)∣Circ (Strip2)] ≥

1
2 .

Proof If Circ (Strip2) occurs, let Γ be the lowest circuit as in its definition. Let γ be
a possible realisation for Γ and let γ be the reflection of γ with respect to the horizontal
line R × {7n/2}. Then γ lies entirely above R × {5n}, hence above the top of Cyl. It will
be useful to view γ and γ as drawn on the infinite vertical cylinder Cyl∞ ∶= (R/(2Cn +
4)Z) ×R, of whom Cyl is a subset.

Let C̃yl be the cylinder contained between γ and γ and let Top be the top boundary
of Cyl (it may be seen as a horizontal circuit in C̃yl). Let µ /

C̃yl
be the measure on C̃yl

with boundary conditions on γ and on γ. Precisely, µ /

C̃yl
is the uniform measure

on pairs of coherent spin configuration (σr, σb) on C̃yl with the property that all faces
adjacent to γ have blue spin σb = and all faces adjacent to γ have σr = .

Then, both the red-spin and blue-spin marginal of µ /

C̃yl
have the FKG property. We

sketch the proof of this fact next. Embed C̃yl in the plane in the same way that Cylm,n
was embedded in Figure 8; call D the planar graph thus obtained. The measure µ /

C̃yl

is equal to that on D with the faces adjacent to γ conditioned to have blue spin and
those adjacent to γ to have red spin . By Corollary 2.10, this conditioned measure does
satisfy the FKG inequality for both the blue and red-spin marginals.

Moreover, the boundary conditions of µ /

C̃yl
satisfy the following Spatial Markov prop-

erty for measures on Cyl∞. Let Ar be the set of faces that are either below γ, above γ,
or below γ but adjacent to it. Similarly, let Ab be the set of faces that are above γ,
below γ, or above γ but adjacent to it. Then, for any red spin configuration ξr with the
property that all faces adjacent to γ have spin and any blue spin configuration ξb with
the property that all faces adjacent to γ have spin , we have

µCyl∞(. ∣σr = ξr on Ar and σb = ξb on Ab) = µ
/

C̃yl
,

where the equality refers only to the restriction on C̃yl. This fact may be proved exactly
as Theorem 2.3 and we do not give further details.

In addition, the Spatial Markov property for boundary conditions holds un-
der µ /

C̃yl
. Thus, using the FKG property for µ /

C̃yl
, we find

µ(C h (R) ∣Γ = γ) = µ
/

C̃yl
(C h (R) ∣Top ≡ ) ≥ µ

/

C̃yl
(C h (R)), (4.23)

where Top ≡ stands for the event that all faces adjacent to the top of Cyl have red
spin . The same holds for C v (R).
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Finally, let us mention that µ /

C̃yl
is invariant under reflection with respect to the hori-

zontal line R×{7n/2} composed with colour inversion. This transformation maps C v (R)
onto C v (R) and C v (R) onto C v (R). Now, due to Lemma 3.8, R contains either a
horizontal double-crossing of constant red spin, or a vertical one of constant blue spin.
Thus,

1 ≤ µ
/

C̃yl
(C h (R)) + µ

/

C̃yl
(C h (R)) + µ

/

C̃yl
(C v (R)) + µ

/

C̃yl
(C v (R)) (4.24)

= µ
/

C̃yl
(C h (R)) + µ

/

C̃yl
(C h (R)) + µ

/

C̃yl
(C v (R)) + µ

/

C̃yl
(C v (R)).

Define the boundary conditions / on C̃yl in the same way as / . Then µ /

C̃yl
is

obtained from µ
/

C̃yl
by flipping the sign of all red spins. Using the same argument as in

Corollary 2.12 (ii), it may be shown that the red spin marginal of µ /

C̃yl
dominates that

of µ /

C̃yl
. In particular,

µ
/

C̃yl
(C h (R)) = µ

/

C̃yl
(C h (R)) ≤ µ

/

C̃yl
(C h (R)).

The same holds for vertical crossings. Insert the above in (4.24) and use (4.23), to find

1 ≤ 2µ
/

C̃yl
(C h (R)) + 2µ

/

C̃yl
(C v (R)) ≤ 2µ(C h (R)∣Γ = γ) + 2µ(C v (R)∣Γ = γ).

In conclusion

µ[C h (R)∣Circ (Strip2)] + µ[C
v (R)∣Circ (Strip2)]

= ∑
γ

[µ(C h (R)∣Γ = γ) + µ(C v (R)∣Γ = γ)] ⋅ µ[Γ = γ∣Circ (Strip2)] ≥
1
2 ,

where the sum is over all possible realisations γ of Γ. ◻

Finally, let us finish the proof of Proposition 4.13. For δ > 0 small enough for
Claim 4.15 to hold, using Claims 4.15 and 4.16, we find

µ(C h (R)) + µ(C v (R))

≥(µ[C h (R)∣Circ (Strip3)] + µ[C
v (R)∣Circ (Strip3)]) ⋅ µ[Circ (Strip3)] ≥

1

8
.

However, by our assumption (4.21), the left-hand side is bounded above by 2δ. This leads
to a contradiction if δ is chosen smaller than 1/16. ◻

Proof of Corollary 4.14 Fix Ch,Cv and n as in the statement. We may assume n
larger than some constant depending on Cv and Ch; the inequality for smaller values may
be satisfied by altering the value of δ(Cv,Ch).

Apply Proposition 4.13 to N = Cv
5 n and C =

Ch
5Cv

to obtain that

µ
/

CylChn,Cvn
[C h ([−2N,2N] × [3N,4N])] ≥ δ or (4.25)

µ
/

CylChn,Cvn
[C v ([−3N,3N] × [3N,4N])] ≥ δ, (4.26)

52



for some δ > 0 depending only on Ch and Cv. If the second inequality occurs, then
Proposition 4.7 implies that

µ
/

CylChn,Cvn
[C h ([−2N,2N] × [3N,4N])] ≥ ψ(δ) > 0.

Thus, up to replacing δ by ψ(δ), we may suppose that (4.25) holds always. Then, by
repeated applications of Corollary 4.6 we deduce that

µ
/

CylChn,Cvn
[C h ([−Chn,Chn] × [3N,4N])] ≥ δ0, (4.27)

for some δ0 > 0 depending only on Ch and Cv.
A consequence of Lemma 4.3 and of the FKG property is that the red-spin marginal

of µ /

CylChn,Cvn
is dominated by that of µ /

RectChn,Cvn
. Using this, and the fact that N = Cv

5 n,
we find

µ
/

RectChn,Cvn
[C h ([−Chn,Chn] × [3

5Cvn,
4
5Cvn])]

≥ µ
/

CylChn,Cvn
[C h ([−Chn,Chn] × [3N,4N])] ≥ δ0. (4.28)

Define the rectanglesRj = RectChn,(4/5)jCvn and Sj = [−Chn,Chn]×[
3
4 ⋅(

4
5)
jCvn, (

4
5)
j+1Cvn].

Then (4.28) applies to any of the rectangles Rj with j ≥ 0, and we find

µ
/

Rj
[C h (Sj)] ≥ δj, (4.29)

for some δj > 0 that depends on Ch, Cv and j, but not on n 3.
When C h (Sj) occurs for some j ≥ 0, there exists a double- path contained in Sj ⊂

Rj+1, connecting the left and right side of R0. Any such path separates the top of R0 from
its bottom. Let Γ be the highest such path and Under(Γ) be the set of faces of R0 that
are separated from the top of R0 by Γ. Then Γ is measurable with respect to the spins
above and adjacent to Γ. For any possible realisation γ of Γ, due to the Spatial Markov
property, the red-spin marginal of µ /

R0
[.∣Γ = γ] restricted to Under(γ) stochastically

dominates that of µ /

Rj+1 . It follows that

µ
/

R0
[C h (Sj+1) ∣Γ = γ] ≥ µ

/

Rj+1 [C h (Sj+1)] ≥ δj+1. (4.30)

This may appear surprising, as it is not always the case that Sj+1 ⊂ Under(γ). Let us
explain briefly why (4.30) is nevertheless true. Couple the red-spin marginals of µ /

Rj+1

and µ /

R0
[.∣Γ = γ] in an increasing fashion (this is possible do to the stochastic domination

of the former by the latter). Then, if (σr, σ̃r) is a sample of this coupling, σ̃r is equal to
for all faces adjacent to γ and is greater of equal to σr for the faces of Under(γ). If σr is
such that C h (Sj+1) occurs, then σ̃r ∈ C h (Sj+1) as well. See Figure 15 for an illustration.

Summing over all possible values of γ, we find

µ
/

R0
[C h (Sj+1) ∣C

h (Sj)] ≥ µ
/

Rj+1 [C h (Sj+1)] ≥ δj+1.

3We may actually restrict ourselves to n and j such that the rectangles Rj and Sj do not degenerate
below the mesh size. Indeed, (4.29) will only be used with j ≤ log5/4Cv and n may be assumed large
enough.
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Sj

Sj+1

Rj+1

R0

Figure 15: The rectangle R0 = RectChn,Cvn with 9+9+ boundary conditions on the top and
lateral sides and 9−9− on the bottom. If C h

9+9+(Sj) occurs, the measure under Γ dominates
µ

9+9+/9−9−
Rj+1 and C h

9+9+(Sj+1) is more likely to occur than in Rj+1.

Iterating this for j < J ∶= ⌊log5/4Cv⌋, we find

µ
/

RectChn,Cvn
[
J

⋂
j=0

C h (Sj)] = µ
/

R0
[C h (S0)] ⋅

J

∏
j=1

µ
/

R0
[C h (Sj)∣C

h (Sj−1)] ≥
J

∏
j=0

δj.

Notice that SJ is included in RectChn,n, hence the above implies that

µ
/

RectChn,Cvn
[C h (RectChn,n)] ≥

J

∏
j=0

δj.

The right-hand side of the above is a positive constant depending only on Ch and Cv,
and the proof is complete. ◻

4.4 Proof of dichotomy theorem (Theorem 4.1 and Corollary 4.2)

Proof of Theorem 4.1 Fix n and let ρ be some large constant (we will see below how
to choose it). We will work in the domain B ∶= Λρ(ρ+2)n, under the measure µB . The
steps of the proof are described in Figure 16.

Let xL = (−ρn,0) and xR = (ρn,0). Write Λk(xL) for the ball of radius k centred at xL,
and use the same notation for xR. Let Circ (xL) and Circ (xR) be the events that there
exists a double- circuit in Λ2n(xL)∖Λn(xL) and Λ2n(xR)∖Λn(xR), respectively. Notice
that both Circ (xL) and Circ (xR) depend only on the spins inside Λ(ρ+2)n. Recall
that Circ (k, `) is the event that there exists a double- circuit in Λ` that surrounds Λk.

By the monotonicity of boundary conditions

µB [Circ (xL) ∩ Circ (xR)]

≥ µB [Circ (xL) ∩ Circ (xR) ∣Circ ((ρ + 2)n,2(ρ + 2)n)] ⋅ µB [Circ ((ρ + 2)n,2(ρ + 2)n)]

≥ µΛ2(ρ+2)n[Circ (xL) ∩ Circ (xR)]α(ρ+2)n

≥ µΛ2(ρ+2)n[Circ (xL)]
2
α(ρ+2)n.

In the second inequality we used the monotonicity of boundary conditions (Corollary 2.12)
and the definition of α(ρ+2)n; the last inequality is due to the positive association of σr
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Λ(ρ+2)n

Λ2(ρ+2)n

xL xR xL xR

StripT

StripB

Figure 16: Left: Create Circ9+9+(xL) and Circ9+9+(xR) by first creating one double-9− circuit
surrounding the whole of Λ(ρ+2)n (at a cost α(ρ+2)n), then creating two smaller circuits
inside Λ(ρ+2)n which come at constant cost. Right: when Circ9+9+(xL)∩Circ9+9+(xR) occurs,
Corollary 4.14 allows us to create two long double-9− crossings in the strips above and
below Λ2n(xL).

under µΛ2(ρ+2)n
. It is a standard consequence of the comparison of boundary conditions

and Corollary 4.14 that µΛ2(ρ+2)n
[Circ (xL)] > c0 for some constant c0 > 0 that does not

depend on n. In conclusion

µB [Circ (xL) ∩ Circ (xR)] ≥ c
2
0α2(ρ+2)n. (4.31)

We will now condition µB on the event Circ (xL) ∩ Circ (xR), and will construct
double- circuits around Λ2n(xL) and Λ2n(xR). Using the Spatial Markov property, these
will allow to bound the probability in (4.31) as a product of two probabilities αn.

When Circ (xL) occurs, write ΞL for the innermost double- circuit as in the defi-
nition of Circ (xL). Then ΞL is measurable in terms of the spins of the faces inside and
adjacent to it. Define ΞR in the same way. Let χL and χR be two possible realisations
of ΞL and ΞR, respectively. A straightforward variant of the Spatial Markov property
(Theorem 2.3) states that the restriction of µB [. ∣ΞL = χL and ΞR = χR] to the faces of B
outside of χL and χR is independent of the values of the spins strictly inside χL and χR.
In particular, the restricted measure above is equal to µB [. ∣χL ≡ and χR ≡ ], and its
red-spin marginal satisfies the FKG inequality (see Corollary 2.10).

Consider the horizontal strip StripT = R×[
√

3n,2
√

3n]; it sits above Λ2n(xL) and Λ2n(xR).
Write C h (StripT ∩ B) for the event that StripT ∩ B is crossed horizontally by a double-
path (StripT ∩ B is not technically a rectangle, but we use the same notation). Then
Corollary 4.14 (or rather its variant with and inverted) implies the existence of a
constant c1 > 0 independent of n, χL and χR such that

µB [C h (StripT ∩B) ∣ΞL = χL and ΞR = χR] ≥ c1. (4.32)

Indeed, the red-spin marginal of µB [. ∣ΞL = χL and ΞR = χR] restricted to StripT ∩ B is
dominated by that in the rectangle [−ρ(ρ+2)n, ρ(ρ+2)n]×[

√
3n, ρ(ρ+2)n] with boundary

conditions on the bottom and on all other sides.
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xL

ParLL ParLRD

Figure 17: The rectangles ParLL and ParLR are to the left and right of Λ2n(xL), respec-
tively, and their top and bottom is part of the boundary of D. Due to the 9−9− boundary
conditions on D, Lemma 4.5 applies to both these parallelograms. Thus, each is crossed
vertically by a double-9− with uniform positive probability, independent of the configura-
tion in the rest of D.

The estimate (4.32) also holds for StripB, the symmetric of StripT with respect to the
horizontal axis R × {0}. Thus, by the FKG inequality,

µB [C h (StripT ∩B) ∩C h (StripL ∩B) ∣ΞL = χL and ΞR = χR] ≥ c
2
1.

Summing over all possible values χL and χR of ΞL and ΞR and using (4.31), we find

µB [C h (StripT ∩B) ∩C h (StripB ∩B) ∩ Circ (xL) ∩ Circ (xR)] ≥ c
2
1 c0α(ρ+2)n.

As a consequence

µB [Circ (xL) ∩ Circ (xR) ∣C
h (StripT ∩B) ∩C h (StripB ∩B)] ≥ c2

1 c
2
0α(ρ+2)n.

Write D for the domain that is the intersection of B with the strip R×[−2
√

3n,2
√

3n].
Then, by conditioning on the highest and lowest double- crossings of StripT and StripB,
respectively, using the spatial Markov property and the monotonicity of boundary con-
ditions, we find

µD [Circ (xL) ∩ Circ (xR)]

≥ µB [Circ (xL) ∩ Circ (xR) ∣C
h (StripT ∩B) ∩C h (StripB ∩B)] ≥ c2

1 c
2
0α(ρ+2)n.

Now consider the parallelogram Par formed of the faces with centres at k + `eiπ/3
with 0 ≤ k ≤ 24n and −4n ≤ ` ≤ 4n. Define its horizontal translates ParLL = Par −
((ρ + 26)n,0), ParLR = Par − ((ρ − 2)n,0), ParRL = Par + ((ρ − 26)n,0) and ParRR =

Par + ((ρ + 2)n,0). These are all contained in D, touch its top and bottom and are left
of Λ2n(xL), right of Λ2n(xL), left of Λ2n(xR) and right of Λ2n(xr), respectively. Let us
assume that ρ is large enough so that ParLL and ParLR are included in Λρn(xL) (ρ ≥ 30
suffices). Then ParRL and ParRR are included in Λρn(xR) and, in particular, are disjoint
from the first two parallelograms.

Now observe that, due to Lemma 4.5 (applied with and exchanged)

µD [C v (ParLL) ∩C v (ParLR) ∩C v (ParRL) ∩C v (ParRR) ∣Circ (xL) ∩ Circ (xR)] ≥ c2,

for some universal constant c2 > 0. Then, using Bayes rule

µD [Circ (xL) ∩ Circ (xR) ∣C
v (ParLL) ∩C v (ParLR) ∩C v (ParRL) ∩C v (ParRR)]

≥ µD [C v (ParLL) ∩C v (ParLR) ∩C v (ParRL) ∩C v (ParRR) ∣Circ (xL) ∩ Circ (xR)]

× µD [Circ (xL) ∩ Circ (xR)]

≥ c2 c
2
1 c

2
0α(ρ+2)n.
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Finally, by conditioning on the left-most vertical double- crossing of ParLL and the
right-most of ParLR, and using the monotonicity of boundary conditions, it may be
shown that the restriction of µD [. ∣C v (ParLL) ∩ C v (ParLR)] to Λ2n(xL) is dominated
by that of µ

Λρn(xL)
. Moreover, due to the Spatial Markov property, this is true even

when conditioning on the spins to the right of ParLR. The same procedure may be ap-
plied to µD [. ∣C v (ParRL)∩C v (ParRR)] for the measure in Λ2n(xR). Notice that the areas
that determine the restriction of µD [. ∣C v (ParLL)∩C v (ParLR)∩C v (ParRL)∩C v (ParRR)]
to Λ2n(xL) and Λ2n(xR) are disjoint. Thus, the restriction of µD [. ∣C v (ParLL)∩C v (ParLR)∩
C v (ParRL)∩C v (ParRR)] to Λ2n(xL)∩Λ2n(xR) is dominated by the independent product
of µ

Λρn(xL)
and µ

Λρn(xR)
. In conclusion,

µD [Circ (xL) ∩ Circ (xR) ∣C
v (ParLL) ∩C v (ParLR) ∩C v (ParRL) ∩C v (ParRR)]

≤ µΛρn(xL)
[Circ (xL)] ⋅ µΛρn(xR)

[Circ (xR)] = α
2
n.

The last two displayed equations yield the desired conclusion. ◻

Proof of Corollary 4.2 Let ρ,C be the constants of Theorem 4.1. Suppose that infnαn =
0. Let n0 be such that αn0 ≤ 1

2C . Then a simple induction involving (4.1) implies
that α(ρ+2)kn0

≤ 1
C 2−2k for all k ≥ 0. This implies the stated inequality for c < log 2/ log(ρ+

2) and C chosen accordingly. ◻

5 Conclusions
In this section we prove Theorems 1.2 and 1.3. To this end, we first resolve the dichotomy
stated in Corollary 4.2 and then transfer the results from the spin representation to the
loop O(2) model.

5.1 Excluding stretched-exponential decay

The goal of this section is to show that the case (ii) of Corollary 4.2 is incoherent with
Theorem 3.2. Once it is established that case (i) holds, it is fairly standard to deduce
Theorem 1.2; this is done in Section 5.2.

Proposition 5.1. Case (i) of Corollary 4.2 occurs. That is, infn µΛρn
[Circ (n,2n)] > 0

for some fixed constant ρ > 2.

The constant ρ and the ratio between the inner and outer radii of the annulus above
may actually be chosen arbitrarily, as we prove below. Other variants referring to rect-
angle crossings may also be formulated.

Corollary 5.2. For any a > 1,

inf {µΛan
[Circ (n, an)] ∶ n ≥ 3

a−1
} > 0.

The lower bound on n in the infimum above is to ensure that the annulus is thick
enough to allow the existence of a double- circuit. We start by proving the corollary,
based on Proposition 5.1. The remainder of the section is then dedicated to proving
Proposition 5.1.
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Λn Λbn Λan

Figure 18: The small annuli Ann1, . . . ,AnnK placed inside Λbn ∖Λn have inner radius m
and outer radius 2m. They are such that the balls of radius ρm around each of their
centres are contained in Λan. If they all contain double-9+ circuits, then these form a
circuit around Λn, contained in Λbn ⊂ Λan.

Proof This is a standard application of Proposition 5.1, the FKG property and the
monotonicity of boundary conditions.

Fix a > 1 and let b = (1+a)/2. We may limit ourselves to values of n larger than some
threshold depending on a; smaller values of n only add strictly positive numbers to the
set whose infimum we are considering.

Recall that ρ is fixed by Theorem 4.1. Let m = ⌊min{a−bρ ; b−1
4 } ⋅n⌋, and suppose that n

is large enough so that m ≥ 2. Then there exists a number K = K(a, ρ), not depending
on m or n such that one may place K translates Ann1, . . . ,AnnK of the annulus Λ2m ∖

Λm inside Λbn ∖ Λn in such a way that, if all of them contain a circuit of double- ,
then Circ (n, an) occurs. See Figure 18 for an example.

Since mρ < (a− b)n, all faces at distance ρm from each Annj are contained in Λan. It
follows from the FKG inequality and the monotonicity of boundary conditions that

µΛan
[Circ (n, an)] ≥

K

∏
j=1

µΛan
[Circ (Annj)] ≥ (µΛρm

[Circ (m,2m)])
K

> cK ,

where c = infn µΛρn
[Circ (n,2n)] is a strictly positive constant due to Proposition 5.1.

Since the ultimate lower bound above does not depend on n, the proof is complete. ◻

We now turn to proving Proposition 5.1. We will proceed by contradiction. Fix ρ > 2
given by Theorem 4.1 and recall that αn = µΛρn

(Circ (n,2n)). Will assume that case (ii)
of Corollary 4.2 occurs, namely that there exist constants c,C > 0 and n0 ≥ 1 such that

αn ≤ Ce
−nc for all n = (ρ + 2)kn0 with k ∈ N. (ExpDec)

We start by proving a series of results based on (ExpDec). All constants below depend
implicitly on the values of n0, ρ, c and C of (ExpDec).

Lemma 5.3. Under assumption (ExpDec), for any κ ≥ 2 there exists C1 = C1(κ) > 0
such that

µΛκn
[Λn ←→ Λc

2n] < e
−C1n

c

∀n ≥ 1. (5.1)
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R1

R2

R3

τ (xB)

τ (xT )

xB

xT

R

τ (R)

Figure 19: Left: One may place six copies of R around Λn so that, if {Λn
9+9+
←→ Λc

2n}

occurs, then at least one of them is crossed in the short direction (here the crossed copy
is shaded). Right: When xT is connected to xB in R and τ(xT ) is connected to τ(xB)
in τ(R), then τ(xT ) is connected to xT in τ(R) ∪ R.

Proof Fix κ ≥ 2 and n arbitrary. Let R ∶= Rect2n,n/2. The annulus Λ2n ∖ Λn may be
covered by six translations and rotation R1, . . . ,R6 of R in such a way that, if {Λn ←→ Λc

2n}

occurs, then at least one of R1, . . . ,R6 is crossed in the short direction by a double- path
(see Figure 19). For 1 ≤ i ≤ 6, write C v (Ri) for the appropriate rotation and translation
of C v (R). Then, using the union bound and the monotonicity of boundary conditions,
we deduce that

µΛκn
[Λn ←→ Λc

2n] ≤ µΛκn[
6

⋃
i=1

C v (Ri)] ≤ 6µΛ(κ+2)n[C
v (R)]. (5.2)

Henceforth we aim to prove a stretched-exponential upper bound for µΛ(κ+2)n
[C v (R)].

Let xB and xT to be the points of the bottom and top, respectively, of R that are
most probable under µΛ(κ+2)n

to be connected by a double- path contained in R. Then

µΛ(κ+2)n(xB
in R

←ÐÐ→ xT ) ≥
1

16n2µΛ(κ+2)n[C
v (R)], (5.3)

since there are 16n2 potential pairs of points (xL, xR). Let τ be the reflection with respect
to the horizontal line R × {0}. Then we also have

µΛ(κ+2)n[τ(xB)
in τ(R)

←ÐÐÐÐ→ τ(xT )] ≥
1

(4n)2µΛ(κ+2)n[C
v (R)]. (5.4)

If the events of (5.3) and (5.4) occur simultaneously, then xT and τ(xT ) are connected
inside R ∪ τ(R) = [−2n,2n] × [−n/2, n/2] (see Figure 19). Thus, by the FKG inequality,

µΛ(κ+2)n[τ(xT )
in τ(R)∪R

←ÐÐÐÐÐ→ xT ] ≥
1

(4n)4µΛ(κ+2)n[C
v (R)]2.

Using the above, the FKG inequality again and the monotonicity of boundary conditions,
we find,

µΛ(κ+10)n[C
v ([−2n,2n] × [−8n,8n])] ≥ 1

(4n)64µΛ(κ+2)n[C
v (R)]32. (5.5)
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ΛN

Λ2N

Figure 20: Combining K vertical crossings of (rotations and translations of) [−2n,2n] ×
[−8n,8n] produces a circuit in Λ2N ∖ΛN . Each such vertical crossing is constructed from
vertical crossings between τ(xT ) and xT in sixteen copies of R ∪ τ(R).

Indeed, a vertical crossing of [−2n,2n]×[−8n,8n] may be obtained by intersecting sixteen

translates of the event {τ(xT )
in τ(R)∪R

←ÐÐÐÐÐ→ xT}. The box has been increased to Λ(κ+10)n

so that all of these events occur in rectangles with distance to the boundary greater
than (κ + 2)n.

Recall the fixed values ρ > 2 and n0 of (ExpDec). Let k be minimal such that,
for N ∶= (ρ + 2)kn0, one has

N/n ≥ max{16, κ+10
ρ−2

}.

By the minimality of k, we have N ≤ c0n for some constant c0 depending on ρ, n0 and κ
only. Then, there exists a constant K =K(ρ,n0, κ), that depends on ρ, n0 and κ but not
on n or on the resulting value of N , such that one may construct a circuit in Λ2N ∖ΛN by
combining at most K vertical crossings of translates of [−2n,2n]×[−8n,8n] and rotations
by 2π/3 and 4π/3 of this rectange, all contained in Λ2N (see Figure 20). Due to the choice
of N , the faces at distance (κ+10)n from any of these rectangles are all contained in ΛρN .
Thus, by the monotonicity of boundary conditions and the FKG inequality,

αN = µΛρN
[Circ (2N,N)] ≥ µΛ(κ+10)n[C

v ([−2n,2n] × [−8n,8n])]
K

≥ 1
(4n)64⋅K µΛκn

[C v (R)]
32⋅K

.

Due to (ExpDec), this implies

µΛκn[C
v (R)] ≤ (4n)2 (Ce−N

c
)

1
32⋅K ≤ c2(4n)

2e−c1n
c

,

for constants c1, c2 > 0 depending only on κ, ρ and n0. Finally, from (5.2) we deduce that

µΛκn
[Λn ←→ Λc

2n] ≤ 6c2(4n)
2e−c1n

c

.

This implies (5.1) with C1 chosen small enough to absorb the multiplicative factor. ◻

Lemma 5.4. Under assumption (ExpDec), for any κ ≥ 2 there exists C2 = C2(κ) > 0
such that

µΛκn
[Λn /←→ Λc

2n] < e
−C2n

c

∀n ≥ 1. (5.6)
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Proof Fix κ ≥ 2 and let C2 be some small constant to be fixed below (it will be obvious
that the bound on C2 depends only on κ). It suffices to prove the statement for n large
enough; small values may be incorporated by adjusting C2.

Suppose by contradiction that there exists n ≥ 1 (large) such that µΛκn
[Λn ←→ Λc

2n] <

1−e−C2n
c
. From now on n is fixed and it is crucial that we use the assumption above only

for this particular value of n.
Due to the monotonicity of boundary conditions, we deduce that

µD [Λn ←→ Λc
2n] < 1 − e−C2n

c

for any domain D containing Λκn. Suppose now that C2 is chosen smaller than C1(4κ)/2,
with C1(4κ) given by Lemma 5.3. Then, assuming n is above some threshold (which we
will do from now on), we have

µΛ4κn
[Λn ←→ Λc

2n] < e
−C1(4κ)n

c

≤ 1
2e

−C2n
c

. (5.7)

Due to the two displays above, and to the monotonicity of boundary conditions,

µD [{Λn /←→ Λc
2n} ∩ {Λn /←→ Λc

2n}] ≥ 1 − µD [Λn ←→ Λc
2n] − µD [Λn ←→ Λc

2n] ≥
1
2e

−C2n
c

,

for any domain D with Λκn ⊂ D ⊂ Λ4κn.
As in Lemma 3.6 , the absence of a double- or double- connection between Λn

and Λc
2n implies that at least one of Circ (n,2n) and Circ (n,2n) occurs (see also Re-

mark 3.7). Under µD , the blue spins are interchangeable, and we deduce that

µD [Circ (n,2n)] = µD [Circ (n,2n)] ≥ 1
4e

−C2n
c

, (5.8)

for any domain D with Λκn ⊂ D ⊂ Λ4κn.
Next we work in the domain Λ3κn. Place translations Ann1, . . . ,AnnK of the annu-

lus Λ2n ∖ Λn around the outside of Λκn as in Figure 18 so that, if all of them contain
double- circuits, then there exists a double- circuit in Λ(κ+2)n surrounding Λκn. As
discussed in the proof of Corollary 5.2, this procedure employs a number K of translates
that only depends on κ, not on n. Thus

µΛ3κn
[Circ (κn, (κ + 2)n)] ≥ µΛ3κn

[
K

⋂
k=1

Circ (Annk)]

≥
K

∏
k=1

µΛ3κn
[Circ (Annk)] ≥ (1

4e
−C2n

c

)
K

. (5.9)

The second inequality is due to the FKG property of blue spins under µΛ3κn
(see Re-

mark 2.11 (i) with reversed colours). The last inequality is a consequence of (5.8).
Indeed, if Λ3κn is translated by the translation that sends Annk to Λ2n ∖ Λn, then it
contains Λκn and is contained in Λ4κn, hence (5.8) applies to it.

When Circ (κn, (κ + 2)n) occurs, write Γ for the exterior most double- circuit in
Λ(κ+2)n that surrounds Λκn. Let γ be a possible realisation of Γ. Due to the Spatial
Markov property, the measure µΛ3κn

[. ∣Γ = γ] restricted to the interior Int(γ) of γ is
simply µ

Int(γ)
. Then (5.8) with inverted colours applies to the domain Int(γ), and we find

µΛ3κn
[Circ (n,2n) ∣Γ = γ] = µInt(γ)[Circ (n,2n)] ≥ 1

4e
−C2n

c

.
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Averaging the above over all possible values γ taken by Γ and using (5.9), we find

µΛ3κn
[Circ (n,2n)] ≥ µΛ3κn

[Circ (n,2n) ∩ Circ (κn, (κ + 2)n)]

≥ ∑
γ

µΛ3κn
[Circ (n,2n) ∣Γ = γ] ⋅ µΛ3κn

(Γ = γ) ≥ (1
4e

−C2n
c

)
K+1

.

This contradicts (5.1) provided that C2 is small enough (any C2 < C1(3κ)/(K+1) suffices)
and n is large enough. ◻

Lemma 5.5. Under assumption (ExpDec), for any κ ≥ 2 there exists C3 = C3(κ) > 0
such that

µΛκn[Circ (n,2n)] > 1 − e−C3n
c

, ∀n ≥ 1. (5.10)

As a consequence, for any ε > 0, there exists n1 ≥ 1 such that

µH[⋂
j≥0

Circ (2jn1,2
j+1n1)] > 1 − ε. (5.11)

Proof Fix some κ ≥ 2. Let us first prove that

µΛ(κ+2)n[C
v (Rectn/16,n/2)] > 1 − e−C4n

c

, (5.12)

for all n and some fixed constant C4 > 0. Notice that we are aiming to show that
a thin rectangle is crossed in the long (vertical) direction with very high probability.
Heuristically, Lemma 5.4 says that such rectangles are crossed with high probability in
the short (i.e. horizontal) direction. To pass from crossing in the short direction to
crossings in the long direction, we will use the same argument as in the proof of (5.5).
However, since this argument applies to small probabilities rather than large ones, we
will use it for the model dual to double- connections.

Recall the notation dm(σr) for the set of edges of H with spin on either side.
Let dm(σr)∗ be the dual of dm(σr); it is a percolation configuration on T, with edges open
if at least one of their endpoints is a face of spin . Then C v (Rectn/16,n/2) fails if and only
if Rectn/16,n/2 is crossed horizontally by a path in dm(σr)∗. The same holds with Rect2n,n/2
instead of Rectn/16,n/2. Moreover, dm(σr)∗ is increasing in σr, hence satisfies the FKG
inequality under µΛ(κ+2)n

.
The same strategy as in the proof of Lemma 5.3 applies here, namely choosing the

points on the left and right sides of Rectn/16,n/2 that are most likely to be connected
in dm(σr)∗, using horizontal reflection, the FKG inequality and monotonicity of boundary
conditions, we find that

1 − µΛ(κ+4)n[C
v (Rect2n,n/2)] ≥ [ 4

n2 (1 − µΛ(κ+2)n[C
v (Rectn/16,n/2)])]

32

.

Consider now the copies R1, . . . ,R6 of Rect2n,n/2 placed around Λn as in Figure 19. Then,
due to the FKG inequality and the comparison between boundary conditions

µΛ(κ+6)n[Λn /←→ Λc
2n] ≥ µΛ(κ+6)n[

6

⋂
i=1

C v (Ri)
c] ≥ (1 − µΛ(κ+4)n[C

v (Rect2n,n/2)])
6

.

Using the upper bound (5.6) for the LHS, we obtain (5.12) with an adjusted value C4 > 0.
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Let us now prove (5.10). There exists some fixed constant K such that one may
placeK translations and rotations by 2π/3 and 4π/3 of Rectn/16,n/2 around 0 in such a way
that, if they are all crossed in the long direction by a double- path, then Circ (n,2n)
occurs (look at Figure 20 for inspiration). Using again the FKG inequality and the
monotonicity of boundary conditions, we find

µΛκn[Circ (n,2n)] ≥ µΛ(κ+2)n[C
v (Rectn/16,n/2)]

K .

Inserting (5.12) in the above proves (5.10).

We move on to proving (5.11). For n1 ≥ 1, using the monotonicity of boundary
conditions and the fact that µH = limn→∞ µΛn

, we find

µH[⋂
j≥0

Circ (2jn1,2
j+1n1)] = ∏

j≥0

µH[Circ (2jn1,2
j+1n1) ∣ ⋂

`>j

Circ (2`n1,2
`+1n1)]

≥ ∏
j≥0

µΛ
2j+2n1

[Circ (2jn1,2
j+1n1)]

≥ ∏
j≥0

(1 − e−C3(2
jn1)

c

),

where C3 is given by (5.10) for κ = 4. The right-hand side may be rendered as close to
one as desired by taking n1 sufficiently large. ◻

We are ready now to prove Proposition 5.1 and thus resolve the dichotomy stated in
Corollary 4.2. Below we show that assumption (ExpDec) contradicts (3.1), hence it is
false.

Proof of Proposition 5.1. Suppose (ExpDec) occurs. Fix n1 large enough so that

µH[⋂
j≥0

Circ (2jn1,2
j+1n1)] ≥

3
4 .

Recall from Theorem 3.1 that µH is invariant under red spin flip, whence

µH[⋂
j≥0

Circ (2jn1,2
j+1n1)] ≥

3
4 .

Then, the intersection of the two events above occurs with probability at least 1/2. In
particular, for any j ≥ 0,

µΛ
2j+2n1

[Circ (2jn1,2
j+1n1)] ≥ µH[Circ (2jn1,2

j+1n1) ∩ Circ (2j+1n1,2
j+2n1)] ≥

1
2 .

Notice that Circ (2jn1,2j+1n1) implies the occurrence of the the translate of {Λ2jn1
←→

Λc
2j+1n1

} by (2jn1,0). By the monotonicity of boundary conditions we deduce that

µΛ
2j+3n1

[Λ2jn1
←→ Λc

2j+1n1
] ≥ µΛ

2j+2n1
[Circ (2jn1,2

j+1n1)] ≥
1
2 .

This contradicts (5.1) for j large enough, and (ExpDec) fails. In other words, case (i) of
Corollary 4.2 holds. ◻
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5.2 Proof of Theorem 1.2

In this section we show how the statements about the spin representation proven in
previous sections imply Theorem 1.2.

Proof of Theorem 1.2. (i) Recall from Proposition 2.1 that for any domain D , the
measure PD is obtained from µD by considering the edges separating faces of different
blue or red spin.

If (Dn)n≥1 is a sequence of increasing domains with ⋃n≥1 Dn = H, Theorem 3.2 states
that µDn

converges to µH. As a consequence PDn converges to the measure PH obtained
from µH by the same procedure that produces PD from µD .

(ii) By Corollary 3.11, there exists PH-a.s. no infinite path in ωr. Indeed, the existence of
such a path is contradictory with the existence of infinitely many -circuits surrounding 0;
the latter event was shown to occur µH-a.s. The statement extends to blue paths by
symmetry.

Alternatively, one may see the proof of Theorem 3.2, where the absence of infinite
paths was proved.

(iii) The ergodicity and rotation invariance of PH follow from the corresponding proper-
ties of µH, which were obtained in Theorem 3.1.

(iv) We start with the lower bound. Fix D a finite domain containing Λn for some n, or
simply D = H. The procedure that generates PD from µD is such that

PD(exists loop in Λn surrounding Λn/2) ≥ µD [Circ (n/2, n) ∩ Circ (n/2, n)]

≥ µD [Circ (1
2n,

3
4n) ∩ Circ (3

4 , n)]

≥ µΛ3n/4[Circ (1
2n,

3
4n)] ⋅ µΛn

[Circ (3
4n,n)].

The second and third inequalities are due to the monotonicity of boundary conditions.
The last term is bounded uniformly away from 0 by Corollary 5.2.

Let us now prove the upper bound. Fix a finite domain D and set n = dist(0,D c).
Fix some ρ < 1 close enough to 1; we will see below how ρ needs to be chosen and
that it does not depend on n or D . Let Loop2 be the event that there exist at least
two loops in D that surround Λρn. Let Loop2

(red,blue) be the event that Loop2 occurs
and that the outermost loop surrounding Λρn is blue, while the second outermost is red.
Then PD[Loop2

(red,blue)] = 1
4PD(Loop2

).
Let us consider for a moment spin configurations (σr, σb) chosen according to µD

that correspond to loop configurations in Loop2
(red,blue). The outermost blue loop

corresponds to a double- circuit in D ∖ Λρn. Indeed, as any blue loop, it is either a
double- circuit or a double- circuit. Since there is no red loop separating it from ∂ED ,
its spin is the same as that of ∂inD , namely . The second outermost loop, the red one,
induces a simple- circuit that surrounds Λρn and is contained inside the double- circuit
above.

Coming back to general configurations (σr, σb) on D , let Ξ be the outermost double-
circuit surrounding Λρn; if no such circuit exists, set Ξ = ∅. Let Int(Ξ) be the domain de-
limited by Ξ. Due to the Spatial Markov property and a standard exploration argument,
the measure inside Ξ is µ

Int(Ξ)
.

By the discussion above, if Loop2
(red,blue) occurs, then Ξ ≠ ∅ and there exists a

simple- circuit contained in Int(Ξ) and surrounding Λρn (this is not an equality of
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events; generally the latter event contains strictly the former). Thus

1
4PD(Loop2

) ≤ ∑
χ≠∅

µD [Circ (ρn) ∩ {Ξ = χ}] = ∑
χ≠∅

µInt(χ)[Circ (ρn)] ⋅ µD (Ξ = χ), (5.13)

where the sum is over all realisations χ ≠ ∅ of Ξ. The event Circ (ρn) above refers to the
existence of simple- circuit contained in Int(χ) and surrounding Λρn.

Due to the monotonicity of boundary conditions µ
Int(χ)

[Circ (ρn)] ≤ µD [Circ (ρn)]
for any χ in the sum above. In conclusion

PD(Loop2
) ≤ 4µD [Circ (ρn)] ⋅∑

χ

µD (Ξ = χ) ≤ 4µD [Circ (ρn)]. (5.14)

Let u be a point where ∂EΛn intersects ∂ED (such a point exists due to the choice
of n). By considering the intersection of the annulus u+Λn∖Λ(1−ρ)n centred at u with D ,
and using the monotonicity of boundary conditions, we find that

µD [Circ (ρn)] ≤ 1 − µH [Circ ((1 − ρ)n,n)]. (5.15)

Indeed, the trace on D of any configuration σr on H that contains a simple- circuit in
the annulus u +Λn ∖Λ(1−ρ)n does not belong to Circ (ρn). The above conclusion follows
by the domination µD ≥st µH .

It is a standard consequence of Corollary 5.2 that ρ < 1 may be chosen so that
µH [Circ ((1 − ρ)n,n)] ≥ 7

8 for all n larger than some fixed threshold. Then, by (5.14)
and (5.15), PD(Loop2

) ≤ 1
2 for all n above this threshold, as required. Smaller values of n

may be incorporated by altering the constant c.

(v) Fix a domain D ; we will prove the results for ED ; the same proof applied for EH. First
we show the lower bound. Set K = ⌊log2 dist(0,D c)⌋ and for k = 1, . . . ,K, let Circ2

(k) be
the event that there exists a double- circuit and a double- circuit in Λ2k+1 surround-
ing Λ2k . By the same reasoning as that used to prove (iv) above,

PD(Circ2
(k) ∣ωr on Λc

2k+1) ≥ µΛ
2k+1

[Circ (3
22k,2k+1)]µΛ 3

2 2k
[Circ (2k, 3

22k)] ≥ c, (5.16)

for some constant c > 0 independent of k. As a consequence

ED(#{1 ≤ k <K − 1 ∶ Circ2
(k) occurs}) ≥ c (K − 1) ≥ c ( log2 dist(0,D c) − 2).

Now observe that each event Circ2
(k) that occurs induces a loop in D that surrounds 0.

This provides the desired lower bound, after alteration of the constant c.
We turn to the upper bound. Let Γ1, . . . ,ΓND

be the loops of ω surrounding 0, ordered
from outermost to innermost, when ω is chosen according to PD . Set dj = dist(0,Γj)
for j = 1, . . . ,ND .

The loop measure inside Γj, conditionally on Γ1, . . . ,Γj, and more generally on the
whole configuration outside Γj, is simply PInt(Γj). Applying (1.2) we find that

PD(dj+2 < ρdj ∣Γj and ω outside Γj) > c. (5.17)

From the above, it is standard to conclude that ED(ND) ≤ C logn for some constant C
depending on c and ρ only. We sketch this below.

Let Tk = min{j ≤ ND ∶ dj < ρk⋅dist(0,D c)} for k = 1, . . . ,K whereK = ⌈log1/ρ dist(0,D c)⌉.
Formally TK = ND and T0 = 0. Then (5.17) implies that each Tj+1 − Tj may be bounded
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by a random variable 2Gj, where Gj has a geometric distribution of parameter c > 0.
Then ED(ND) ≤ ∑

K
j=1 2E(Gj) =

2K
c , as required.

Finally, (5.16) also applies to PH instead of PD , and directly implies that

lim inf
K→∞

#{1 ≤ k <K ∶ Circ2
(k) occurs}

logK
> 0.

Thus, there are indeed infinitely many loops surrounding the origin PH-a.s.. ◻

5.3 Proof of Theorem 1.3

Finally we prove Theorem 1.3. It may be worth mentioning that the proof below may be
adapted to circumvent the use of the results of Section 4. Indeed, the non-quantitative
delocalisation result of Theorem 3.2 suffices.

Proof of Theorem 1.3 From the construction of PH as limit of finite-volume measures,
it is immediate that it is a Gibbs measure. The rest of the proof is dedicated to showing
it is the only one.

Let η be a Gibbs measure. For any configuration ω chosen according to η, colour each
loop of ω independently in red or blue; colour each infinite path in red. Write ωr and ωb
for the obtained red and blue configurations, respectively. Extend η to incorporate this
additional randomness.

Additionally, associate to (ωr, ωb) a pair of spin configurations (σr, σb) obtained by
choosing the spins at 0 (σr(0), σb(0)) ∈ { , } × { , } uniformly, then assign spins to
all other faces with the constraint that two faces have distinct red spin (and blue spin,
respectively) if and only if they are separated by an edge of ωr, and ωb, respectively.
Thus η is both a law on pairs of red and blue loop configurations, as well as a law on
pairs of red and blue spin configurations. We call the latter the double-spin representation
of η.

Let us show that the red-spin marginal of η is equal to νH. Notice that (DLR) implies
that the double-spin representation of η has the spatial Markov property in that, for any
domain D , the restriction of η to Int(D) conditionally on the double-spin configuration
outside Int(D) is measurable in terms of the double-spin configuration on ∂inD .

Fix ε > 0 and n ≥ 1. Let N > n be chosen so that

νΛN
(A) ≤ νH(A) + ε, (5.18)

for any event A that depends only on spins in Λn. Now let M > N be such that

η(there exists a finite loop visiting ΛN and Λc
M) ≤ ε. (5.19)

Since the event above is limited to finite loops, it is always possible to find such a valueM .
Write B(N,M) for the event in the probability above.

For a configuration ξ ∉ B(N,M), let D(ξ) be the domain obtained from ΛM by remov-
ing the interior of all loops intersecting its boundary. Then ΛN ⊂ D(ξ). Let X1, . . . ,X2k

be the points on ∂ED(ξ) that belong to infinite paths in ξ ∖D(ξ) and which have neigh-
bours inside D(ξ), ordered in counter-clockwise order, starting from some arbitrary point.
For ξ ∈ B(N,M), set D(ξ) = ∅.
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LetD,x1, . . . , x2k be a possible realisation of D(ξ),X1, . . . ,X2k withD ≠ ∅. Then (DLR)
describes the restriction Px1,...,x2kD of η(. ∣D(ω) =D and X1, . . . ,X2k = x1, . . . , x2k) to D as

Px1,...,x2kD (ω) = 1
Z 2#`(ω)1{the odd vertices of ω are x1, . . . , x2k}, for all ω ∈ {0,1}E(D),

where `(ω) is the number of loops of ω entirely contained in D. Indeed, for any ξ and ω
as above, the loops of the configuration ω ∪ (ξ ∩Dc) that intersect D are all contained
in D. Additionally D also contains k segments of infinite paths.

Let us describe the conditional measure above for spin configurations. Since no finite
loop intersects ∂ED, the blue spins on ∂inD are all identical, either or . The red spins
along ∂inD switch from to and vice-versa at every point xi due to the infinite (red)
paths. Write µx1,...,x2k,D for the spin measure on D with boundary conditions on ∂inD,

on the segments of ∂inD between xi and xi+1 with i odd, and on all other parts
of ∂inD. To be precise, this is the uniform measure on coherent configurations (σr, σb) ∈
{ , }F (D)×{ , }F (D) that have the values above on ∂inD. Define µx1,...,x2k,D , µx1,...,x2k,D

and µx1,...,x2k,D , similarly; these are the push-forward of µx1,...,x2k,D via (σr, σb) ↦ (−σr, σb),
(σr, σb) ↦ (σr,−σb) and (σr, σb) ↦ (−σr,−σb), respectively. Then, due to the uniform
choice of the spins at 0,

Px1,...,x2kD = 1
4
[µx1,...,x2k,D + µx1,...,x2k,D + µx1,...,x2k,D + µx1,...,x2k,D ].

Due to Corollary 2.10 (iii), the red spin marginals of the mesures µx1,...,x2k,D , µx1,...,x2k,D ,
µx1,...,x2k,D and µx1,...,x2k,D all satisfy the FKG inequality. In particular, since ΛN ⊂ D,
their restrictions to Λn are all dominated by νΛN

. In conclusion we find that, for any
increasing event A depending only on the red spins inside Λn,

η(A) ≤ η(D(ω) = ∅) + ∑
D;x1,...,x2k

D≠∅

Px1,...,x2kD (A) ⋅ η(D(ω) =D; X1 = x1, . . . ,X2k = x2k)

≤ η(B(N,M)) + ∑
D≠∅

νΛN
(A) ⋅ η(D(ω) =D)

≤ νH(A) + 2ε.

The last inequality is due to (5.18) and (5.19). Recall that the choice of ε is arbitrary,
hence η(A) ≤ µH(A) for all events A as above.

The same argument may be performed with replaced by , and yields that for any
decreasing event B depending only on the red spins inside Λn (that is the complement
of an increasing event), η(B) ≤ µH(B). Thus, η(A) = µH(A) for all increasing (and
decreasing) events that only depend on the red spins in a finite region. The monotone
class theorem allows to conclude that the red spin marginals of η and µH are equal.

Now, given the red spin marginal of µH, the blue spins are obtained by awarding
uniform blue spins to the clusters of θ(σr). The same holds for η, since 0 is surrounded η-
a.s. by infinitely many disjoint clusters of θ(σr). As a consequence η = µH. ◻

5.4 RSW theorem for height functions

We finish the paper with a RSW result for the uniform Lipschitz functions model. Recall
the notation of Section 1.1. When considering Lipschitz functions on a domain containing
Λ2n, write Circ≥k(n) for the event that there exists a closed face-path contained in Λ2n,
surrounding Λn and formed entirely of faces for which the function is larger than k.
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Theorem 5.6. For any k ≥ 1 there exists c(k) > 0 such that for all n large enough and
any domain D containing Λ2n.

πD(Circ≥k(n)) ≥ c(k).

Proof Fix k ≥ 1. Let n ≥ 1 be a large integer and D a domain containing Λ2n. Recall
from Propositions 1.4 and 2.1 that the loop representation of a height function chosen
according to πD has law PD , and its spin representation has law µD .

Write H for the event that there exist k + 1 closed edge-paths γ1, . . . , γk+1 in Λ2n that
surround Λn, that are numbered from outer-most to inner-most, and such that γj is a
double- path if j is odd and a double- path if j is even. By repeated applications of
Corollary 5.2, there exists a constant c(k) > 0 independent of n or D such that µD (H) ≥

c(k).
When H occurs, there exist at least k loops in the loop representation that are con-

tained in Λ2n∖Λn and surround Λn. Write H̃ for set of loop configurations which contain
at least k such loops, and denote by Γ1, . . . ,Γk the outermost k loops as above. Recall
that, in order to obtain the height function Φ from the loop configuration ω chosen ac-
cording to PD , loops need to be oriented uniformly, and that the orientation of each loop
dictates whether the height inside the loop is larger or smaller than the one outside. By
symmetry, conditionally on any loop configuration ω ∈ H̃, with probability at least 1/2
the height of the faces outside and adjacent to Γ1 is at least 0. Moreover, independently
of the above, all paths Γ1, . . . ,Γk are oriented clockwise with probability 2−k. When both
of the above occur, the height of the faces inside and adjacent to Γk is at least k. Thus

πD(Circ≥k(n)) ≥ 2−(k+1)PD(H̃) ≥ 2−(k+1)µD (H) ≥ 2−(k+1)c(k),

which is the desired conclusion. ◻
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