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Abstract

The main goal of this thesis is the study of percolation on isoradial graphs,
and, more precisely, to show criticality and universality of arm exponents for

these models.

An isoradial graph G is a planar graph embedded in the plane in such a way
that every face is inscribed in a circle of radius 1. To each edge e we attach
a parameter p(e) € [0,1], which is an explicit function of the length of e. We
associate to G a canonical percolation model, under which each edge e is taken
open with probability p(e) and closed with probability 1 — p(e), independently
of other edges. Thus, isoradial graphs provide a large class of planar perco-
lation models expected to be critical and to belong to the same universality
class. These models include the critical homogeneous bond percolation on the
square, triangular and hexagonal lattices. More generally, isoradial graphs
have proved to be a particularly convenient setting for the study of various

statistical mechanics models.

We will focus on two features of critical percolation models. The box crossing
property (or RSW property) states that the probability of crossing rectangular
domains of given aspect ratio is bounded away from 0 and 1, uniformly in
the size of the domain. The arm exponents are constants that describe the
asymptotic behaviour of certain unlikely events, such as that the cluster of a

given vertex has large radius.

Using the star—triangle transformation, and its particular affinity with per-
colation on isoradial graphs, we manage to convert one isoradial graph into
another, while preserving certain features of the percolation model. These fea-
tures are related to existence of open connections; in particular we prove the
universality of the box-crossing property and of the arm exponents across a
large class of graphs. The box-crossing property is known to hold for certain
isoradial graphs, such as the homogeneous square lattice, hence it extends to
the studied models. Arm exponents however are not known to exist for any

planar bond percolation model, and we make no progress on this point.

We also give a detailed account of how the box-crossing property implies crit-
icality, as well as a certain form of isotropy of the critical phase. This is then
used to prove scaling relations that relate the arm exponents to other critical

exponents.
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Chapter 1

Introduction

1.1 Overview

The idea that statistical physics models should, at large scale, be characterized by only few
parameters appeared in the physics literature in the 1960’s under the name universality.

Consider a large system of interacting particles, each taking a random state, with the
states of different particles being correlated following a certain correlation structure. The
intensity of the correlation is given by a parameter, usually the temperature. In very
vague terms, the renormalization group rescales the above model, and yields an equivalent
model with modified parameters. In the new model, each particle represents a group
of particles of the initial model. When performing repeatedly this renormalization, the
parameters degenerate, unless at certain specific points called critical points. In the latter
case, most observables of the system become irrelevant after repeated rescaling, and only
few are relevant for the large scale behaviour. In particular, systems that are different
at microscopic scale may, if their differences become irrelevant, have the same large scale
behaviour.

In the following decades the concept of universality became more and more widespread,
also penetrating through to mathematics. Although indications of universality appear in
various fields, we rarely have a good understanding of the phenomenon. From a mathe-
matician’s point of view, physics provides predictions, and arguments in favour of these
predictions, but not rigorous proofs. Despite the important mathematical efforts of the
last years in understanding scaling limits, only few models have been fully solved, and
many await.

The first instance of universality that comes to mind to a probabilist is surely the
central limit theorem. If (X;);cn are i.i.d random variables of mean 0 and variance 1, then
Sn = % >, X, converges to a normal variable, regardless of the law of X;. Let us take a
further step, and consider the convergence of random walk to Brownian motion. Regardless

of the law of the step (provided it’s centered and has finite variance), the trajectory of the

11



Introduction

random walk converges to a Brownian path. As the limit of a renormalization process, the
Brownian path is scale invariant. In this case the only parameter relevant for the limit is
the dimension.

In two dimensions, in addition to universality and scale invariance, statistical physics
models should, at large scale, exhibit conformal invariance. Oded Schramm has observed
that, if a scaling limit abides to this prediction, then its interfaces have to converge to
one of the random curves called SLE (Schramm-Loewner evolution). For x > 0, SLE, is
a family of random curves indexed by a simply connected domain and two points on its
boundary; it is conformally invariant and has the domain Markov property. Since these
curves should describe the limits of all critical planar statistical physics models, all such
models may be indexed using only the parameter k.

From a probabilist’s point of view, the simplest interacting particle system should be
percolation, precisely because it lacks interaction. In its most common form, it is a one-
parameter system which exhibits a phase transition similar to that of most systems in
statistical physics. The fact that different regions of space have independent behaviour
is particularly convenient when studying percolation. But the partition function, which
usually allows a simple understanding of the system, is, in this case, trivially equal to
1, thus rendering its study futile. For planar percolation mathematicians have developed
geometrical arguments that provide remarkable results without reference to the partition
functions.

Two dimensional percolation is fully understood only in the case of site percolation on
the triangular lattice, where Smirnov proved the convergence of the exploration process
to SLEg [Smi01]. Understanding critical percolation on other lattices, and confirming the
universality prediction, is probably the greatest challenge in two-dimensional percolation
today.

In the present dissertation, we discuss the problem of universality for the canonical
percolation on so-called isoradial graphs. These graphs provide a large class of planar
bond percolation models, which include standard percolation on the three most studied
lattices (square, triangular and hexagonal).

Isoradial graphs have been noticed to constitute a particularly convenient setting for
the study of statistical physics models, as illustrated by the recent analysis of the criti-
cal Ising model by Chelkak and Smirnov [CS10] [CS12]. On the one hand, such isoradial
graphs are especially harmonious in a theory of discrete holomorphic functions (introduced
by Duffin, see [CS11], Duf68, Mer01]), and on the other they are well adapted to trans-
formations of star-triangle type (explained by Kenyon [Ken04]). These two properties
resonate with the intertwined concepts of conformality and universality.

Isoradial graphs appear, therefore, as the “right” embedding, that allows percolation
to converge to its scaling limit. Nevertheless this remains a conjecture.

Our much more modest goals are proving criticality for isoradial percolation, and a
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weaker form of universality, that of critical exponents. We achieve this by means of the
star—triangle transformation, which we use to transform one isoradial graph into another,
while preserving certain properties related to connectedness. The spirit of our approach
is very close to the idea of universality, since it shows that different models are essentially
the same. In addition to the concrete results it provides, it constitutes a link between
models, which could be used to also transfer other properties.

In a recent lecture in Cambridge, while talking about universality for random matrices,
Terence Tao mentioned a way of proving the central limit theorem, which I find illustrative
of the methods in this thesis. The idea is to take two independent sets of i.i.d variables,
(X;) and (Y;) , each of mean 0 and variance 1, and assume the sums S,, for the (X;)
converge indeed to the normal distribution. Then we may switch one by one the variables
Y; instead of X;, and show that S,, changes by an amount that disappears in the limit.
This would then prove that the sums for (Y;) converge to the same limit as those for (X;).
We may take (X;) to be normal variables, so that the initial convergence is immediate.

In the same spirit, we consider an isoradial graph, which we transform locally but
repeatedly by the star—triangle transformation, until we obtain a completely different
graph. We show that certain large scale features are not altered by this procedure. Sadly,
only some of these features are known to hold in at least one of the models involved.
For such features we obtain unconditional universality, while for others we have to limit

ourselves to conditional results.

1.2 Basic model and notation

1.2.1 General notation

Let G = (V, E) be a countable connected graph. There are two types of percolation, site
and bond, and we will focus on the second. A (bond) percolation measure P on G is a
product measure on the sample space Q = {0, 1}E. A configuration is an element w € Q.
An edge e is called open (or w-open) if w(e) = 1, and closed otherwise. A path of G is a
chain of adjacent edges of E (see Section for a more precise definition). It is called
open if all its edges are open. For u,v € V| we say u is connected to v (in w), written
u <> v (oru & v), if G contains an open path from u to v; if they are not connected, we
write u <—G7/1> v. An open cluster of w is a maximal set of pairwise-connected vertices. Let
Cy, ={u € V : u <> v} denote the open cluster containing the vertex v, and write v <> 0o
if |Cy| = 0.

The intensities of the measure P are the probabilities p = (pe)ecr given by p. =
P(e is open). Conversely, any family of weights p € [0, 1]¥ gives rise to a bond percolation
measure denoted Pp. If the intensities are all equal to some p € [0,1], we say P is
homogeneous with intensity p. Otherwise we say it is inhomogeneous.

Site percolation is very similar, the only difference being that sites are declared open
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Figure 1.2.1: The graph G in solid lines, and its dual graph G* in dashed.

or closed instead of edges. Thus site percolation measures live on {0,1}"". The notation

introduced above applies to both models.

1.2.2 Planar graphs, duality

In this work we focus on percolation on planar graphs. A graph G is called planar if it may
be embedded in the plane in such a way that edges intersect only at their endpoints. Such
an embedding is called a proper embedding. Throughout the document, when talking
about a planar graph, we consider the graph, along with a proper embedding in the plane.
The embedding is important for our arguments, due to their geometric nature. Thus we
generally differentiate between two embeddings of the same graph.

Let G be a planar graph embedded properly in the plane R2. A face of G is a connected
component of R? \ G, where G is identified with the union of its edges and vertices. Two
faces are adjacent if they share an edge.

The graph G has a dual graph, G* = (V*, E*), obtained as follows. The vertices of G*
are the faces of (G. Two such vertices are connected if they correspond to adjacent faces
of G. More precisely, they are connected in G* by a number of edges of E* equal to the
number of edges of F shared by the corresponding faces of G. Thus, to each edge e € F,
there corresponds a unique edge e* € E. See also Figure [L2.11

The graph G* is also planar, and is embedded by placing each vertex of V* inside the
corresponding face of G. An edge e* of G* only intersects its corresponding edge of G.
Thus G* also admits a dual, and G is one. See, for example, [Gri99 Sect. 11.2] for an
account of graphical duality.

The great advantage of bond percolation on planar graphs is that we can associate to it
a bond percolation on the dual graph as follows. For w € Qand e € E'let w*(e*) = 1—w(e),
so that e* is open in the dual configuration w* (written open®) if and only if e is closed
in the primal configuration. The notation defined for the primal is inherited by the dual.
In particular, we write u <—G—Ui>* v for the event that the vertices u,v € V* are connected in
w*. If w is taken according to a percolation measure P, then the configuration w* thus

obtained also follows a percolation measure, with intensities p.» = 1 — p.. We denote this
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dual measure Pp.

If C is a finite open cluster in a configuration w on G, then it is surrounded by an
open* circuit. This makes it possible to study planar bond percolation through geometric
arguments, such as those of Section

A similar construction exists for site percolation on planar graphs. The role of the dual
graph is played by the matching graph, defined as follows. The vertices of the matching
graph are the vertices of the original graph, and two vertices are united by an edge in the
matching graph if they belong to the same face in the original graph. A vertex is considered
open in the matching graph if it is closed in the original one. Thus it is common to interpret
site percolation configurations as bichromatic colorings of the vertices. One colour, say
red, is associated to sites open in the original graph, and the other, say blue, to those open
in the matching graph.

The disadvantage of this construction is that generally the matching graph of a planar
graph is not itself planar. Nevertheless, if all the faces of the original graph are triangles
(we call such a graph a triangulation), then the matching graph is identical to the original
one. This is one of the reasons why site percolation on the triangular lattice is so well
understood (see Section [L7)).

1.2.3 Stochastic ordering and the FKG and BK inequalities

The following standard material is essential to the study of percolation. For proofs see for
instance Sect. 4] and the references therein.
We start with a brief overview of stochastic ordering. Let E be a finite set, and

Q = {0,1}¥. The set Q has a natural partial order given by
w1 <wy ifwi(e) <wsle) forall e € E.

A set A C Q is called increasing if

w1 <wyand wy € A = wy € A.
It is called decreasing if

wi <wsgand wy € A = wy € A.
For two probability measures 771 and 72 on €2, we have the following stochastic ordering.

m <st m2  if ni(A) <ma(A) for all increasing sets A C E.

The following result, known as Strassen’s theorem, is very useful when dealing with

stochastic ordering. A much more general statement than that presented next may be
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found in .

Theorem 1.2.1 ([Str65]). Let n1 and 1y be probability measures on Q2. The two following

statements are equivalent.

1) m <st 12,

(ii) there exists a probability measure v on Q2, with marginals ny and 1z, such that
v({(wy,we2) :wp <ws}) =1

A probability measure 1 on €2 is said to be positively associated if
n(ANB) >n(A)n(B) for all increasing events A, B C E.

For two configurations wi,ws € 2 we denote w; V wy (respectively w; A wsy) the pointwise

maximum (respectively minimum) of wy and ws.

Theorem 1.2.2 (FKG inequality, [FKGTI1]). Let n be a strictly positive probability mea-

sure on € such that

N(wy Vwa)n(wi Aws) > n(wi)n(wa), wi,ws € L. (1.2.1)

Then n s positively associated.

Usually (L21) is called the FKG lattice condition. See [Gri06l Sect. 2.2] and the
references therein for a proof and a discussion on the FKG inequality. As a consequence,
product measures are positively associated. We sometimes refer to this fact as the FKG,
or Harris—FKG, inequality instead of positive association.

A second useful inequality in the study of percolation is the BK inequality, named after
its authors, van den Berg and Kesten. Before stating the inequality, we need to introduce
the notion of disjoint occurrence. For w € Q and F C F let wr be the element of 2 defined
by

w(e) foreeF,

wr(e) = (1.2.2)
0 for e ¢ F.

For A, B C () increasing, define the set

Ao B ={weQ: there exists F' C F such that wr € A and wp\r € B}.

With this notation we have the following result.

Theorem 1.2.3 (BK inequality, [BK85]). For n a product measure on Q@ and A, B C Q
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mncreasing,
n(Ao B) < n(A)(B). (1.2.3)

Stochastic ordering and positive association may be extended to countably infinite sets
E as discussed in [Gri06, Sect. 4.1]. In this case, the FKG and BK inequalities may be
used for events that depend only on the states of finitely many coordinates of w. This
extension is particularly simple in the case of product measures; no further details are

given here.

1.3 Concrete models

1.3.1 General conditions

Even though the ultimate goal of the present work is to study isoradial graphs, some results
will be stated in greater generality. Nevertheless we require some minimal conditions on
the graphs we work with.

We say a planar graph covers the plane if all its faces have finite diameter. If not
otherwise stated, we will always consider that our planar graphs cover the plane.

Let G be a planar graph. In all our illustrations we will consider both G and its
dual, G*, to be embedded with edges as straight line segments. This is not an essential
requirement in what follows. Here are two conditions that we will assume to hold for all

graphs in this work.

e Bounded edge lengths. There exists a constant L. > 0, such that all edges of G
and G* have length at most L..

e Bounded vertex density. There exist constants Ly, K4 such that, for any (z,y) €
R?2, the number of both primal and dual vertices inside the square [z, z+ Lg] X [y, y +
L] is at least 1 and at most Kj.

Let G be a planar graph such that both G and G* satisfy the conditions above. It follows
that G is locally finite, in that, for any bounded domain in the plane, there are only finitely
many elements (i.e. vertices and edges) of G intersecting it.

Sometimes we will work with graphs exhibiting various forms of symmetry. We give a
list of terms which will be used throughout the paper.

We say G periodic (or translation invariant) if there exist independent non-zero vectors
71,7 € R?, such that G is invariant under shifts by either 7;,. A percolation measure P
on (7 is said to be periodic if GG is periodic and if the measure is also invariant under the
shifts described above. We say G is vertex transitive if for any two vertices u and v there

exists an automorphism of G sending u onto v.
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Figure 1.3.1: The square lattice and its dual square lattice. The triangular lattice and its
dual hexagonal lattice.

A model (G,P) is called rotation invariant, if it is invariant under rotation by some
angle o € (0, 7) around some point u.

It is called refiection invariant if it is invariant under reflection with respect to some
line d. We say it is invariant under reflection with respect to the axes, if it is invariant
under reflection with respect to two perpendicular lines. We will usually assume these

lines to be the axes of R2.

1.3.2 Lattices

In Chapter [@ we present a first approach to the problem of universality. There we do not
use isoradial graphs, but rather a wide class of percolation models on three lattices which
we define next. We do not attempt to give a general definition of lattices here, instead we
will present the three lattices we will work with.

The square, triangular, and hexagonal (or honeycomb) lattices of Figure [[31] are
denoted respectively Z2, T, and H. Homogeneous percolation on these lattices is a one
parameter model, and we denote IP’E, IP’]DA and, respectively, IP’]E> the measures with intensity
p € [0,1].

The dual of (Z2,IP>E) is (22 + (3, %),P?_p), where Z2 + (4, 1) is the shift of Z2 by the
vector (3, %). The dual of (']I‘,]P’pA) is (H, ]P’?_p).

We now turn to inhomogeneous percolation on the above three lattices. The edges
of the square lattice are partitioned into two classes (horizontal and vertical) of parallel
edges, while those of the triangular and hexagonal lattices may be split into three such
classes. We allow the product measure on €2 to have different intensities on different edges,
while requiring that any two parallel edges have the same intensity. Thus, inhomogeneous
percolation on the square lattice has two parameters, pg for horizontal edges and p; for
vertical edges, and we denote the corresponding measure IP’E where p = (pg,p1). On
the triangular and hexagonal lattices, the measure is defined by a triplet of parameters
p = (po, p1,p2), and we denote these measures Pﬁ and IP’IC,> , respectively.

The inhomogeneous models possess translation-invariance but not rotation-invariance.

18
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a3 a0 a3
g3 q q
p p p
i) a5 a0
q q q
p p
7 a1 7
qr qr q1
p p p
Figure 1.3.2: Left: The triangular lattice with the highly inhomogeneous product measure
]P’pAq q The probability for each edge to be open is described in the picture: all horizontal

edges have probability p of being open, while the other edges have probability g, (right
edges of upwards pointing triangles) or ¢/, (left edges of upwards pointing triangles) of being
open, with n being their height. Right: The square lattice with a highly inhomogeneous
product measure Pg,q/’ rotated by m/4. Edges inclined at angle /4 have probability g,
of being open, while edges inclined at angle 37/4 have probability ¢/, of being open, with
n being their height.

Full translation-invariance is in fact inessential to the arguments of Chapter[d To illustrate
this we introduce the so-called ‘highly inhomogeneous models’. They also serve as a
connection between the approach of Chapter [ and the isoradial graphs of Chapter

Let p € (0,1), and let q = (g, : n € Z) € [0,1)%> and ¢’ = (¢, : n € Z) € [0,1]%.
These are the parameters of our highly inhomogeneous models on the square, triangular
and hexagonal lattices.

Consider first the triangular lattice, and write IP’pA’% o for the product measure on
under which: any horizontal edge is open with probability p; any right (respectively, left)
edge of an upwards pointing triangle is open with probability ¢, (respectively, ¢},). Here,
n € Z denotes the height of the edge as drawn in the Figure Let P& be

I-pl—-ql—q
the measure on the hexagonal lattice that is dual to IP’pA’(L q v
Consider next the square lattice. The measure ]P’qE”Q, is defined similarly to the above,
as in Figure We refer to the three probability measures thus defined as highly
inhomogeneous.
Note that the square, triangular and hexagonal lattices, embedded as in Figure [L31],

do indeed satisfy the conditions of Section [[L3.11

1.3.3 Isoradial graphs

Let G be a planar graph embedded in the plane R?, with edges embedded as straight-line
segments. It is called isoradial if there exists » > 0 such that, for every bounded face F
of G, the vertices of F' lie on a circle of (circum)radius r with centre in the interior of
F. Note that isoradiality is a property of the planar embedding of G rather than of the
graph itself. By rescaling the embedding of G, we may assume r = 1. In the absence of

a contrary assumption, we shall assume that isoradial graphs are infinite with all faces
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Figure 1.3.3: Part of an isoradial graph. Each face is inscribed in a circle of radius 1.
With the edge e, we associate the angle 6..

bounded.

It was noted by Duffin that isoradial graphs are in two—one correspondence
with rhombic tilings of the plane (i.e. there exists an explicit pairing of isoradial graphs
indexed by rhombic tilings). The name ‘isoradial’ was coined later by Kenyon. While
details of this correspondence are deferred to Section Bl we highlight one fact here. Let
G = (V, E) be isoradial. An edge e € E lies in two faces, and therefore two circumcircles.
As illustrated in Figure [[3:3] e subtends the same angle 6, € (0,7) at the centres of these

circumcircles, and we define p, € (0,1) by

p. _ sin(z[r — 6c])
1—pe sin(30.)

(1.3.1)

We consider bond percolation on G with edge-probabilities p = (p. : e € E). This

percolation measure is the canonical percolation on GG, and is written Pg.

Definition 1.3.1. Let ¢ > 0. The isoradial graph G is said to have the bounded-angles
property BAP(e) if
O € [e,m — €], ec E. (1.3.2)

It is said to have, simply, the bounded-angles property if it satisfies BAP(€) for some
e > 0.

All isoradial graphs of this paper will be assumed to have the bounded-angles property.
Under this assumption, it is easy to see that the conditions of Section [[.3.1] hold.

In Section Bl we will introduce a second condition on isoradial graphs, called the
square-grid property. Loosely speaking, the square-grid property states that there exists
a square lattice structure embedded in some suitable sense in the graph. Details and
examples will be given in due course. We denote G the family of isoradial graphs satisfying

the bounded-angles property and the square-grid property.
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1.4 Phase transition

1.4.1 Homogeneous square lattice: an example

The object of percolation is the study of the geometry of connected components. A first
question is whether there exist infinite components.

Let us consider bond percolation on the square lattice Z? = (V,E). We present a
standard argument that allows us to couple the measures ]P’E for p € [0,1]. Let (Ue)eckr
be a family of independent uniform variables in [0,1]. For p € [0,1] and e € E, let
wP(e) = 1y, <p}, where 14 is the indicator function of the event A. With this definition
wP has law IP’E,
increasing in p.

and wP < w? for p < ¢q. Hence the family of measures (Pf)pe[()’l} is

Let O denote a particular vertex of the square lattice called the origin, and define
0
0(p) =P, (O < 00).
By the above 6 is an increasing function, and we set

pe(Z?) = sup{p : 6(p) = 0}.

By Kolmogorov’s zero-one law, if p < p.(Z?), there exists ]P’E—a.s. no infinite open cluster
and, if p > p.(Z?), there exists IP’E—a.s. at least one infinite open cluster.

The parameter p.(Z?) is called the critical point of (bond percolation on) the square
lattice, and IP’EC(ZQ) is called a critical percolation measure on Z2. Similarly we define p.(T)
and p.(H).

We say the model undergoes a phase transition at the critical value of p. As we will
later see, it is particularly interesting to study this phase transition; more precisely to

study the geometry of the model for p equal or close to the critical value.

1.4.2 General graphs

While defining criticality is straightforward for homogeneous percolation, it is not obvious
how to do this for inhomogeneous models. We will attempt to replicate the definition of
the previous section.

Let G = (V, E) be an infinite, connected graph, and let P be a product measure on
{0,1}F with intensities (p. : e € F). For § € R, we write P° for the percolation measure
with intensities p? := (0V (pe+0))Al. [As usual, 2Vy = max{z,y} and Ay = min{z,y}.]

We say that P is critical if, for any 6 > 0, there exists P~%-a.s. no infinite open cluster,
and there exists P%-a.s. at least one infinite open cluster. In the same vein, we call P
(strictly) supercritical if there exists § > 0 such that there exists P™%-a.s. at least one

infinite open cluster. Conversely, P is (strictly) subcritical if there exists § > 0 such that
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there exists P%-a.s. no infinite open cluster. These definitions are not standard, and we do
not claim that they are the “right” ones. They merely provide the concerned reader with
a clear understanding of terms that will be used frequently in what follows.

One may define subcriticality and supercriticality alternatively, purely in terms of the
non-existence and, respectively, existence of an infinite component. The former definitions
are stronger than the latter, hence the qualification “strictly”.

An alternative definition of supercriticality, which will be used later, is to call P uni-
formly supercritical if there exists 6 > 0 such that P(v <> c0) > 6 for every vertex v.

For two vectors p = (pe)ecr and p’ = (pl)ecr, we say p < p’ if p. < pl for all e € E.
We say p < p'if p < p’ and p # p’. The disadvantage of the above definition of criticality
is that we may have two critical measures, Py, and Py, with p < p’. Nevertheless, for
most periodic models, the above can not occur.

Take G a periodic graph. Assume that each edge of GG is part of a doubly infinite,
non-intersecting chain of edges. Let P, and Py be two periodic percolation measures on
G, with p,p’ € (0,1)F. Assume Py is critical, then

(a) if p < p’, then Py is supercritical,
(b) if p > p’, then Py is subcritical.

We will not give a proof of the above, we only note that it uses the technique of enhance-
ment; see [Gri%99, Section 3.3].

In most models, it is expected that the three phases (critical, sub- and supercritical)
have very different behaviour (see Theorem [5.1.2]). While the large-scale behaviour of the
sub- and supercritical phases is somewhat trivial, the critical phase is expected to exhibit
interesting features, such as scale invariance, and, when G is planar, conformal invariance.
This statement is of course vague and may be interpreted in several ways. In the following

three sections we will present some of the features expected from critical models.

1.4.3 Inhomogeneous, highly inhomogeneous and isoradial models

One of the main objectives of this work is to prove criticality for some of the models of
Section [[.3.2] as well as for the isoradial graphs of Section [[.3.3]l For the former, it will be

convenient to use the following notation.

ko(p) =pn +pv — 1, for p = (pn, pv), (1.4.1)
wa(P) = po +p1 +p2 — pop1p2 — 1, for p = (po,p1,p2), (1.4.2)
ko(P) = —ka(l —po,1 —p1,1 —pa), for p = (po, p1,p2)- (1.4.3)

With this notation we can state the following criticality criteria.

Theorem 1.4.1. The critical surfaces of inhomogeneous percolation models on the square,

triangular, and hexagonal lattice, as presented in Section .32, are given as follows.
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1.4. Phase transition

(a) Square lattice: ko(p) = 0.
(b) Triangular lattice: ka(p) = 0.
)=0

(c) Hexagonal lattice: ko (p

The above theorem was predicted in [SE64], and discussed in [Kes82, Sect. 3.4], where
part (a) was proved and examples presented in support of parts (b) and (c¢). The complete
proof of the theorem may be found in [Gri99, Sect. 11.9]. This proof is notably different
from the proof we give in Chapter @l and we will not refer to it.

We call a triplet p = (po,p1,p2) € [0,1)® self-dual if it satisfies ka(p) = 0. Let M
denote the set of critical inhomogeneous bond percolation models on the square, triangular,
and hexagonal lattices, as given in the theorem.

We now move on to the highly inhomogeneous models on the square, triangular, and
hexagonal lattice, also presented in Section

Theorem 1.4.2. Letp € (0,1) and q,q’ € [0,1)%.

(a) If there exists € > 0 such that for all n € Z,

ko(qn,q,) =0 and  qn,q, € (6,1 —¢), (1.4.4)

then IP’q’q, 18 critical.
(b) If, for alln € Z, ka(p,qn,q,) = 0, then IP’pAq o 18 critical.
(c) If, for alln € Z, ko(p, qn,q,,) = 0, then ]P’g%q, is critical.
Let M denote the set of critical highly inhomogeneous models as given in the theorem
above. Also, we write M(e) for the models of M satisfying
(i) for the square lattice, g,,q), € (¢,1 —¢€) for all n € Z,
(ii) for the triangular and hexagonal lattices, p € (¢,1 —€).

We have M = UesoMj(€) and M C M.

Finally, for isoradial graphs, we will prove the following.
Theorem 1.4.3. For G € G, Pg is critical.

The three theorems above are largely overlapping. The first theorem is a particular
case of the second. Most of the models in M may be interpreted as isoradial graphs that
fall under the incidence of Theorem [LZ.3l More details on this point will be provided in
Section B4l More precise statements of the above theorems are given in Sections [£.1]
and Bl The different statements of Theorems [[L4.1] and reflect the structure of the
proof.

The proofs of all three theorem go through geometrical constructions based on the

box-crossing property, which we introduce next.
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1.5 The box-crossing property

Let G = (V, E) be a planar graph, and Q := {0,1}”. As usual we consider G’ embedded
in a fixed, proper way in the plane R%. The ‘box-crossing property’ is concerned with
the probabilities of open crossings of domains in R2. This has proved to be a very useful
property indeed for the study of infinite open clusters in GG; see, for example, Kes82].

A (planar) domain D is an open, simply connected subset of R? which, for simplicity,
we assume to be bounded by a Jordan curve 0D. Most domains of this paper are the
interiors of polygons. Let D be a domain, and let A, B, C', D be distinct points on its
boundary in anticlockwise order. Let w € 2. We say that D has an open crossing from
AD to BC' if there exists an open path on G containing an arc (y; : t € [0, 1]) such that: (i)
Y0,1) € D (ii) 70 and 1 are on 9D, between A and D and between B and C respectively.
Note that 9 and ~; need not be vertices of G. We will sometimes abuse notation by
considering closed domains of the form D U dD. The definition of crossing is still valid in
this case, and 7(q,1) is allowed to contain points of 9D.

A rectangular domain is a set B = f((0,7) x (0,y)) € R?, where x,y > 0 and f :
R? — R? comprises a rotation and a translation. The aspect-ratio of this rectangle is
max{z/y,y/x}. We say B has open crossings in a configuration w € € if it has open
crossings both from f({0} %[0, y]) to f({z} %[0, y]) and from f(]0,z]x{0}) to f([0, z]x{y}).
Also define the rectangular domains B(m,n) = [0, m] x [0,n]. A horizontal (respectively,
vertical) crossing of B(m,n) is a crossing of B(m,n), from {0} x [0,n] to {m} x [0,n]
(respectively, [0,m] x {0} to [0,m] x {n}]). Denote Cy(B) and C,(B) the events that

B(m,n) has an open horizontal (respectively, vertical) crossing.

Definition 1.5.1. A measure P on € is said to have the box-crossing property if, for
any p > 0, there ezist lo = lp(p) > 0 and § = 6(p) > 0 such that, for all I > ly and all

rectangular domains B with side-lengths | and pl,
P(B has open crossings) > 6. (1.5.1)

When working with the box-crossing property, a particularly convenient assumption is
that the measure under study is positively associated, such as, for instance, the random
cluster (or FK percolation) measures with ¢ > 1. FK percolation is a family of models,
similar to percolation, indexed by a cluster-weight ¢ > 0. The regular percolation studied
in this document is obtained for ¢ = 1. For details see [Gri06]. In a standard application
of the FKG inequality for positively associated measures, it suffices for the box-crossing
property to consider boxes with aspect-ratio 2, and moreover only such boxes with hori-
zontal /vertical orientation (see also Proposition [3.2]). If (IL5J) holds for this restricted
class of boxes with p = 2 and § = 6(2), we say that G satisfies BXP(lp, ).

It was proved by Russo [Rus78| and Seymour-Welsh [SWT8| that the homogeneous
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1.6. Critical exponents

percolation IP’E on the square lattice with parameter p > %, satisfies the box-crossing
property. It follows that, for p = %, both the primal and dual percolation on the square
lattice have the box-crossing property. This is an essential ingredient in Kesten’s proof of
the fact that the critical point of bond percolation on the square lattice is %

With the present tools, it is standard that the box-crossing property for a percolation
measure and its dual implies criticality; a proof may be found in Section 2.l The converse
is not generally true, but it is expected to hold for most 'reasonable’ models.

The result of Russo and Seymour—Welsh is commonly referred to as the RSW lemma.
Strictly speaking, the RSW lemma does not solely imply the box-crossing property; it
requires an input, which usually is some form of self-duality. Percolation on the square
lattice with parameter p = % is self-dual, and the box-crossing property follows. Other
models are in the range of the RSW lemma, but do not exhibit self-duality, nor the box-
crossing property. A more detailed discussion about the relationship between criticality,

the box-crossing property, and the RSW lemma may be found in Section

1.6 Critical exponents

The percolation singularity is expected to be of power-law type, and to be described
by a number of so-called ‘critical exponents’. These may be divided into two groups of
exponents: at criticality, and near criticality. We present next the asymptotic relations
defining these exponents, then discuss their existence.

First some notation. We write f(t) =< g(t) as t — to € [0,00] if there exist strictly

positive constants A, B such that
Ag(t) < f(t) < Bg(t) (1.6.1)

in some neighborhood of ty (or for all large ¢ in the case ty) = oc). For functions f“(t),
g"(t) indexed by u € U, we say that f* =< ¢" uniformly in u (sometimes written f" =,
g") if (L6I) holds with constants A, B not depending on u. We write f(t) ~ g(t) if
log f(t)/logg(t) — 1, and f* =~ g" uniformly in wu if the convergence is uniform in w.

Let G = (V, E) be a graph embedded in the plane and let P, be a (critical) measure
on G with intensities p € [0,1]%.

The exponents at criticality are those denoted conventionally as p, 1, §, and the arm ex-
ponents p,. We begin by defining the so-called arm-events. Let A,, denote the box [—n, n]2
of R?, with boundary dA,,. For N < n, let A(N,n) be the annulus [—n,n]*\ (=N, N)?
with inner radius N and outer radius n. The inner (respectively, outer) boundary of
the annulus is Ay (respectively, dA,). For u € R?, write A%(N,n) for the translate
A(N,n) +u. A primal (respectively, dual) crossing of A(N,n) is an open (respectively,

open™) path whose intersection with A(N,n) is an arc with an endpoint in each boundary
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of the annulus. Primal crossings are said to have colour 1, and dual crossings colour 0.

Let £ € N. A sequence o € {O,l}k is called a colour sequence of length k. For
such o, the arm-event A,(N,n) is the event that there exist k vertex-disjoint crossings
VyeoosYis---y Yk of A(N,n) with colours o; taken in anticlockwise order. The corre-
sponding event on the translated annulus A"(N,n) is denoted A%(N,n) and is said to be
‘centred at u’. The value of N is largely immaterial to what follows, but N = N (o) is
taken sufficiently large that the events A, (N, n) are non-empty for n > N.

A colour sequence o is called monochromatic if either o = (1,1,...,1) or o = (0,0,...,0),
and bichromatic otherwise. It is called alternating if it has even length and either o =
(1,0,1,0,...) or 0 = (0,1,0,1,...). When o = (1), A,(N,n) is called the one-arm-event
and denoted A;(N,n). When o is alternating with length k£ = 2j, the corresponding event
is denoted Agj(N,n).

The following asymptotic relations, with limits that are uniform in the choice of v € V,

define the exponents at criticality.

1=1/8 a5 n — 00,

connectivity exponent: Pp(v <> w) ~ |w —v|™7 as |w — v| — oo,
one-arm exponent: Pp[A7(N,n)] = n™r! as n — oo,
more generally, for a colour sequence o, the o-arm exponent: Pp[AY(N,n)] = n=F°

as n — oo, for N > Ny(o) (with Ny(o) not depending on v).

It is believed, but generally not proved, that the above uniformly asymptotic relations
hold for suitable exponent-values, and indeed with =~ replaced by the stronger relation x<.
The conventional one-arm exponent p is given by p = 1/pq, as in [Gri99, Sect. 9.1].
When o is alternating with length 2j, p, is denoted po;, and is called the 2j-alternating-
arms exponent.
We turn now to the near-critical exponents. By subcritical exponential-decay (see
Proposition ZI.T]), for € > 0, there exists £ = §,(p — €) € [0,00) such that

1
- log Pp_c(v < OA,) — 1/ as n — oo,

where v is an arbitrary vertex. The function £ is termed the correlation length.
Here are the exponents near criticality, where asymptotic relations are uniform in the
choice of v € V:
(a) percolation probability: 0(p + €) := Py (v ¢+ 00) ~ € as € | 0,
(b) correlation length: &(p —¢) ~ e ¥ as e 0,

(c) mean cluster-size: Epic(|Cyl;|Cy| < 00) = |e|77 as € = 0,
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1.6. Critical exponents

(d) gap exponent: for k> 1, as € — 0,

Ep+6(|Cv|k+1§ |Cy| < 00) ~ | ‘—A
Ep+e(|0v‘k§ |Cy| < 00)

We have written E(X) for the mean of X under the probability measure P, and E(X; A) =
E(X14). In writing p + €, we have assumed that p € (e, 1 — €), for some ¢y > 0. The
definition of near critical exponents may be adapted to include more general intensities,
but for the present work this is irrelevant.

A critical exponent 7 is said to exist for the model (G,Pp) if the appropriate asymptotic
relation holds uniformly in the vertex v. For a family of models F, 7 is called F-invariant
if it exists for all (G,P) € F, and its value is independent of the choice of (G, P).

Critical exponents may be defined similarly for percolation models on non-planar
graphs; consider for illustration d-dimensional lattices. They are believed to exist for
a large class of critical percolation models, with values depending only on the dimension.
Moreover, they are expected to satisfy certain relations called scaling relations.

We give here a more concrete conjecture concerning the existence of the critical expo-

nents and their scaling relations.

Conjecture 1.6.1. The critical exponents are invariant across the family of isoradial

graphs endowed with the canonical percolation measure. Moreover,

np=2, 2p=0+1, (1.6.2)
1 2v 0—1 )
V=g o =57 7=W5 D v (1.6.3)

One of the main goals of this work is to prove parts of the above conjecture. In
Section [5.4] (and [5]) we prove universality results for some exponents. More precisely, we
prove that if certain arm exponents exist in one model, then they exist and are invariant
across the family G of isoradial graphs (see Theorem [[6.2)). In a series of papers in the
late 80’s [Kes86, [Kes8Tal, [Kes&7h] Kesten proved the scaling relations (LG.2) and (6.3
for homogeneous percolation on lattices exhibiting sufficient symmetry. In Section [2 we
present his proofs in greater generality, so as to apply them to our models. All our results
are conditional upon the existence of the exponents.

Essentially the only two-dimensional percolation process for which critical exponents
are proved to exist (and, furthermore, many of their values known explicitly) is site per-
colation on the triangular lattice (see [BN11l [Smi0OI, [SW0I]). In accordance with the
principle of universality, the values of the exponents for isoradial graphs are expected to
be equal to those for site percolation on the triangular lattice. Here are the values of the
exponents in this special case (which unfortunately does not belong to the class of models

considered in this document).
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Figure 1.6.1: The site percolation on the triangular lattice in the left diagram is represented
on the right as a face percolation configuration on the hexagonal lattice.

o Exponents at criticality:

g0 5 48
- 5 I 7] - 247 p - 5
e Exponents near criticality:
5 4 43 91
=5 T3 TR 36

e Arm exponents for o bichromatic with length |o] > 1:

o -1
Po = o

The matching graph of the triangular lattice T, is the same triangular lattice. Thus,
site percolation on the triangular lattice may be seen as a colouring with two colours (say
red and blue) of the sites of the triangular lattice, or equivalently of the faces (cells) of
the hexagonal lattice. See Figure [L6.I1 When p = %, each site has equal probability
of being red or blue. Due to this special property, we may apply a technique known
as colour switching to prove that the arm exponents p, are constant for all bichromatic
colour sequences of given length (see [ADA99]). The monochromatic arm exponents have
been studied in [BN11]. They have been proved to exist and that the k-monochromatic
arm exponent is strictly between the k- and k + 1-bichromatic arm exponents. The exact
value of the monochromatic arm exponents is not known, even in the special context of
site percolation on the triangular lattice.

Our main universality result for critical exponents is the following.

Theorem 1.6.2. Let m € {p} U{pyj : j > 1}. If 7 exists for one model in M;UG, then
it is M U G-invariant.

A more detailed version, along with several consequences, is given in Theorem B.1.3
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B C o(B)* *2(C)

Figure 1.7.1: The Cardy-Smirnov formula. The limit of the probability that an open
path in D joins (AB) and (CD), is the same as in the equilateral triangle ®(D) with arcs
(P(A)®(B)) and ((C)P(D)), where ® is the only conformal transformation sending A,

B and C to the vertices of ®(D). The formula for the limit is given by: %

1.7 Cardy’s formula, conformal invariance

Let G be a planar graph with a percolation measure P on it. For § > 0 let G5 be the
graph G rescaled by d and let P5 be the percolation measure P on Gg.

Consider a domain D in the plane C, and four points A, B, C, D distributed anti-
clockwise on its boundary. We are interested in the asymptotics, as 6 — 0, of the Ps-
probability that D contains an open crossing from (AB) to (CD). In the perspective of
scale-invariance, we expect this probability to converge, as § goes to 0, to a non-trivial
limit. Let us, for now, consider homogeneous percolation on a periodic graph.

Cardy, in [Car92], conjectured the existence of the limit, and even gave a formula for
it in terms of a hypergeometric function. His conjecture was proved in 2001 by Smirnov
for critical site percolation on the triangular lattice (see [Smi01]).

Following a remark by Lennart Carleson, the formula, now known as the Cardy-
Smirnov formula, is usually stated for an equilateral triangular domain D, with vertices
A, B, C, and with D an arbitrary point on AC. See Figure [LTIl In this case the limit of
the probability that there exists a crossing from (AB) to (CD) is %.

The formula for general domains D, is obtained by a conformal transformation of the
triangular case. If A, B, C, D are distinct points on 0D, by the Riemann mapping theorem,
there exists a unique conformal map ® that transforms D in an equilateral triangle with
vertices ®(A) = €'5, ®(B) = 0 and ®(C) = 1. The limit of the crossing probability is
then given by |®(D) — ®(C)|. This conformal invariance feature, expected to appear in
most scaling limits of critical models, is a key ingredient in the proof of convergence of
the percolation interface to SLEgs. See [Wer(7, Section 3| for details on the proof of this
convergence.

The percolation model (G,P) is said to satisfy Cardy’s formula if, for all domains D
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with A, B,C, D € dD,
Py (AB B cD) — |®(D) — ®(C)|, asd— 0, (1.7.1)

where ® is given as above and the convergence is uniform in the placement and orientation
of D.

Note that, unlike arm exponents, Cardy’s formula is highly sensitive to the embed-
ding of G. Is is expected that the isoradial embedding is harmonious with the canonical

percolation measure it generates. We give next a conjecture that materializes this belief.

Conjecture 1.7.1. Let G be an isoradial graph (satisfying the bounded-angles property),

with canonical percolation measure Pg. Then (G,Pg) satisfies Cardy’s formula.

If G is taken to be the square lattice, embedded as in Figure [[.L3.1] we obtain the
famous problem of proving Cardy’s formula for critical homogeneous bond percolation on
the square lattice. This is one of the main challenges in present percolation theory.

A weaker conjecture, in the spirit of Theorem [[L6.2], is the following.
Conjecture 1.7.2. If Cardy’s formula holds for some G € G, then it holds for all G € G.

The above is a stronger version of universality than Theorem The essential
difference is that critical exponents depend very little on the embedding of the graph,
while Cardy’s formula is very sensitive to it. For instance, it would not be reasonable to
expect Cardy’s formula to hold for all models in M, while Theorem does apply to
them.

The method used in proving Theorem offers a perspective for Conjecture
Nevertheless, in the proof of Theorem [[LG.2] we have expressed arm exponents, and the box-
crossing property, in terms of graph-theoretical quantities. In order to prove universality
of Cardy’s formula, we need to use the isoradial embedding, and our present tools are not
fine enough to achieve this.

Let us get back to the box-crossing property, and see how it relates to crossings of a
domain D. Suppose both P and its dual, P*, satisfy the box-crossing property. Then, by
combining box-crossings as in Figure [[7.2] we find that the probability that there exists
an open crossing in D, from (AB) to (CD), is contained in some interval [¢,1 — €], with
€ > 0 only depending on D and on A, B, C, and D, not on scaling factor 0 or on the
positioning of D. Thus, subsequential limits (as § — 0) of the crossing-probabilities of
(L) exist and are non-trivial, i.e. not 0 or 1. The problem of identifying these limits
is, nevertheless, very difficult and, in most cases, still unsolved.

In light of the above observation, it is not surprising that the box-crossing property
plays an important role in the proof of the Cardy-Smirnov formula. Indeed, in the proof of
the formula for site percolation on the square lattice, one proves the uniform convergence

of a triplet of discretely harmonic functions to a limiting triplet of harmonic functions.
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A D
7, D \/

<,/ . N
Ny B C

Figure 1.7.2: Combining crossings of rectangles to obtain crossings of general domains.

This is done in two steps; first one proves compactness for the family of functions, then
the limit is identified via holomorphicity and boundary conditions. Using the box-crossing
property, one shows that the discrete harmonic functions are Holder continuous, with
parameters that do not depend upon §. This allows us to apply the Arzela-Ascoli criterion
for compactness in L to obtain the first step of the proof.

The procedure of finding a discreetly preholomorphic (or even holomorphic) observable,
showing precompactness for this observable, and proving uniqueness of the holomorphic
limit using boundary conditions is the standard route for proving existence of scaling limits

of critical statistical physics models. A full proof of the Cardy-Smirnov formula may be

found in [WerQ7, Section 2] or in [Gril0, Section 5.7].
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Chapter 2

Applications of the box-crossing

property

The purpose of this chapter is to present different consequences of the box-crossing prop-
erty, such as criticality (Section 2.II), the separation theorem (Section 23] and scaling
relations (Sections 2.4 and 25]). In Section 22l we discuss the relation between the RSW
lemma and the box-crossing property.

Throughout the chapter G will denote a planar graph, with dual G*. We will assume
G satisfies the conditions of Section [[31] and all constants will depend implicitly on L.,
Ly and K4. For simplicity suppose G is rescaled such that L, < %, so that each face has
diameter at most 1 and that Ly < 1. Also, in order to avoid trivialities, we will suppose
our percolation measures to have intensities in (0,1). In certain sections we will ask the
intensities to be bounded away from 0 and 1 uniformly. This will be explicitly stated.

We want to emphasize the importance of geometric arguments which do not depend on
the local details of the graph. We will construct structures based on crossings of domains
(usually rectangles), and will assume that the existence of such crossings is independent in
disjoint domains. This is not entirely true, since the existence of crossings depends on the
states of the edges entirely inside the domain, as well as of some of the edges intersecting
the boundary.

Nevertheless, since all edges, primal and dual, are of bounded length, we may eliminate
this dependency by imposing the existence of “buffer zones” between domains. Another
way of handling this problem is to define more precisely the events we consider. Sometimes
we will ask for the existence of an open crossing of a domain, when we actually mean the
existence of a path crossing the domain, open on all edges contained entirely in the domain.
Keeping track of these construction would overburden the proofs, so from now on we will
suppose that the existence of crossings of disjoint domains are independent events.

Finally let us note that, although these constructions may seem complicated, upon

careful readings of the proofs, it will be obvious how they come into play. Also note
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that we mostly consider the existence of open/open* circuits in annuli. These events
only depend on the edges entirely contained in the annuli, hence are truly independent in

disjoint annuli.

2.1 Criticality via the box-crossing property

In this section we summarise the steps needed to prove criticality for percolation measures
P, with P and P* having the box-crossing property.

Fix a graph G = (V, E), and consider a percolation measure P on it, with parameters
p = (pe) € (0,1)F. We remind the notation P¥ for the measure with shifted parameters.

For simplicity we will assume that there exists ¢y > 0 such that p € (e, 1 — eO)E . The
results presented next remain valid (with a slight modification) even when removing this
condition. The condition is particularly convenient when using Russo’s formula (Theorem
213). It will be obvious from the proofs that the condition may be weakened by only
asking for positive density of edges with intensity bounded away from 0, and likewise for
intensity bounded away from 1. This second condition is ensured by the box-crossing
property.

Due to the above, if (G,P) has the box-crossing property BXP(ly,d) for some [y and
0 > 0, then it also satisfies BXP(1,¢") for an adjusted ¢’ > 0. Henceforth, we write
BXP(¢') instead of BXP(1,¢").

For v € V, we recall the notation C, for the open cluster containing v, and define the

radius of the cluster as

rad(Cy) = inf{r > 0: C, C A, +v}.

The following two propositions are the main results of this section.
Proposition 2.1.1. Suppose P* has the box-crossing property BXP(0).

(a) There exist a,b > 0 such that, for every v € V,

P(rad(C,) > k) < ak™®, k>0. (2.1.1)

(b) There exists, P-a.s., no infinite open cluster.

(¢) For v <0, there exist ¢,d > 0 such that, for everyv € V,

PY(|Cy| > k) < ce” ™, k>0. (2.1.2)

Proposition 2.1.2. Suppose P has the boz-crossing property BXP(J).
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(a) There exist a,b > 0 such that for every v € V,

P(rad(C,) > k) > ak™®, k>0.

(b) For v > 0 there exist o > 0 such that for every v € V,

PY(v <> 00) > a.

(¢) There ezists, PV-a.s., a unique infinite open cluster.

Moreover, the constants in the above statements depend only on §, not otherwise on
G or P.

These two results are well known in the case of homogeneous percolation. Our proofs
are adaptations of known techniques; here we follow the proof of Section 5.8]. We
use two important tools, Russo’s formula and an influence theorem. Both of them are
frequently used in percolation theory, as well as in related models. Nevertheless they are
usually stated only for homogeneous measures. We next give versions adapted to our

inhomogeneous models.

2.1.1 Preliminaries

The following result is the inhomogeneous version of the well-known Russo formula. For an
account on Russo’s formula see [Gri99, Section 2.4]; the version for inhomogeneous product
measures is obtained through exactly the same computations as the one for homogeneous
measures.

Let A be an increasing event in 2. For an edge e € E and a configuration w € €2
we say e is pivotal for A if w® € A and w, ¢ A. Here w® and w, are the configurations
equal to w for all edges different of e and with w® = 1, w. = 0 respectively. The quantity
P(e is pivotal for A) is called the influence of the edge e on A, and is written /4(e). When

working with P* instead of P, we write I'{(e) for the influence of e.

Theorem 2.1.3 (Russo’s formula). Let A be an increasing event defined in terms of the

states of only finitely many edges of G. Then, fore € F,

OP(A)
Ope

= P(e is pivotal for A). (2.1.3)

By summing (2.1.3)) over the edges of G, we obtain, for |v| < €,

OPY(A)
ov

= Z]P’”(e is pivotal for A) = Z I (e). (2.1.4)

eceE ecF

It will therefore be useful to have an estimate of the total influence, > ., I{(e).
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Applications of the box-crossing property

This takes us to our second important tool in the poof of criticality, influence theo-
rems and their usage in proving sharp—threshold properties. The first important influence
theorem appeared in the seminal paper known as KKL, [KKL8§|; many generalisations
of this result followed, among them are the paper known as BKKKL, ﬂm, and the
revision of the first two by Friedgut, [Eri04]. The initial paper was limited to the study
of product measures on discrete spaces {0,1}V, the subsequent papers generalised the re-
sult to product measures on more general spaces. Versions for non-product measure later
appeared in [GGOG].

For our study we need an influence theorem for inhomogeneous product measures. To
our knowledge such a result has not yet been stated in the literature, but one may easily
be derived from known theorems. Let us first state the desired result, then discuss its

proof.

Proposition 2.1.4. There exists a constant ¢ € (0,00) such that the following holds. Let
A be an increasing subset of the space {0,1}N endowed with an inhomogeneous product
measure P, such that P(A) € (0,1). Then:

S 1a() > cP(A)(1 - P(A))log <%> ,

i€{l..N}
where m = max; [4(7), and the influences are computed under the measure P.

In order to prove this result we will use continuous influence theorems. Such a theorem
works with the cube [0, 1]"V instead of the space {0,1}", and the reference measure is, in
this case, the Lebesgue measure \. This kind of theorem was first formulated in [BKKF92),
though, as observed in [Eri04], that version contained a mistake. Friedgut gave another,
slightly modified version of the same result [EFri04, Theorem 1.5]; yet another version may
be found in Theorems 4.33 and 4.38].

We first need to explain what we mean by influence in the continuous case. For an

increasing event A € [0,1]"V, define the influence of the i*" coordinate on A as

TA(i) = M1A(w®) — 1a(w;)).

Here w' and w; are the elements of [0,1]" identical to w on all coordinates except on
the ", where they are equal to 1 and 0, respectively. We are now ready to state the
continuous influence theorem that we will use to prove Proposition 21,4l This version is

taken from Theorem 4.33].

Theorem 2.1.5. There exists an absolute constant ¢ € (0,00) such that the following
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2.1. Criticality via the box-crossing property

holds. Let A be an increasing subset of the cube [0, 1] with A(A) € (0,1). Then

N

> 1ali) = X)L - A log (5.

i=1
where m = max; [4(i1) and the influences are computed under the measure X.

Moreover there exists i € {1... N} such that

1a(i) > cA(A)(1 — A(A))lova .

Proof of Proposition [2.1.4) from Theorem [Z.1.3. Throughout this proof w stands for an
element of the cube [0,1], A\ denotes the Lebesgue measure on [0,1]V, and P is an
inhomogeneous product measure on {0,1}", with intensities (Pi)ief1..ny- For w € [0, v,
define @ as the element of {0,1}" with:

(:)(Z) — 1(«1(2')21—}72‘7 'l — 1,...,N.

With this definition, if w is chosen according to A, then @ follows the law P. Thus, for an
increasing event A {0, 1}, we may define A = {w € [0,1]V|& € A}, and observe that

A(A) = P(A). Moreover A is also increasing, and the influences under A on A are equal

to the ones on A under P:

Il
Y
—

1 is pivotal for fl) .

Hence
Yo L= ) La(i) = eA(A)(1 — A(A) log [1/(2m)]
i€{l..N} i€{l..N}
where m = max; 14(i) = max; I ;(1). O

2.1.2 Proof of Propositions [2.1.1] and 2.1.2

Proof of Proposition 211, (a) and (b). Obviously (2.1.1]) implies the non-existence of in-
finite components, let us therefore prove ([Z.1.]). Fix P as in Proposition 2.T.T] and choose
a vertex v € V. For simplicity we suppose v is placed at the origin of R2. For n > 1 define
A, = A(2",2""1) as the square annulus centered at v, with inner radius 2" and outer
radius 2”71, Let H,, be the event that there exists a dual open circuit in A,,, surrounding

e.
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— 7
N4 > =]
P 4 -7
- 4 4
L ] - /
N -
, ~ - /
/ \
1 ~
\ \
/
\ e /
\ —
\ \
N A n
\ l 2
! An1 /
2n+1 7 +
/ O~ /
~ o y N | ,
Y < 7z S %
V. ~ - = ./4 N_yv
s n ~

Figure 2.1.1: The annuli around v. If A,, contains an open* circuit, then the open cluster
of v has radius at most 2", To construct such a circuit we may use the box-crossing
property for the dual in the four rectangles that form A,,.

The events (H,),>0 are independent since the annuli A,, are disjoint and H, only
depends on the edges entirely contained in A,,. Moreover, using the box-crossing property
for P* and the FKG inequality, we deduce that there exists a constant ¢y = ¢o(d) > 0 such
that P(H,,) > ¢y for n > 0 (see Figure [Z1.1).

If H,, occurs, then C, is contained in Agn+1, since it can not cross the open circuit in
A,,. Thus

P[rad(C,) > 2" <P [ﬂ Hk] <(1—cy)",

k<n
and (21T follows. O
Before proving Proposition 2111 (¢), we prove Proposition 2T.2]

Proof of Proposition [Z1.2. Take P as in Proposition Point (a) is obtained by a
standard construction involving crossings of 2¥ x 2F+1 rectangles, with k = 1,...,log N.
For more details see the proof of (Z5.19]).

We turn to point (b). First we use sharp-threshold to show that, for v > 0, the P¥-
probabilities of crossings of boxes of fixed aspect ratio tend to 1 as the size of the box
tends to infinity.

Fix an aspect ratio a > 1, and n € (0, €¢p), and consider horizontal crossings of the box
B(aN,N) for N > 2. Denote Hy the event that such a crossing exists and, let I} (e) be
the influence of the edge e on the event Hy, under the measure P7.

Since P satisfies BXP(d), by Proposition [Z1.1] (a), there exist constants a,b > 0 such
that, for any dual vertex v,

Plrad(C¥) > n] < an™°.

This also holds for P” by monotonicity.
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2.1. Criticality via the box-crossing property

Figure 2.1.2: For the edge e to be pivotal for H,,, it needs to be connected by open paths
to the lateral sides of B(aV, N) and by open* paths to the top and bottom of the box.

For an edge e to be pivotal, open paths must join it to the lateral sides of B(aV, N),
and open™ paths must join it to the top and to the bottom of the box, as in Figure 2.1.2]
Let (u,v) = e*, then

I(e) <P [rad(C) > & — 1] +P" [rad(C}) > ¥ —1] <a'N7Y,

where a/, b’ > 0 are constants obtained from a and b, and which do not depend on e. Using
Proposition 2Z.1.4], we obtain

dP" (Hy) > coP" (Hy) (1 — P" (Hy))log N, (2.1.5)

for some ¢y > 0. Since P satisfies BXP(0), there exists ¢; > 0 (independent of N) such
that P(Hy) > ¢1. For v € (0, €], by integrating (ZI5]) between 0 and v, we obtain

PY(Hy) >1— N — 41, (2.1.6)

N—oo

The above computation did not depend on the positioning and orientation of the box,
hence the bound (ZI.6) holds for all rectangular boxes of aspect ratio «.

In addition to the convergence of crossing probabilities to 1, (2.I1.6]) offers a bound
on the speed of convergence. We may then conclude by an argument similar to that of
(2519). For illustration we choose an alternative route, via a block argument that only
uses the convergence.

Fix v € (0,¢€p), and consider some N > 0. A block is one of the 4N x N rectangles of
the right diagram of Figure The blocks form a network similar to the square lattice.
Call a block good if it contains an open crossing in the long direction, along with two open
crossings in the short direction contained in the squares at its ends (see the left diagram
of Figure 21.3)). The states of different blocks are not generally independent since blocks
may overlap. The system of blocks thus created corresponds to a finite-range dependent
bond percolation on the square lattice.

Standard arguments (for instance a counting argument) show that the critical point
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it

Figure 2.1.3: Left: for a block to be good, it needs to have an open crossing in the long
direction, and two open crossings in the short direction contained in the squares at its
ends. Right: a configuration of good blocks with the underlying open paths.

of this block percolation model is strictly less than 1. In other words, there exists some
pe(block) < 1 such that, if the probability for any block to be good is higher than p.(block),
then there exists almost surely an infinite connected component of good blocks. Moreover,
the probability for a given block to be contained in such an infinite component is bounded
away from 0, uniformly in the choice of the block.

By (216, when N tends to infinity, the probability for the blocks to be good tends
uniformly to 1. Thus, for IV is large enough, there exists a.s. an infinite connected
component of good blocks. By the definition of good block, this implies the existence of
an infinite path of open edges in the graph G. Moreover, for v € V, there exists a uniform
lower bound (uniform in the choice of v) for the probability that there exists an infinite
open path within distance 4N of v. Since every edge has probability at least ¢y + v of
being open, v is connected to this infinite path with uniformly positive probability. This
concludes the proof of the existence of an infinite component under P.

The uniqueness of the infinite component follows by the fact that, under P”, there
are a.s. infinitely many annuli A(2",2""!) containing open circuits. Note that we do not

require the machinery of the classical uniqueness result of [BKR9]. O

Finally we prove Proposition ZI.1] (¢). The arguments we use are a combination of
the sharp—threshold technique of the previous proof and the following lemma taken from
[Kes81l Thm 1].

As in the previous proof we will only use the convergence in (ZI1.6]), with P* instead
of P. If we allowed ourselves to use the speed of convergence, then the result would

immediately follow. We choose this longer proof for future reference.

Lemma 2.1.6. Let G be a planar graph endowed with a percolation measure P, with

intensities bounded away from 0 and 1 by €1 > 0. There exists an absolute constant cg

40



2.1. Criticality via the box-crossing property

P
LT X

Figure 2.1.4: If the rectangle B(4N,2N) is crossed vertically by 7, then 7 contains two
disjoint crossing of 2N x N rectangles in the short direction.

such that

1
PIC(BAN,2N))] < 22 sup P [C(f(B2N, N))?, (2.1.7)
€1 f
where C(B) is the event that B contains an open crossing in the “short” direction, and the

supremum is taken over all function f composed of a translation and %-rotation.

The proof of this lemma is deferred until the end of the section. The graph and the

measure in the lemma are not necessarily those of Proposition 2111

Proof of Proposition[21.1] (c). Take P as in Proposition .11 and fix v € (—=%,0). By
the box-crossing property for P* and the theory of influence (same as in the proof of
Proposition 2.1.2)), for N large enough,

€0

P”[f(B(2N,N)) has an open™ crossing in the long direction] > 1 — 200°

for any function f composed of a translation and a rotation. But if such a crossing exists,
then there exists no open crossing in the short direction. Using Lemma [2.1.6] repeatedly,

we obtain

P [c (B (241N,2N) )] < 27F 2 2.1.8
- 400 ( )
This also holds for any rotation and translation of B(2¥+1 N, 2 N'). The conclusion, T2,

follows easily. O

Proof of Lemma[21.6. Consider the rectangle B(4N,2N). Split B(4N,2N) into eight
N x N squares as in Figure 214l and call a tiling rectangle the union of any two adjacent
squares. There are ten tiling rectangles altogether, four vertical ones and six horizontal
ones.

Suppose there exists an open crossing v of B(4N,2N), from [0,4N] x {0} to [0,4N] x
{2N}. Orient v from the bottom to the top of B(4N,2N). Then 7 contains two disjoint

crossings (in the short direction) of tiling rectangles, one before its first intersection with
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Applications of the box-crossing property

[0,4N] x {N}, and one after its last. The tiling rectangles containing the two crossings
need not be different.

Consider two tiling rectangles B1, B>. By the BK inequality, the probability that
there exists an open path containing disjoint crossings of B} and Bs is bounded above by
€1 P[C(B1)]P[C(B2)], where the factor €; comes from the possible edge common to the two

crossings (see Figure Z1.4]). By considering all combinations of two tiling rectangles, we

obtain (ZIT). O

2.2 The the RSW lemma and the box-crossing property

2.2.1 Discussion

Let G be a planar graph embedded in the plane, and P be a percolation measure on G.
Heuristically, the RSW lemma states that the probability of crossing a 2N x N rectangle
in the long direction may be bounded below by a positive function, ¢, of the probability
of crossing a N x N square. Moreover, it is sometimes useful to have ¢(p) — 1 as p — 1.

Later in this section we give precise RSW statements for models that are periodic
and invariant under rotation and reflection with respect to the axes. Before doing so, we
would like to discuss the relation between the RSW lemma, self-duality, criticality and the
box-crossing property.

Consider homogeneous bond percolation on the square lattice with intensity p. Russo,
and Seymour and Welsh proved in [Rus78, SW78] a RSW lemma for this model (see
Lemma 2:2.T]). When p = %, the model is self-dual, hence the probability of crossing a
N x N square is (roughly) % Using the RSW lemma, we deduce the box-crossing property
for PY . Criticality follows as in Section 211

1\/[2(;12‘6 generally, if a model satisfies some form of the RSW lemma, and is self dual, then
the box-crossing property and criticality follow as above. The RSW property by itself is
not sufficient to imply criticality, it requires an input, which usually comes in the form of
self-duality.

While the RSW lemma presented later does not use self-duality other than as an
input, there are variations on the RSW result which are based on self-duality. Some
require considerably less symmetry than the one presented here (see [BR10]). Note that
our models are generally not self-dual, hence the methods of do not apply to them.

Let us now address the different question of when does criticality imply the box-crossing
property. We claim that for a model (G, P), which is periodic and invariant under rotation
and reflection with respect to the axes, criticality implies the box-crossing property for
both the primal and the dual measures. This may be shown as follows.

For simplicity suppose (G, P) is invariant under rotation by /2 around 0, and under
translation by (1,0) and (0,1). The same reasoning works in the general setting, with
adaptations as in Lemma
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2.2. The the RSW lemma and the box-crossing property

First we show that, for n large enough, there exists ¢y > 0 such that
P[Cy(B(2n,n))] > cp. (2.2.1)

Suppose the converse. For v > 0, using an argument similar to Lemma 2.1.6] we find that,
if P [Cy(B(2n,n))] is less than some universal constant ¢; > 0, then the cluster size has
exponential decay, as in Proposition 211 (¢). By our assumption, we may find n such
that P [Cy(B(2n,n))] < §. Then, for v > 0 small enough, P" [C,(B(2n,n))] < c¢i. Hence
there exists PY-a.s. no infinite cluster. This contradicts the criticality of P, and (221]) is
proved.

To conclude, we use the RSW lemma (see Lemmas 22.T] and [Z2.2]) for the dual and
primal model to obtain the box-crossing property for IP. The same argument may be used

to obtain the box-crossing property for P*.

2.2.2 Statements of the RSW lemmas

We now give two RSW lemmas for models exhibiting sufficient symmetry. Although
identical in spirit, the two differ due to the characteristics of the model.

Let G be a planar graph and P be a percolation measure on it. Suppose (G,P) is
periodic, invariant under rotation and under reflection with respect to two perpendicular
lines. We remind the reader that G is locally finite, and we will use this implicitly in the
geometrical considerations that follow.

Take 6 € (0,7) to be the minimal angle such that G is invariant under rotation by

angle #. Then 6 = 27” for some k > 3. First we claim that, due to periodicity,

2r ™o
—, =, = 7. 2.2.2
ve %33} (2:22)

This is obtained as follows. Let € R? be a point such that (G,P) is invariant under
rotation by angle § around x, and let 7y denote this rotation. For u € R?, let o, be the

translation by u. Take u such that G is invariant under o, and
|u| = inf{]v| : G is invariant under o, }. (2.2.3)

By rotation invariance, G is also invariant under translation by Tg (u) for j € Z, and by
Tg(u) + u. By choice of u we have \Tg(u) + u| > |u|. This implies k € {3,4,6}, whence

ZZ2).

We distinguish two cases.
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The square lattice is representative of the first, whereas the triangular and hexagonal
lattices are examples of the second. These are not the only graphs exhibiting such sym-
metries, non vertex-transitive examples may be constructed.

In the first case we may suppose that (G,P) is invariant under reflection with respect
to the line R x {0}. It is also invariant under rotation by % around a point z. It is not
always the case that x is on the line R x {0}, but by periodicity we may always choose
z ¢ R x {0}. By translation and rescaling we may take z = (,1). It is then easy to check
that (G,P) is invariant under translation by (2,0) and (0,2), and that it is also invariant
under reflection with respect to {k} x R and R x {k} for k € Z.

The RSW lemma in this case may be written as follows.

Lemma 2.2.1 (RSW). For p > 1 there exists a function ¢, : (0,1] — (0,1] such that, for
n >4,

P [Ch(B(2pn,2n))] > ¢, (P [Cu(B(2n,2n))]) . (2.2.4)

Moreover ¢(p) — 1 as p — 1.

We now move on to the second case. Suppose (G, P) is invariant under rotation by %’T
and reflection with respect to two perpendicular lines, [y, s, parallel to the axes R x {0}
and {0} x R, respectively. By rotation invariance, it is also invariant under reflection with
respect to a line /3, that makes an angle § with /1. Translate the plane such that 0 = l3Nl3.
The lines I3 and [3 intersect in 0 at an angle . Moreover they are both axes of symmetry
for (G,P). It follows, by repeated reflections, that (G,P) is invariant under rotation by %
around 0 and under reflection with respect to all lines forming an angle k% with R x {0}
(k € Z). Finally, (G,P) is also invariant under translation by a vector u, which may be
taken on R x {0}. By rescaling we take u = (1,0).

The RSW lemma for this case is very similar to the one for 6 = 7, the only difference
is that we have to work with parallelograms instead of rectangles. Let uj; be the rotation
of u by k% around 0. Define B%(m,n) to be the parallelogram with sides mug, nu;. The
events Cp,(B%), Cy(B*) are defined as for B.

Lemma 2.2.2 (RSW). For p > 1 there exists a function ¢, : (0,1] — (0, 1] such that, for
n>1,

P [Ch (BA(4pn,4n))] > 6, (P [ch (BA(4n,4n))D (2.2.5)
Moreover ¢(p) — 1 as p — 1.

2.2.3 Proofs of Lemmas 2.2.71] and

The two lemmas, as well as their proofs, differ only slightly due to the different symmetries.
We give a complete proof of Lemma 221] and only sketch that of Lemma 229

44
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Proof of Lemma[2Z21. We follow the standard proof of [Gri99, Thm. 11.70], which in turn
follows that of [Rus8I]. The minor differences with [Gri99] come from the more general
setting.

Fix n > 2 and consider the following rectangles:

By =[-n+2,n+1] x [0,2n],
By = [1,2n + 1] x [0, 2n],
Bs =[1,2n] x [0,2n].

We remind the reader that (G,P) is invariant under

(i) rotation by 7/2 around (3, 1),

(ii) translation by (2,0) and (0,2),
(iii) reflection with respect to the lines R x {k} and {k} x R for k € Z.

Thus we have
P [Ch(Bl)] ,]P’ [CV(BQ)] ,]P) [Ch(Bg)] > P [Ch(B(Zn, 2n))] . (2.2.6)

Let H; (respectively H}) be the event that there exists a horizontal crossing of Bj, which,
when oriented from left to right, has its last intersection with the line {1} x R below or
at (respectively above or at) height n. By reflection invariance P(H,) = P(H}). Also H;
and H] are increasing events. By the FKG inequality

1 - P[Cu(B)] = P [H N (H})]] > (1 B(H))?.
Hence

P(H,) >1—+/1—P[Cy(B1)]. (2.2.7)

The argument used to obtain (22.7]) is sometimes called the square root trick.

Let T be a path on G (not assumed open) crossing B horizontally, and let x; be the
last intersection point of I with the line {1} x R. Suppose x; is below or at height n. Let
I'™ be the set of edges which intersect By, and are below or part of I'. Suppose Hy occurs
and let y; be the lowest open path crossing By horizontally. By choice of v1, the measure
P(.|v1 =T) is identical to P outside I'".

Let T'; be the sub-path of T" between z; and its endpoint on {n 4+ 1} x R, and define
', as the reflection of I'; with respect to the line {n 4+ 1} x R. Let Hs be the event that
there exists an open path 72 in Bg, above I'; UT,., with one endpoint on [1,2n + 1] x {2n}

and one on I';, By an argument similar to the square root trick used above, and involving
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N
1 2n
Y2
<
T - -
I, -,

(1,0) m

Figure 2.2.1: The events {y; = '}, Hy and Hs. Either 7 intersects s, or 73 intersects
the line {2n} x [0,2n]. In both cases there exists an open horizontal crossing of [—n +
2,2n] x [0, 2n].

the reflection invariance with respect to {n 4+ 1} x R,
P(Haly1 =T) > 1~ +/1-PI[Cy(B2)]. (2.2.8)

Let Hio be the event that there exists a open path 7 as in the definition of Hy, with the
additional requirement that ~z, LN [1,2n+ 1] x {2n}, where 7, is defined as T'g,. If y; =T
and Hy occurs, then His also occurs, with, for instance, v = 41 and the connection to the
top of By provided by 75. By summing (Z28]), for I ranging over the possible values of

Y1, we obtain

P(Hip) > (1 ~J/1-P [CV(BQ)]) (1 —J/1-P [Ch(Bl)]) . (2.2.9)

Finally let Hs be the event that there exists a open horizontal crossing, v3, of B3, with
its left endpoint on {n + 1} x [n,2n]. We have

P(H;) > 1— /1— P[Cy(B3)]. (2.2.10)

If both Hyo and Hj occur, then there exists an open horizontal crossing of [—n + 2, 2n] x

[0,2n]. See also Figure 221l Moreover both events are increasing, hence, by the FKG

inequality and ([2.2.0]), (22.9) and (2Z.2.10),

P[Ch([—n +2,2n] x [0,2n])] > (1 —/1-P[Cy(B(2n, 2n))]>3. (2.2.11)

The right hand side of the above is strictly positive if P [Cy,(B(2n,2n))] > 0. It also tends
to 1 as P[Ch(B(2n,2n))] — 1.
Note that [-n+2,2n] x [0, 2n] is a rectangle with height 2n and length 3n —2 > %(Zn).
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A2 BQ A1 Bl

A, As

Figure 2.2.2: Left: A horizontal crossing of Cy,(B%(4n,4n)) contains a crossing of Hy from
(As, A1) to (Aa, As). Right: 1 is a crossing as in C(Hy), which last intersect (Ba, By)
below Bs. The open path 7, links (B1, Bs) to I'z, inside Hy. Its existence is obtained by
a square root trick using the reflection invariance with respect to A;As. Finally 73 is a
crossing of Hy, between (Bs, B1) and (Bs, Bs). Together, 1, 72 and 73 induce a horizontal
crossing of Hy U H;.

Using (ZZIT)) and the periodicity of G, we further combine horizontal crossing of translates
of [-n + 2,2n| with vertical crossings of translates of By to obtain Lemma [Z2T] O

Proof of Lemma[Z.2.2. The proof is very similar to the previous one. We sketch it very
briefly. Fix n and let A; be the point 2nu;, for ¢ = 0,...,5. Let Hy be the hexagon with
vertices Ay, ..., As and C(Hy) be the event that there exists an open crossing in Hy, from

(A5, A1) to (A2, Ay). Note that, due to translation invariance and to the considerations

of Figure 2.2.2]
P[C(Hy)] > P [ch(BA(4n, an))] . (2.2.12)

Let H; be the translate of Hy by (n,0), with vertices By, ..., Bs. Using the square
root trick, the FKG inequality and rotation and translation invariance, we may also show
that

P [(B1,Bo) &% (B4, B)] 2 (1 VI—FC(Ho) 2:213)

By the same argument as in the previous proof, we show that

HoUH1
—

P [(Ag, A4) (Bs, Bl)]

> (1 -1 —P[C(Ho)])z (1 - \/1 -P [(31732) Tt (34,35)]> -

See Figure 2.2.2] for the geometric construction we use. We mention that for this proof we

require reflection invariance with respect to both the horizontal and the vertical axes. We
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Applications of the box-crossing property

give no further details of the proof. O

2.3 Separation theorem

In this section we present and discuss a general result concerning arm events, usually called
the separation theorem. It basically says that, conditionally on A,(N,n), the endpoints
of the arms are far away from each other, in such a way that they can be extended via
box crossings.

The result first appeared in [Kes87b|, then was rewritten several times. We will adapt
Nolin’s version from his review [Nol08] of Kesten’s work. In both papers the result is
presented in the context of homogeneous site percolation, nevertheless it is actually valid
in a much more general context, in particular in the context of bond percolation on graphs
satisfying the conditions of Section [[3Jl The theorem relies heavily on the box-crossing

property, thus illustrating its importance.

2.3.1 Notation

In order to state the theorem we need to first introduce some notation. In the whole section
we will work with an arm event of the type A,(N,n) for some fixed colour sequence o of
length k (not necessarily alternating). All constants in the following statements depend
implicitly on k and o.

Consider a box By := [0, N] x [0,4N] and a constant n € (0,1). The notions defined
here refer to crossings of By and more particularly to their properties near their endpoints.
We will focus on horizontal crossings and their endpoints on the right side of By, i.e. on
{N} x [0,4N].

A primal (respectively dual) n-fence is a set I' of connected open (respectively, open*)

paths comprising the union of:

(i) a horizontal crossing of By, with endpoint z = (N, y) on the right side of By,
(ii) a vertical crossing of the box [N, (14 /7)N] x [y — nN,y + nN],

(iii) a connection between the above two crossings, contained in A zy + 2.
A n-well-separated sequence of fences is a sequence (I';)ic1,... x such that:
(i) each I'; is a n-fence (primal or dual),
(ii) the I'; are pairwise disjoint,

(iii) if we call z; the right extremity of the crossing of By associated to I';, the points
(zi)ie1,... K are at distance at least /NN from each-another and from the corners of
Bpy.
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Figure 2.3.1: Left: two n-fences in By. Right: the event A?’I(N, n) with o = (1,1,0).
Each arm I'; is a fence with landing point z; in nl;.

A sequence of n-well-separated fences may contain fences of both colours (i.e. primal and
dual fences). For illustrations of both definitions see Figure 23]

The definitions of fence and of well-separateness may be adapted in the obvious way
to crossings of annuli, on both their interior and exterior boundary (the factor N will
then refer to the interior, respectively exterior, radius of the annulus). See Figure 2311
Note that we may ask I' to be simultaneously a n-interior-fence and a 1/-exterior-fence of
A(N,n). In this case, we ask that the crossing of A(N,n) contained in I', have additional
paths near both its interior and exterior endpoints, with factors n, N and 7/, n respectively.

We say that a set of disjoint crossings (I';); of By can be made into n-well-separated
fences if there exists a set of n-well-separated fences (f‘z)z, such that each fi has the same
left-most extremity and the same colour as I';, We say that By is n-separable if any
sequence of disjoint crossings of By can be made into 7n-well-separated fences.

An n-landing-sequence is a sequence of closed sub-intervals I = (I; : i =1,2,...,k) of
OA1, taken in anticlockwise order, such that each I; has length 7, and the minimal distance
between any two intervals, and between any interval and a corner of Ay, is greater than
\/1- We shall assume that

0<k(n+2yn) <8, (2.3.1)

so that n-landing-sequences exist.

Let n,n' satisfy (Z3J]), and let I (respectively, J) be an n-landing-sequence (respec-
tively, r’-landing-sequence). Write A{,’J(N ,n) for the event that there exists a sequence
of n-interior-, n'-exterior-fences (I'; : i = 1,2,...,k) in the annulus A(N,n), with colours
prescribed by o, such that, for all i, the interior (respectively, exterior) endpoint of I'; lies

in NI; (respectively, nJ;). Let AL (N,n) (respectively, A?’J(N ,n)) be given similarly in
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terms of n-interior-fences (respectively, n/-exterior-fences). Note that
ALT(N,n) € AZ7(N,n), AL?(N,n) C A,(N,n). (2.3.2)
These definitions are illustrated in Figure 22311

2.3.2 Statement of theorem

Now that the notation is in place, we are ready to state the main result of this section.

Theorem 2.3.1 (Separation theorem). Let k € N, and o € {0,1}*. For 6,lg > 0, and
no > 0, there exist constants ¢ > 0 and n; > 0 such that: for all (G,P), with P and
P* satisfying the box-crossing property BXP(lo,d), all n,n > no satisfying (Z31), all

n-landing-sequences I and 1’ -landing-sequences J, and all N > ny and n > 2N, we have
P[ALT(N,n)] > P[A,(N,n)].

Amongst the consequences of Theorem [2:3.1]is the following.

Corollary 2.3.2. Let G be a planar graph and P be a percolation measure. Suppose P and
P* satisfy the box-crossing property BXP(lg,8). For k € N and o € {0,1}*, there exists
c=c(0,0) >0 and ng = no(lp) > 0 such that, for all N > ny and n > 2N,

P[A, (N,2n)] > ¢P[As (N, n)]
P [As (3.1)] = P[4 (N,n)]

Proof. We prove the first inequality, the second is similar.

Let n = n(k) be such that there exists an n-landing sequence of length k, entirely
situated on the right side of 9A;. Take (I;,i = 1,...,k) such a landing sequence. Let ng
be given by the separation theorem applied to (G,P) for this value of . For N > n; V
and n > 2N, let H,, be the event that, for each ¢ € {1,...,k}, the rectangle [n,2n]| x I;
contains a horizontal crossing of colour o;.

By the box-crossing property BXP (I, d), there exists ¢y = ¢¢(d) > 0 such that P(H,,) >
co. By the upcoming Lemma

P[A,(N,2n)] > P[AZ1(N,n) N H,] > cocP[Ag (N, n)],
where ¢; = ¢1(€, k) > 0 is given by the separation theorem. O

2.3.3 Proof of the separation theorem

In the proof of Theorem 2.3.1] the typical events consist of the existence of certain open

and open® paths. The usual FKG inequality is not enough to control the probabilities
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of intersections of such events. Before the actual proof we state an enhanced version of
the FKG inequality, adapted to our setting. The following lemma is taken from [Nol08|,

Lemma 12], and we direct the reader to the original work for the proof.

Lemma 2.3.3. Consider AT, At two increasing events and A~ A~ two decreasing events
on Q= {0,1}F. Assume that there exist three disjoint finite sets of edges A , AT and A,
such that AT, A™, At and A~ depend only on the edges in, respectively AUAT, AU A",
AT and A=. Then we have

PIAT N AT|AT N A7) > P[ATP[A],

for any product measure P on ).

The proof of Theorem 23] is long and intricate and we would like to focus on the
structure. Hence we have split it into a sequence of lemmas.

Fix a planar graph G with a percolation measure P, and assume P satisfies BXP (I, )
for some Iy, 6 > 0. All constants in the following statements depend implicitly on o, § and
lo, but not otherwise on (G,P).

For the sake of clarity we will limit ourselves to the case of the exterior boundary; the
same may be adapted to the interior boundary. For n > 0, denote A (N, n) the event that
there exists a sequence of n-well-separated fences (Fi)i€{17...7k} in A(N,n), with colours
given by o.

We skip the explanation of why we may restrain ourselves to the case where n and IV are

integer powers of 2. We remind the reader that By denotes the rectangle [0, N] x [0,4N].

Lemma 2.3.4. For v > 0 there exist )’ = n'(v) > 0 and Ny = No(v) € N such that for
all N > Ny

P[By is 1 -separable] > 1 — Z

It will be obvious from the proof that 7' can be chosen to be increasing in v. This
lemma is the engine room of the proof of Theorem 231} we will admit it for now and

prove it in the next subsection. Here is a consequence.

Lemma 2.3.5. Take v > 0 and ' = n/(v) given by Lemma [2.37) Then, for n > N >
No(v),

P[4 (2", 2")] < PlAY (27, 2")] + P4, (2,277,
and

PlA,(2V,2")] < > VIPIAT (2N, 27)].
0<j<n—N
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In the preceding lemma, as well as in the following ones, we consider P[Agl(n, n)| =1;

this proves to be a coherent convention.

Proof. For the first equation note that, under the event A,(2V,2")\ AZ,(2N ,2™), one of
the four 2771 x 2"l rectangles forming A(2"71,2") is not #/-separable (on its outward
facing side). The latter is an event that, by Lemma [Z34] is of probability at most v.
Moreover, the fact that one of these boxes is not 7’-separable is independent of the states
of the edges in A(2Y,2"~1). Thus

P[4,(2V,2m)\ 4F (2N, 27)]
< P [{one of the rectangles is not n/-separable} N A, (2", 2" )]

<P [A, (2N, 2" h)].

This proves the first inequality.
The second inequality is obtained by repeatedly applying the first, until we reach the
event A7 (2N, 2V), which has probability 1. O

Lemma 2.3.6. For nf > 0 satisfying (Z31), there exists Cy = Co(n') > 0 such that for
j > N >0 there exists a n'-landing sequence I' with

PIAT (2N, 27)] < CoP[AZT (2N, 27)].

Proof. First suppose j > N. For given 7’ we may find a finite family of 7’-landing sequences
such that any set of k n/-well separated fences of A(2",2") lands in at least one of the
landing sequences of the family. Then CY is given by the inverse of the number of sequences
in the family.

If j = N both probabilities are, by convention, 1. O

Lemma 2.3.7. For n' > 0 there exist constants C1 = C1(n') > 0 and Ny = N1(') € N
such that for all N € N and j > N1(n/), for any n'-landing sequence I', for any n > n/

and any n-landing sequence I,

P[AZT (2N 27)] < CP[AZT (2, 20+1)).

Proof. This is done through an explicit construction using crossings of boxes as illustrated
in Figure 22321 By the box-crossing property and Lemma 2:3.3] we obtain

P A2 (2n, 27| 427 (2,27)] = Cu(a).
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Figure 2.3.2: The extension of a fence from A(2V,27) to A(2V,27+1). All rectangles have
aspect ratio controlled by 7'. Since 1’ may be small and we may need to fit k disjoint
such construction in A(27,27%1), we need a lower bound on j. Thus we impose j > Nj in

lemmas 2.3.7] and 2381

The following lemma is a particular case of Lemma 237} we state it separately only

to emphasize the steps of the proof.

Lemma 2.3.8. For ng > 0 there exist constants Cy = Ca(n) > 0 and Ny = Na(n) € N
such that for alln > ng, N € N, j > Na(n), and any n-landing sequence I,

P [AZT(2N,27)] < CoP [AZT (2N, 20H1)]
Let us now see how to use the above lemmas to conclude.

Proof of Theorem [2.31. Fix ng > 0. Consider the quantities Co(n9) > 0 and Ny given by
Lemma 238 applied to 7.
Let v = %; Lemma 2.34] applied with this value of v, yields quantities ' > 0 and Nj.
Since 71’ is increasing in v, we may choose 7’ < 1.
Lemma applied to 1’ yields a constant Cjy > 0.
Lemma 237 applied to 7’ yields a constant C; > 0 and a rank Nj.

We have written this so as to stress the fact that all constants in the computation

depend only on 7. Consider now some 1 > 19, n > N > max{Ny, N1, N2} and a 7-

93



Applications of the box-crossing property

landing sequence I. By the above lemmas we have

P [A0(2N7 2n+1)]
<P[A,(2N,2™)]

< 3 vP [Ag’(zN, on—j )] by Lemma L3
0<j<n—-N

< Z VI CyP [A?’F(ZN, 2”_j)] by Lemma 236 (I" depends on j)
0<j<n—N

< Z v CyCy P [A?’I(2N, 2”_j+1)] by Lemma 2.3.7]
0<j<n—N

< Z VI CoCLCYP [AZ1 (2N, 271)] by Lemma 38 for 1 > no
0<j<n—N

1
<2C,Ch1P [A?’I(ZN, 2"“)] since vCy < 7
The above string of inequalities yields the desired result. O

2.3.4 Proof of Lemma 2.3.4

There are two parts in the proof of this lemma. First we show that, with high probability,
the crossings can be made to land far from the corners of By, then we transform the
crossings into fences. Both parts are based on constructions using circuits in concentric
annuli. We will use constants C; > 0 which arise from box crossing constructions and
depend solely on §. Fix v > 0, and work in the box By = [0, N] x [0,4N], where N is
large, we will see later how large.

Crossings land far from corners. Denote Z* (respectively Z~) the upper right (re-
spectively lower right) corner of the box By. Consider some small n > 0 (we will see later
how small), and say Z7 is protected (or n-protected) if there exist two paths, one open
and one open*, both at distance at least \/fN from Z*, that separate Z* from the left
side of By (in By). See Figure [Z33] right diagram. By the box-crossing property, there
exists Cy = Cp(d) > 0 such that

P [AZ+ (\/ﬁNQk, \/ﬁNQkH) contains an open/open™ circuit| > Cj,

for any k as long as \/ﬁNZk > .
Suppose /N > |y and consider K € N such that /N 2K+1 < N. If one of the annuli
AZ+(\/ﬁN2k, \/ﬁNQkH), with 1 < k < K, contains an open circuit, and another an open*

circuit, then the corner Z* is protected. Hence

P[Z" is protected] > 1 —2(1 — Cp)¥.

o4



2.8. Separation theorem

By taking K as large as possible in the above expression, we obtain

_2+Inn

P[Z™" is not protected] < 2(1 — Cp) ™ am2 .

The right hand side is smaller than v if

- 2111%1112 2) = ()
nSewp | —patas 2 ) = m).

In the above computation we have used that N > l—On =:

=
—
=

~—

To conclude, for any n < n; and N > Ny,
P[ZT is not n-protected] < v.

The same holds for Z~, with the same values of 77 and Nj.

Vs
; VN
Y Zit1
/
\
N T
N 727 -~
> -
N
niN Vi
Zi
B
N 7-

Figure 2.3.3: Left: The corner Z* is protected. Right: The point z; is protected. The
innermost path guarantees the fact that I'; is a fence; the two outer paths guarantee that

|2i41 — 21| > \/nN.

Crossings may be made into fences. Let I be the total number of disjoint crossings of
By, both open and open*. First we bound I. For T'> 1 and N > [y, by the box-crossing
property and the BK inequality,

P[I>T)<PI>1"<(1-C)7,

with C; = C1(d) > 0 coming from the box-crossing property for P and P*. Choose
T> m, such that the above probability is smaller than v.

Let v/ = 7- We will now show that, provided 7 is small enough, the probability that
each crossing of By may be made into a n-fence is greater than 1 — /.

Let (I';)1<i<s denote the disjoint crossings of By, both open and open*, in increasing
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order (choose I'; to be the lowest crossing of By, I's the lowest crossing of By which lies
strictly above I'j, etc.). Let (z;); denote their endpoints on the right side of By. For some

K € N (we will se later how to choose it), we say z; is n-protected if:

(i) one of the annuli {A,,(nN2F,nN2*+1) : 0 < k < K} contains path of the same
colour as I';, above I';, and connecting if to a vertical crossing along the right side

of the annulus. See the innermost annulus around z; in the right diagram of Figure

233
(ii) there are two annuli in {A,, (\/7N2*, /N2F+1) 1 0 < k < K} containing an open,
respectively open*, path, connecting I" to the line {N} x R (as in the right diagram
Figure 2:33)).
Assume 7 and K are such that \/n < 27K Then, if z is n-protected, I'; may be made
into a n-fence and |z;11 — 2| > /nN. Moreover, the two events defining a protected point
depend on disjoint regions of the plane, hence are independent. For any path ~+ crossing
By (in G or G*) and any i € N, the event I'; = v only depends on the states of the edges
in By below . Thus, above v and outside By, the measure conditioned on I'; = v is
equal to the regular percolation measure P; in particular the box-crossing property holds
in this region. Using this, and constructions of partial circuits in annuli as in Figure 2:3.3]

we deduce that
P[z; is not n-protected] < 3(1 — Cp)¥,

where Cy > 0 does not depend on 7, K or N, and N is large enough for the box-crossing
property to hold in all rectangles involved. More precisely N > %0 =: Na(n).

Finally choose
Inv/
K=K{)=|———
=l

and 1y = 12(v') > 0, such that \/m; < 275, Then, for n < 1y and N > Ny(n),
P[z; is not n-protected] < /.

Conclusion. Using the above facts we deduce that, for n < min{n;,n2} and N >
maX{Nl(n)vNQ(n)vl()}?

P [By is not n-separable] <P [Z * is not n—protected] +
P [Z ~ is not n—protected] +

PI>T)+
Z P[i < I and z; is not n-protected]
1<i<T

<3v+TV = 4.
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This is the required result, with 4v instead of 7.

2.4 Scaling relations at criticality

In this section we prove the scaling relations ([L6.2]), with minimal assumptions on the
model.

Let G be a planar graph embedded in the plane, and P be a bond percolation measure
on it. We assume that G satisfies the conditions of Section [L3I] but no symmetry is
required.

Suppose G is such that 0 € R? is a vertex of G. For n > 0, denote the probabilities of

the one-arm event centered at 0 by
m1(n) =P(0 < 0A,),

with the convention 71(0) = 1. For v € V, write n}(n) for the probabilities of the similar
one-arm events centered at v. We will assume in this section that there exists a constant
¢r > 0 such that, for n > 0 and v € V,

clnt(n) < mi(n) < eprnl(n). (2.4.1)

The above is immediate for periodic models, but is a significant assumption in other

situations.

Theorem 2.4.1. Suppose both P and P* satisfy the box-crossing property. If p or n exist
for (G,P), thenn, p and ¢ ezist for (G,P), and

np=2 and 2p=9§5+1. (2.4.2)

The theorem also holds for site percolation with only minor changes in the proof. The
proof which is presented next follows Kesten’s arguments from [Kes86| [Kes87al, with small
changes due to the more general context.

We assume P has the box-crossing property BXP(1,dg) for some g > 0. All constants
in the rest of the section implicitly depend on c;, dy and on the constant K, of Section
[[31] but, unless explicitly stated, not otherwise on (G,P). The constants ¢; in different
statements are generally unrelated. We will use the phrase n large enough to mean n > ny
with ng only depending on ¢, dg and K4. Before the actual proof we give a helpful bound

for .

Lemma 2.4.2. There exists a constant ¢ > 0 such that, forn > 1 andv € V,
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As a consequence, if p exists, then p > 2.
It will also be useful to note that, due to the box-crossing property, there exists a

constant ¢ > 0 such that, for n > 1,
m1(2n) > cmi(n). (2.4.3)

Proof of Lemma[2-.2 Fix n > 1 and consider the rectangular domain B(2n + 1,2n) =
[0,2n + 1] x [0,n]. By the box-crossing property there exists a constant ¢; > 0, not

depending on n, such that
P[Cy(B(2n + 1,2n))] > c1.

Let S denote the strip [n,n+ 1] x [0,2n]. If Cy [B(2n + 1,2n)] occurs, then there exists at
least one vertex v in S, with two disjoint open paths linking it to the left (respectively,
right) side of the box B(2n + 1,2n). Call such a vertex a linked vertex. Then

Z P(v is linked) > P(there exists v € S linked)
veS

>P[Cy(B(2n+1,2n))] > ¢.

By the conditions in Section [L31] the strip S contains at most Kyn vertices. Also, by
the BK inequality, for any v € S,

P(v is linked) < (7¥(n))? < ¢ (m1(n))?.

™

In conclusion

Kqn (mi(n))* >

>ﬁo| 2

which concludes the proof of the lemma. O

The proof of Theorem 2411 is based on the following propositions taken from [Kes87al.
Henceforth v will denote a vertex of GG, and |v| will be the euclidian distance between 0

and v.
Proposition 2.4.3. If one of the following two limits exists

1 1 logP
L, ogmi(n) —p= lim ogP(0 < v)

2.4.4
p n—oo logn wl—oo  loglu| 7 ( )

then they both exist and n = %.
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>
A /_7

o] o

Figure 2.4.1: Left: The existence of a path from 0 to v implies the existence of disjoint
arm events centered at 0 and v. Right: The horizontal paths form R and L. Together
with the vertical crossing of H they form a path from 0 to v.

Proposition 2.4.4. (a) For any € > 0, there exists A\ > 0 such that, for v €V,

Cyl
P <
[n%l(n) =2

rad(Cy) > n} <e€  form>1. (2.4.5)

(b) For A>1 and t > 1, there exists c(t) depending only on t such that, forv eV,

n?mi(n)

n <rad(C,) < Zn} <c®)ATt, forn>1. (2.4.6)

Corollary 2.4.5. If the limits of Proposition [2.7.3 exist, then

1 logP(|Cy| >n)
- =]Jim =" 7
n—o0 logn

exists uniformly in v, and 6 = 2p — 1.
Theorem 24T follows directly from Proposition 243 and Corollary

Proof of Proposition[2.7.3 Fix v € V. By rotating G we may suppose v € R x {0}. This
rotation may affect w1 (n), but only by a bounded multiplicative factor (see (2.4.3])).
First suppose 0 <> v. Then there exist arms from 0 and v, respectively, to distance |v|/2

away. Moreover these are contained in disjoint parts of the plane. See the left diagram of

Figure 2411 By (ZZ41) and (243,

vl

PO+ v) <P [rad(Co) > 7] P [rad(Cv) > %} < ey (|v))?, (2.4.7)

with ¢; not depending on v.

Conversely, let n = |v| and define the events

L= {o N [—n,n]} and R= {v Aoy [—n,n])}.
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Then, by the box-crossing property and (2.4.1]), there exists ¢o > 0 such that
P(L) > omi(n),  B(R) > com(n).

Let H be the event that the rectangle [0, n] x [-n,n] contains a vertical open crossing. By
the box-crossing property, P(H) > c3 for some ¢3 > 0, independent of n. Finally, by the
FKG inequality and the geometrical consideration of Figure [ZZ4.T],

P(0 <+ v) > P(LNRNH) > c3cami(n)? (2.4.8)

Inequalities (Z.4.7) and (2.4.8]) imply the proposition. O

Let us assume Proposition 244 for now, and prove Corollary 2245 The proof of

Proposition 244 is presented in the next section.

Proof of Corollary[2.7.3 Fix ¢ € (0,1) and A as in Proposition [ZZ4] (a). Then, for n > 1
andv eV,

P[|Cy| > )\n27r1(n)] >P [|C’v| > An?my(n)|rad(C,) > n| P [rad(C,) > n]

> (1—e)c tmi(n).

Using the above and (Z.4.4]), we obtain

log P > logP [|C,| > An?
lim inf o8 T %ol = 1 [Cu] 2 n] > lim inf o8 U o 2 An Wl(n)]
n—00 logn n—00 log An?m(n)
1
= . 2.4.9
We turn to the converse inequality. Fix € > 0 and, for n > 1, set
logn
ko= |(1—e)——2" |, (2.4.10)
(log2)(2— 1)
By our assumption, 71(n) = n_%Jro(l), hence
9%k, (2k0) = pl=etoll), (2.4.11)

For n large enough, we use Proposition 2.4.4] (b), with ¢ = 2 and A = W > 1, for the
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following computation.

P[Cy| = n]
< ¥ (2k0) + Z ¥ (2F)P [|C’v| > n‘2k <rad(C,) < 2]"’“}

- m(2) [ 22kmy(2F)
<ctm(2%) (14 ¢ Z 71_11((2]%)) < 1 )> by (Z.4.6)

n

92ko - (9ko 2 ok—ko (9k 3
=c;'m(2") |1+ ¢ <7ﬂ1( )> D akho <77”( )> L (2412)
n

k<ko ﬂl(ZkO)

Since m(n) = n~» W and p > 2 (see Lemma [ZZ42), the sum in (ZZI2) is bounded

above by a constant c3, uniformly in ky. Thus

P[|Cy| > n] < c;'mi(27)

92ko - (9ko 2
14 cocy <£> .

n

Using (24.10), the above implies

log P[|Cy| > n] - 1—e¢

li . 2.4.13
lgl—?olip logn —1-2p ( )
Finally, since € > 0 is arbitrary, (ZZ4.9) and (24.13]) imply the corollary. O

2.4.1 Proof of Proposition 2.4.4]

This section is an adaptation of the arguments of [Kes86]. The proof of Proposition
[2.441is based on certain moments estimates for |Cp|, such as those given in Lemma 2.2.0
This lemma is interesting not only for its results, but also for its proof, which illustrates

arguments that will be used to obtain various similar estimates.

Lemma 2.4.6. Fort > 1, there exist constants C(t),C'(t) > 0, such that, for all n € N,

E [|Cy|'In < rad(Cy) < 2n] > C(t)[n*m(n)]", (2.4.14)
E [|Cy|'In < rad(Cy) < 2n] < C'(t)[n?m1(n)]. (2.4.15)

In the proof of Lemma [ZZ.6] we will use the following inequality.

Lemma 2.4.7. There exists a constant ¢ > 0 such that, for all n € N,

nmi(n) < Zm(k‘) < enmi(n). (2.4.16)
k=0
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Applications of the box-crossing property

Proof of Lemma [2.7.7 The first inequality is trivial since 7 is decreasing. We turn to the
second.

Fix n € N, and let S denote the strip [0,1] x [0,2n]. For v € V define R(v) as the
event that v is linked by an open path to the half space [n,00) x R. For v € S, we have
P[R(v)] < e1mi(n) for some ¢; > 0, not depending on v or n. Hence, if we denote S,, the

number of vertices v € S such that R(v) occurs, then
E(Sn) < clem(n). (2.4.17)

We recall the notation Cy(B(n,n)) for the event that there exists an open horizontal
crossing of B(n,n) = [0,n] x [0,n]. If Ch(B(n,n)) occurs, let v denote the lowest open
horizontal crossing of B(n,n). Let I be a path crossing B(n, n) horizontally and z = (21, 22)
be the highest point of I' in S. Denote I'™ the set of edges of G which intersect B(n,n)
and which are below or contained in I'. By choice of v, the measure P(.|y =T') is equal to
P outside I'".

For v = (z,y) € V and k > 1, let Hi(v) be the event that there exists an open circuit
in AY(k+ 1,2k + 1), which is connected to v by an open path contained in [z — k, z + k| X
[y — k,y + 2k + 1]. By the box-crossing property there exists ca > 0, such that, for v € V
and k > 1, P[Hk(v)] > comi(k). Let

Hi (v) = {w € Q: 30 € Hy(v) with w, = o, for e € E\T™}.
With the above definition, we have
B[HL (v)ly = T > B[Hi(v)] > com (k). (2.4.18)

For k=1,...,n, let v; be a vertex in the square [0,1] X [22 + k, 22 + k+ 1] C S. Such
a vertex exists by the conditions of Section [[31] If v =T and H,E(vk) occurs, then vy, is
linked to 7, hence to [n,00) x R, by an open path. Thus R(v) also occurs. See Figure

By ([Z413),
P[R(vy)] > Y P[Hj (vg)|y = TP[y =T
r
> comi (k)P [Cu(B(n, n))]

> cocami(k),

where c3 > 0 is given by the box-crossing property, and does not depend on n or k. Hence,

E(Sn) > cacs »_ mi(k).
k=1
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0 (n,0)

Figure 2.4.2: The intersection of the events v = I' and H}; (vk) ensures that vy is connected
to [n,00) x R.

Together with (2417, the above implies (ZZI6]), with the sum starting at k& = 1. The

term 7r1(0) may be incorporated by increasing the constant (see also Lemma [2Z4.2). O

Proof of Lemma[2.4.6 First we prove ([2.4.14)), and, for simplicity, we take v = 0. The
constants in the following proof do not depend on this choice.

Fix n > 2 and let H,, be the event that A(n, 3n) contains an open circuit and that
A(%n, 2n) contains an open* circuit. By the box-crossing property for P and P*, there
exists ¢; > 0, not depending on n, such that P(H,,) > c;.

For v € A, let R(v) be the event that there exist an open path linking v to 8A%n. By

the box-crossing property for P, there exists co > 0, not depending on n or v, such that
P[R(v)] > comi(n).

Note that H, is increasing in the edges of As , and that R(v) only depends on the states
2
of these edges. Hence, for v € A,

P[R(v) N R(0) N H,] > c1c3(m1(n))%
But if R(v) N R(0) N H,, occurs, then v € Cy and n < rad(Cp) < 2n. In conclusion

E[|Col;n < rad(Cp) < 2n| > Z P[R(v) N R(0) N H,] > cican’(my(n))?. (2.4.19)
vEA,
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Note that P[n < rad(Cp) < 2n] < m1(n). By dividing (2Z419]) by 71(n), we obtain
E UCOHn < rad(Cp) < 2n| > cican’my(n). (2.4.20)

This is (Z4TI4) with ¢ = 1 and n > 2. The case n = 1 is obtained by adjusting the
constants. We may extend the result to ¢t > 1 using Jensen’s inequality for positive

random variables Z:
E(Z') > [E(Z)]".

We now turn to (2.4.15]). As before we take v = 0. The constants in the following do
not depend on this choice. The vertex 0 will sometimes also be denoted vy.
By Jensen’s inequality, it suffices to prove (ZZ4I0]) for t € N. Fix such a ¢t. In the

following, ¢;,7 € N will denote constants that may depend on ¢ but not on n. We have

1
E Hn < <2n] < E[|Co|";n < <2
[|Col*|n < rad(Cp) < 2n] < (< 1ad(Cy) < 2n) [|Col"sn < rad(Ch) < 2n)]

C1
< Pluy,...,v € Co;rad(Cy) > n].
) Z [v1 ¢ € Co;rad(Co) > n)

=

V1 ,.0, 0 ENop

The sum above is over all t-uplets of vertices (v1,...,v;) € (Ag,)t. To these we add the
vertex vy = 0. For such a set of vertices (vo,...,v), let r; = |min{%|lv; — vj||oo : j # i}],
where ||.||so denotes the L> norm in the R?, and |z] is the greatest integer below x. We

claim that there exist ¢y such that, for all choices of vq, ..., v,

¢
Plv,...,v € Cp;rad(Coh) > n] < cami(n) Hm(ri). (2.4.21)
i=1
Let us prove this claim. Fix the vertices vq,...,v:, and let H be the event that, for each
i€{l,...,t}, the annulus A" (r;, 2r;) contains an open circuit (if r; = 0, we do not require
the existence of any path). By the box-crossing property, P(H) > c3, with c3 > 0 only
depending on t, not on vy,...,v; or n. If vy,..., v, € Cp, rad(Cp) > n and H occurs,
then there exist disjoint open paths =y; such that -y connects vy to A, and, for i > 1, v;
connects v; to JA,, + v;. See also Figure By the BK and FKG inequalities,

m1(n) waz (ri) > P{v1,...,v € Co} N {rad(Cy) > n} N H|
i=1
> e3P [{v1,..., v € Co} N {rad(Cy) > n}].

In conjunction with ([Z4J]), the above implies (Z4.2T]).
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Yo V3

§s!

AinllE

Figure 2.4.3: If vy,..., v € Cp, rad(Cy) > n and H occurs, then there exist open paths ~;
connecting v; to OA,, and 7o connecting 0 and JA,,. Moreover these paths are disjoint.

Finally, this leads to

E [|C’0|t‘n <rad(Cp) < 2n] < ¢4 Z le(ri).

U1,ee, U €Ny 1=1

In order to prove (2.4.15)), it suffices show the existence of a constant ¢ = ¢(t), such that

t

Z H m1(ri) < en®*mi(n)t. (2.4.22)

V1 ,., 0t ENgy i=1

For that purpose, we group the terms of the sum by the ¢ + 1-uplet (rg,..., 7).
Let us first consider the case t = 1. For v1 € Asg,, we have rg = r1 < n, and

v1 € A(4rg,4ro+4). Hence, for an imposed value of ¢, there are at most 32K ;(ro+1) < csn

choices for v1. By (ZZI0]),

Z m1(r1) < cs Z nm(r1) < cgn’mi(n).

v1E€A2, r1=0

Let us also sketch the proof for t = 2. For any two vertices, v1, ve, two of the three
quantities rg, r1, ro are equal, and smaller than the third. Let (rg,r1,72) be such a triplet.
By analysing separately the cases ro = r1 < rg and rg > r1 = ro, we find that there are at

2

most cyn® vertices v1,v9 € Ao, which yield this particular triplet, where c¢7 is a constant
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Applications of the box-crossing property

that only depends on K. In conclusion

Yo omlr)m(ro) <em? 20 Y mE)mlr)+ Y, m(r)?

v1,v2€N2p 0<r1<ro<n 0<r1<ro<n

n
< 2¢7m? Zm ) + ern® Z m1(r)
r=0

< cgn 7'('1(71

This concludes the proof in the case t = 2. Inequality (2:4.15]) is only used in the proof of
Proposition 244 with ¢t = 1,2. We do not prove (Z4.22]) for ¢t > 3 here, we only mention
that the combinatorial argument used to estimate the sum in (Z4:22)) is similar, but more

complex, as it needs to take into account more situations. O
We are finally ready to prove Proposition 2441

Proof of Proposition [2.4.7} Part (b) is a simple application of Markov’s inequality. For
A > 0, by (2415]), we have

E [|C,) |n < rad(Cy) < 2n]
P ||, = An*m(n)|n < rad(C,) < 2n] < (An?mi (n))"

<Ot

Part (a) requires more work. For simplicity we shall prove (2.4.3]) for v = 0. It will be
apparent that the constant used in the proof do not depend on this choice.

We wish to prove that

P [|Co| > Anzwl(n)‘rad(Co) >n] — 1,
A—=0

uniformly in n. Let K = |logsn| and split the ball A,, in disjoint concentric annuli
A2F 281 with 0 < k < K.

For k € {0,...,K — 1}, let Y,, be the number of vertices in .A(2¥,251), connected by
an open path inside A(2%,2%+1) to an open circuit of A(2%,28*1). We claim that there
exists constants c1,co > 0, independent of k, such that, for 0 < k < K,

E(Y:) > c12F71(2%)  and  E(YV?) < o287 (2)]2 (2.4.23)

The second inequality is proved by a combinatorial argument similar to the one used for
(ZZIH). For the first inequality, let Hy be the event that there exists an open circuit in
A(2k+§,2k+l). By the box-crossing property, P(Hj) is bounded away from 0, uniformly
2
in £ > 3. As in the proof of ([2.4.14]), if Hj, occurs, then each vertex in A(2k+%,2k+§)
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2.4. Scaling relations at criticality

Figure 2.4.4: The ball A,, is split into concentric annuli. The red circuit forms the event
Hj, and the vertices vy, vo contribute to Y.

has probability at least c37m1(2¥) to be connected to an open circuit in A(2k+%,2k+1). See
Figure 22441
We now use the (ZZ.23) in a one-sided Chebyshev inequality as follows. For s > § we

have

P[vi < 925m(25)] <P < §E()]
<P [(¥i — sE(Y)? > (s — 3)7E()?]

- Var(Yy) + (s — 1)2E(Yk)2.
(s — ) E(V)?

Var(Yy)
E(Yz)?

In order to minimize the right-hand side above, we take s = 2 + 1, and obtain

4Var(Yy)
P [Y < ok (ok ] < ,
P 3Pm)] S o TR
By ([2423)) and the above, there exists ¢z > 0 such that, for 0 < k < K,
P [Yk > %2%(2’“)] > ¢ (2.4.24)

Note that Y3 only depends on the configuration inside A(2%,2¥*1), hence the variables
(Y : k=0,...,K — 1) are independent. By ([2:424]), we have

P

K—1
Z Y, < Mn’m(n)| — 0,
o A—0
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uniformly in n.
Finally, note that both Zf:_ol Y}, and rad(Cp) are increasing functions of the configu-

ration. Hence

K—-1
< A\n? >
P kz_o Yy < An’my(n)|rad(Cp) > n] —0,

uniformly in n. But, if rad(Cy) > n, then each vertex contributing to Y} is connected to
0, and |Cp| > 37! V4. This concludes the proof of Proposition 24 (a). O

2.5 Scaling relations near criticality

In this section we sketch the proof of the scaling relations (LE.3]) for models with sufficient
symmetry. We follow Kesten’s method from [Kes87b|, also reviewed in [NolO§]. The
purpose of this section is to present the main ideas in the proof and to highlight the points
where symmetry is required.

Let G be a planar graph embedded in the plane, and P be a percolation measure on
it. Suppose (G,P) is periodic, rotation invariant by an angle 6 € (0,7), and invariant
under reflection with respect to two perpendicular axes. Let p be the intensities of P. By
periodicity, there exists ey > 0 such that p € (e, 1 — €g)”.

Theorem 2.5.1. Suppose P and P* satisfy the box-crossing property. If p and py exist for
(G,P), then v, B, v and A exist for (G,P), and

1 1 2(1=p) A_Z=P

14

(2.5.1)

- b IB: ) ) - -
2—pa 2—p T 2-pm 2—ps

The above, along with the scaling relations at criticality of Theorem 24Tl imply
(CE3).

In the sketch of the proof we will sometimes make implicit assumptions about the local
structure of the graph, namely about the behaviour of arm events at low scale. These
assumptions are necessary only to avoid overly complicated statements. The following
arguments concern essentially the behaviour at large scale; keeping track of the local
details of the graph would overburden the proof.

As in Section [2.2] we distinguish two cases, § = 5 and 6 = %. For simplicity assume we
are in the former, and that (G,P) is invariant under translation by (1,0) and (0, 1), and
under reflection with respect to the axes of R?. The case § = % is similar. Also assume
that P and P* satisfy the box-crossing property BXP(1,6) for some § > 0.

The following notation will be useful. For a vertex u and n > 0, let A} (n) = {rad(C,) >
n}. For an edge e = (u,v), with dual edge e* = (u*,v*), let A{(n) be the event that there

exits 4 arms of alternating colours, originating from w,u*,v and v*, respectively, and
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landing on 9A,, + e Ne*. We write simply A;(n) for the event AY(n) with u being the
vertex closest to 0, and A4(n) for the event A5 (n), where e is some arbitrary fixed edge.
One may imagine for simplicity that 0 is a vertex, although this is not necessarily the case.
For k € {1,4}, we write

mr(n) = P[Ag(n)].

These are the probabilities of arm events centered at 0 and eg respectively. By periodicity,
they are comparable to the probabilities of the corresponding events centered at any other

point, as in (24.1]). Since we assume the existence of p; and py,
mR(n) =n~Pete) ke (1,4}, (2.5.2)

The proof of Theorem Z5.T] occupies the rest of the section and is split into several steps.
Throughout the proof € will be taken in (-, %), and P° will denote the measure with
intensities (pe + €)eck-

Correlation length L. For e small, P may be viewed as a perturbation of P. Thus,
at small scale, P is similar to a critical measure. At large scale it behaves sub- or su-
percritically, depending on whether ¢ < 0 or ¢ > 0. In loose terms, the scale at which
the measure stops behaving critically is called the correlation length associated to €. The
definition of the correlation length given in Section [[.Glis one of several possible definitions.
A more convenient one for our proof is in terms of crossing probabilities. Here is a precise
definition.

Fix a constant ¢ € (0, g), which should be considered small, we will see later how small.
For [e| < 9, let

Lo(e) = inf{n € N: P¢[C,(B(n,n))] <<}, for e <0, (253)
inf{n € N: P¢[C,(B(n,n))] >1—c¢}, fore>0.

Thus Lc(e) is the smallest scale at which the probabilities of crossings of squares degen-
erate, and ¢ is a threshold for this degeneracy. By the box-crossing property and the
sharp-threshold theory,

Le(e) <oofore#0 and Lc(e) 7
e~

Next we will study P¢ at scales smaller (respectively, larger) than Lc(€), and show that
it behaves indeed critically (respectively, sub- or supercritically). We will also link L(e)
to the correlation length £ introduced in Section We will generally assume that € is

small, so that L is large enough to allow us to use box crossing arguments.

69



Applications of the box-crossing property

Henceforth ¢;,i € N denote strictly positive constants that may depend on § and ¢, but,
unless otherwise stated, not on (G,P) in any other way. For functions f,g : R — (0, 00),
we recall the notation f = ¢ for the fact that there exist constants c;,co > 0 depending
only on ¢, such that

/() € (¢1,¢9), forall x € R.
9(x)

When no ambiguity is possible, we write L for L (e).

Box crossings below the correlation length. At scales smaller than L, P behaves
like a critical percolation measure, in particular it satisfies the box-crossing property. A
more precise statement follows.

Fix e. There exists ¢; = ¢1(s) > 0, not depending on ¢, such that, for 1 < n < Lc(e),

and all boxes B of size 2n X n, aligned with the axes,

[P¢(B has an open crossing in the long direction) > ¢1,

P*(B has an open” crossing in the long direction) > ¢;. (2.5.4)

As a consequence, the results of Sections and 24, in particular the separation theorem,
are also valid for IP¢, at scales smaller than L.

Let us sketch the proof of ([Z5.4]). Consider the case € < 0, the case € > 0 is identical
by passing to the dual. The probabilities of open* crossings in P¢ are greater than in P,
whence the second inequality of ([235.4]). We move on to the first. By definition of L, for
1<n<L,

P [Ch(B(n7 n))] =S,
Also, (G, P) has sufficient symmetry for the RSW lemma to hold; see Lemma[ZZT] Hence
P (Ch(B(2n,m))] > 1, (2:5.5)

with ¢; > 0 depending only on ¢. Inequality (Z5.5]) may be extended to crossing of general

boxes by the rotation and translation invariance of (G,P).

Arm events below the correlation length. The arm events at scales lower than L

also behave similarly in P and P¢. More precisely, for n < Lc(e) and k € {1,4},
P [Ag(n)] ¢ mk(n). (2.5.6)

We focus on the case k = 1 and € > 0. The case k = 1 and € < 0 is identical by considering
the dual. The case k = 4 is slightly more complex since A4(n) is not increasing, and we

require an improved version of Russo’s formula to compute the derivative of probabilities
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Figure 2.5.1:  Left: The edge e € A% is pivotal for Aj(n). This implies the existence
of a four arm event in the gray ball around e, and of one arm events in the gray ball
around 0 and in the outer annulus. Right: If e is close to JA,, and pivotal for A;(n), then

A§(dist(e, 0A,)) occurs.

of such events. Nevertheless, the additional difficulties in this case are purely technical.
No further details are given here, see [Kes87bl [Nol0O§| for the full proof.

The main idea is to use Russo’s formula and the separation theorem to relate the
logarithmic derivative of P¢[A;(n)] to the derivative of the probability of crossing a square
box of size n. For n < L, the latter probability does not increase too much when going
from P to P7. This allows us to bound the logarithmic derivative of P€[A;(n)], and (Z5.0])
follows.

The actual proof is quite intricate; it requires several technical tricks, but also a re-
markable estimate on the five-arm exponent (see Lemma 235.2]). We will try to give a
heuristic explanation, and only sketch the actual proof.

For an edge e and A C R?, let dist(e, A) denote the L*™-distance from e to A. Let |e]
denote the distance from e to 0.

Fix n € [0,¢] and n < Lc(e). We will use repeatedly the box-crossing property at
scales smaller than Lc(e), i.e. ([Z54), and its consequences, the separation theorem and
Corollary

We start off by computing the derivative of the P"-probability of the one-arm event.
For e € A%, by the considerations of Figure 2.5.1] and the BK inequality, we have

P [e is pivotal for Ay (n)] < 1P [AS (3le])] P [A1 (5le])] P [41 (2lel,n)]
< P [Aa((e])] P [Ar(n)]

where the second inequality is obtained using the separation theorem to connect the arm
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inside A to the arm in A(2|e[,n). Similarly, for e € A(%,n), we have
2

P" [e is pivotal for A;(n)] < c3P"[Ay (dist(e, 0A,)) [P7 [A1(n)] .

By Russo’s formula,

Olog P [A (n)]

5 <cr Y PT[Ay(le Adist(e, 0A,)) ]. (2.5.7)

eEAn

We turn to the derivative of crossing probabilities. Let Cp(A,) be the event that A,
contains a horizontal open crossing. If Af(%) occurs for some edge e € A%, then, through
the separation theorem and the box-crossing property, we may, with positive probability,

extend the arms to make e pivotal for C,(A,). Hence

OP" [Ch(Ay)]

’I’L2IED77 [A4(TL)] < Cs 877

(2.5.8)
So, in order to bound the increase of log P [A;(n)], we would like to bound the right-hand
side of ([Z5.1) by n?P"[A4(n)]. For e far from 0 and OA,, P7[A4 (|e| A dist(e,OA,))] is
comparable to P7 [A4(n)]. But for e close to the center or to the boundary of A,,, the former
is significantly higher than the latter. Dealing with this problem is the main difficulty in
the proof of (Z5.0]).

The contribution to %}7‘41(")] of the edges close to JA,, is overestimated in (2.5.7]).
A quite simple trick will allow us to correct this. On the other hand, the contribution
of the edges close to the center is indeed greater than P"[A4(n)], and we will need a fine
analysis to deal with them. First we eliminate the terms with e close to JA,,.

For n € [0, ¢] let P" be the measure with intensities Pe + 1 inside Ag, and p. outside.
Then P < P7 <y P, hence P" also satisfies Z54). In particular,

n

P¢ (A (n)] =, P* [Al (g)} —F [Al (2)] = P [A,(n)].

So in order to prove ([Z5.0), it suffices to show

log

P [Ai(n)] _ / wdn <e (2.5.9)
0

P[Ay(n)] on

for some constant ¢ that only depends on ¢, not on n or e.

As for (Z5.1), we have

dlog P" [A; (n)]

G <o > F'[A5(le])] (2.5.10)

eGAg_
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Using an inequality similar to ([25.7]), we find that

/ > P'[AS(n)]dn < cr. (2.5.11)

eGA

In order to go back to the periodic measure P7, we split (Z5.10) as follows:

/ S B 45 (lel)] dn</ S B AS(e) d77+/ S P [A5(le)] d
0 cehy echy ecA(%,2)

By (Z5.11) the second term is bounded by a constant. In the first term the events only
depend on the configuration inside An, where P is identical to P". It therefore remains
bound

%
/ > PAS(le])] dn Ag/ ka [Ay(k (2.5.12)
0

GEAn

by a constant. In light of ([Z5.8]), this comes down to showing that the terms with large
k contribute significantly to the sum above. Suppose we could approximate P7 [Af(k)] by
k~, for some o > 0. Then we would be able to bound 25:1 kP [AS(K)] by n?P7 [AS(n)],
provided @ < 2. So, loosely speaking, we need to show that the four-arm exponent is
strictly smaller than 2. We do this by considering the following five-arm event. Let
o= (1,1,0,1,0), and write A5 for A,.

Lemma 2.5.2. Let H be a planar graph and P be a percolation measure on it. Suppose
(H, P) is periodic and that P and P* satisfy the box-crossing property BXP(d'). Then
there exist constants ¢, > 0, depending only on &', such that, for 1 < N <mn,

c (%)_2 < P[A5(N,n)] < (%)_2.

In other words, using only the box-crossing property, we deduce that the five-arm ex-
ponent is 2. Of course this does not imply that P7 [A5(k)] < £~ with oo < 2. Nevertheless
we manage to use Lemma 25.2] and bound (Z5I2), through some technical manipula-
tions, which are briefly presented next. The proof of Lemma may be found at the
end of this section.

For k< 7 and e € A%, we may use the separation theorem to find

P [e pivotal for C,(Ay)] > csP" [AG (k)] P [A4a(k, n)]. (2.5.13)
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By Reimer’s inequality (an enhanced version of the BK inequality, see [Rei00]),
B (A (k. )] < B [Aq(k,n)] B [Ay (b, m)].

Also, by the box-crossing property, there exists @ = a(s) > 0 such that,

P7[A;(k,n)] < cy (%>_a.

Hence we find that

P7[A4(k,n)] > c10 <%)_2+a.

This plays the role of the bound on the four-arm exponent. When putting this together

with (Z5I3]), we obtain

P [e pivotal for Cn(Ay,)] > c11P" [AS(k)] (E) .

Finally, by integrating the above and using Russo’s formula, we find

/ P [Ay(k)] dn < cron™ k2T (2.5.14)
0

We now input (Z5.14) in (Z512]), and deduce that

I 1
Z k‘Pn [A4(k‘)] d77 § C12 Z n—aka—l § C13.
0 k=1 k=1

€

This concludes the proof of (Z5.6]).

Asymptotics for the correlation length. Using ([25.6) and Russo’s formula, we are
able to obtain an asymptotic equivalent for L.(e) as € — 0. As before, we may restrict
ourselves to the case € > 0.

Suppose we could prove that, for n < L.(e) and n € (0, ¢),

OP" [Ch(B(n,n))]
on

= Z P" [e is pivotal for Cp,(B(n,n))] =, n*m4(n). (2.5.15)
ecB(n,n)

Then, by integrating the above, we would obtain

1= P [Ch(B(L, L)] - P[Cu(B(L, L))] =, eL’my(L)
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2.5. Scaling relations near criticality

Finally, using (Z.5.2]), this implies

1

Lc(e) =€ 2ra, as € — 0. (2.5.16)

But ([Z5.15]) is not entirely true. We have seen before that the contribution to the
derivative of P"[Cy,(B(n,n))] of the edges in the bulk (i.e. far from 9B(n,n)) is indeed
of order m4(n), but the edges close to the boundary could, in principle, have significantly
higher impact. We deal with this problem as in the proof of ([Z5.0]). The following lemma

will be useful.

Lemma 2.5.3. Let P be a measure on G, and assume P and P* satisfy the boz-crossing
property BXP(8"). Then, for any ¢ > 0, there exists o > 0 depending only on ¢ and ¢,

such that, for n,m large enough,

[P [Cy (B(n,m))] = P[Cy (B(1 — a)n.m))]| < c.
[P [Cy (B(n,m))] — P [y (B(n, (1 — a)m))]| < c.

The second inequality is a consequence of the first when applied to P*. Lemma 2.5.3]
may be viewed as a simplified version of Lemma 2:3.4] Indeed, if the horizontal crossings
of B((1 — a)n,m) may be made into a fences and B((1 — a)n,m) has a horizontal open
crossing, then the slightly longer box B(n,m) is also crossed horizontally by an open path.

Let a = a(s) > 0 be such that the lemma holds for any measure between P and P¢ with
c= %g and m,n < L. Denote P” the measure with intensities pe +n for edges e € B(n,n),
with dist(e, dB(n,n)) > an, and p, for all other edges. Using Lemma 5.3 for P* and P*,

we have

1=¢ P [Cn(B(L, L))] — P [Cu(B(L, L))]
= P [Cn(B(L, L))] — P [Cu(B(L, L))]

n —
= / Z P" [e is pivotal for Cy(B(L, L))] dn
0 eeB(L,L)
= nL*my(L).
This allows us to deduce ([Z.5.10) as described above.

Above the correlation length. For scales larger than L, P¢ behaves subcritically for
e < 0 and supercritically for € > 0.
First we analyse the case € < 0. By the RSW lemma (Lemma 2:2.T]) for the dual model

PEICy(B(2L, L))] < ¢(<),
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Applications of the box-crossing property

where ¢(x) — 0. In particular, for ¢ small enough, we have ¢(c) < 7f; henceforth we
d
will assume this is the case. We may then use Lemma 2.1.6] to argue that, for k£ > 0,

P [CV(B(Q’f“L, 2%k L))| < 27*. (2.5.17)

This step requires rotation and translation invariance. Using (Z5.I7) we show through

standard geometrical arguments that there exists ¢; > 0 such that, for n > L,
P [rad(Cp) > n] < e “EP¢ [rad(Cp) > L. (2.5.18)

We turn to the case € > 0. Using the same arguments as above, but applied to the

dual model, we have
P [Cn(B(2F1L, z’fL))] >1 27k,
For k > 0 define the events Hj, as follows:

Hy, = Cy(B(2FH1 L, 28 L)), for k even,
Hy, = Co(B(2FL, 2841 L)), for k odd.

Since P(Hy) >1—27F

Pe ﬂHk > ¢,
k>0

where co > 0 is a universal constant. If all Hg, k > 0 occur simultaneously, then there
exists an infinite cluster intersecting Az. By the above and the box-crossing property in
P¢, we deduce that

P(0 <» 00) > e3P [rad(Cp) > L. (2.5.19)
Also, by the same type of argument, there exists ¢4 such that, for k > 0,
P* [0 &> colrad(Co) > sz] <27, (2.5.20)

Near-critical exponents. Now that we have understood the behaviour of L.(e) and
that of P with respect to L.(€), we are ready to study the near-critical exponents of
(Z50). For simplicity we do this for v = 0.
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2.5. Scaling relations near criticality

Correlation length £. For e < 0 and n > L, by (251]),
log P¢[rad(Cp) > n] < —cl% + log P¢[rad(Cy) > n].
Conversely, by (2.5.4]),
P[00 (B (L. AL)] = o
From the above, by combining box crossings, we obtain
log P¢[rad(Cy) > n] > —03% + log P [rad(Cp) > L].
Hence
1

1 1
—— = lim ——logP* >nl < .
5(6) TLI—)IEO n 0og [rad(co) - n] S Lg(e)

In conclusion

1
V= . 2.5.21
S ( )
Percolation probability. For e > 0, by (Z5.6), (Z5.16) and 25.19),
P1
PO 4 00) =¢ m1 (Le(€)) m €774,
as € — 0. Hence
_ M
o 2 - 04'
Moments for the cluster size. For ¢t € N, we claim
E€ [|Col";|Co| < oo] =<¢ Le(€)? 1 (Le(e)) . (2.5.22)

Once ([25.22) is proved, using (2.5.6]) and (2.5.16)), we deduce

0-p)) A _2-m
2—ps 2—p4

Fix e. The idea behind (25.22]) is to split the space into squares of size comparable to
the correlation length, Lc(€), and to use the estimates of Section 2Z.4.Tlin each such square.

For m,n € Z, let

Spm = [(2m — 1)L, (2m + 1)L) x [(2n — 1)L, (2n + 1)),
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Applications of the box-crossing property

and Yy, n = |Co N Spmynl|. Then [Co| =32, Yinn. Next we prove upper and lower bounds
on the moments of Y, ,,.

The squares S, , have size comparable to the correlation length, and the box-crossing
property holds inside each of them. Hence we may use arguments similar to those in the
proof of Lemma 4.6 to show that, for ¢t > 1,

E€ [Yg 05 |Co| < o0] =¢ L (L)
For (m,n) # (0,0), we have
E€ [Yy 0 1Co| < 00] E [{v € Smm : v 4> 0Smn}'] P[0 ¢ S n; |Col < 0] .
As in the proof of (Z4.15]), may show that
E[[{v € S : v 4 0Smn}l] < ey L2 (L)Y
Finally, using (Z.5.1I8)) for € < 0, and ([2.5.20) for € > 0, we find
P[0 5 OS.n; |Co| < 00] < my(L)e™esmVm),

In the above, ¢4 and c5 are strictly positive constants that only depend on ¢ and ¢, not on

e or (m,n). We are now ready to conclude. First we have
E [|Col";|Col < oo] > E€ [Yy0;1Co| < 00] =¢ L¥m (L)'

For the converse we use the following convexity inequality

t

E[|Col%|Col < o0] =B [ [ D Yiun | 1ICol < o0
mneZ
t

[

< | D E (Y .1Col < oo

m,nEL

t+1 . mVn
< ¢ E Lm (L) T e %1
m,neL

< C7L2t7T1(L)t+1 .
This concludes the proof of ([25.22]), and that of Theorem 2511

Conclusions We have mentioned at the beginning of the section that we consider the

case where (G,P) is invariant under rotation by ¢ = 7. For the case § = % it is more
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2.5. Scaling relations near criticality

convenient to define the correlation length L in terms of crossing probabilities of the
parallelograms B2, as in Lemma The rest of the proof is identical.

We would like to emphasize the importance of the symmetries of (G,P). We have seen
in Section how these symmetries come into play in the proof of the RSW lemma. The
RSW lemma was used in our proofs to link the crossing probabilities of general domains
to those of squares, below and above the correlation length. We have also used translation
and rotation invariance in proving exponential decay above the correlation length for e < 0
(see (25.I7)). Finally, periodicity also comes into play to show that the probabilities of
the one- and four arm events of radius n centered at different points are comparable. This
will also be used for the five-arm event in the upcoming proof of Lemma

The box-crossing property tells us that the critical measure is somewhat isotropic.
When we move away from criticality this isotopy may be lost. Hence, the probabilities of
crossing domains at certain scales may degenerate differently depending on the positioning
and shape of the domain. If the model has sufficient symmetry, this problem disappears.
This allows us to define a correlation length that truly separates the critical scale from the
sub /supercritical scale. To our knowledge, there is no way to span this gap in the absence

of symmetry.

Proof of Lemma This proof is independent from the rest of the arguments
presented in this section. The idea of the proof is that, inside A,,, there is at most
one point with 5 arms originating from it. Conversely, such a point exists with positive
probability. Details are given next.

Let H and P be as in Lemma For n > 0, and e = (u,v) € A,, with dual edge
e* = (u*,v*), let As(e,0A,) be the event that e is open, and that there exists vertex-
disjoint paths ~1,..., 75, taken in anticlockwise order, with colours 1, 1,0, 1,0, originating
from u, u, ©*, v and v*, respectively, and landing on JA,. We assume that H is such that
A¢(n) is non-empty.

Let Iy,...,I5 be a landing sequence, and define the event Al(e,OA,,) as As(e, OA,,),
with the additional requirement that each ~; lands in nl;. The separation theorem may
be adapted to As, and, since (H, P) is periodic, we deduce that, for n large enough and
e e A%,

P [Al(e,0M,)] =5 P [As(e,0A,)] <5 P[A5(1,n)]. (2.5.23)

Also, for N < n large enough,

P [A5(17 ’I’L)]

P[Ag,(N,n)] =g m
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Applications of the box-crossing property

I2 | Ig

Figure 2.5.2:  Left: The event Al(e,dA,). For any other edge ¢’ € A,, AL(e’,0A,) can
not occur. If €’ is between ~; and 7,11, then there exists no path of colour o;3 joining €
to I;+3 (we use mod 5 convention for the indices). Right: If H; and Hs both occur, then
there exists an edge e on v for which As(e, dA,,) occurs.

Hence it suffices to prove
P[As(1,n)] =5 n~ 2

First we prove an upper bound. Let e be an edge in A% such that Af(e, dA,,) occurs.
Then, by a careful inspection of the different possibilities, we conclude that there exists
no other edge €’ € A%, such that Ag (e/,0A,,) occurs. See the left diagram of Figure

We turn to the lower bound. We show that, with positive probability, there exists
e € A%, such that As(e, A, ) occurs. Let H; be the event that there exists an open*
horizontal crossing of [~n,n] x [~%,0] and an open horizontal crossing of [-n,n] x [0, F].
Let 77 be the lowest crossing of the first type, and 7 be the lowest open horizontal crossing
above 77.

By the box-crossing property for P and P*, P(H;) <y 1. We now condition on H;
and on the path +. As in previous arguments, we use the fact that, above ~, P is not
affected by this conditioning. Let Hs be the event that there exists an open and an open*
path, inside [-§,0] x [-N, N], and [0, §] x [N, N] respectively, that connect v to the top
of A,,. Again, by the box-crossing property, P(Hs|Hy,v) =g 1.

Assume H; and Hj both occur, and let 75 be a open® crossing as in the definition
of Hy. Orient v from left to right, and let u be the last vertex on v before v; that is
connected by an open path to the top of A,. Let v be the next vertex on ~ after u, and
e = (u,v). Then e € Az, and As(e,dAy) occurs. See also the right diagram of Figure
2.0.2)
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2.5. Scaling relations near criticality

In conclusion

D PlAs(e,0M,)] > ey,

eGA'éL_

with ¢; > 0 only depending on ¢, not on n. Together with (Z5.23]), this provides the
necessary lower bound. This concludes the proof of Lemma [2.5.2]
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Chapter 3

Isoradial graphs and the

star—triangle transformation

In this chapter we give a detailed description of isoradial graphs and their relation to the
star—triangle transformation. The star—triangle transformation, presented in Section [B.2]
is the key tool in the proofs of Chapters [ and Bl

3.1 Isoradial graphs and rhombic tilings

3.1.1 Isoradial graphs

We begin by restating in more detail the definitions of Section

Let G = (V, E) be a planar graph embedded in the plane R?, with edges embedded as
straight-line segments with intersections only at vertices. It is called isoradial if, for every
bounded face F' of G, the vertices of F' lie on a circle of (circum)radius 1 with centre in
the interior of F. In the absence of a contrary statement, we shall assume that isoradial
graphs are infinite with all faces bounded. The term isoradial graph may be misleading,
as it does not only refer to a graph, it refers to a graph with a fixed embedding.

Let G = (V,E) be isoradial. Each edge e = (A, B) of G lies in two faces, with
circumcentres O and O,. Since the two circles have equal radii, the quadrilateral AO; BO»
is a rhombus. Therefore, the angles AO; B and BO3A are equal, and we write 6, € (0,7)

for their common value. See Figure [[L33]

Definition 3.1.1. Let ¢ > 0. The isoradial graph G is said to have the bounded-angles
property BAP(e) if
O € [e,m — €, ecE. (3.1.1)

It is said to have, simply, the bounded-angles property if it satisfies BAP(€) for some
e > 0.
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Isoradial graphs and the star—triangle transformation

All isoradial graphs of this paper will be assumed to have the bounded-angles property.
The area of the rhombus AO;BO; equals sin 6, and, under BAP(e),

sine < |[AO1BO,| < 1. (3.1.2)

When G is isoradial, there is a canonical product measure, denoted P¢, associated

with its embedding, namely that with p. = pg,, and

po__ sin(3fr —6)
1 —po sin($6)

(3.1.3)

Note that pg + pr—g = 1, and that G has the bounded-angles property BAP(¢) if and only
if
Pr—e < Pe < Pes ec k. (3.1.4)

3.1.2 Rhombic tilings

A rhombic tiling is a planar graph embedded in R? such that every face is a rhombus of
side-length 1. Rhombic tilings have featured prominently in the theory of planar tilings,
both periodic and aperiodic. A famous example is the aperiodic rhombic tiling of Penrose
[PenT7g|, and the generalizations of de Bruijn [Bru8Tal [Bru8Ib] and others. The reader is
referred to [GS8T, [Sen95] for general accounts of the theory of tiling.

There is a two—one correspondence between isoradial graphs and rhombic tilings of the
plane, which we review next. Let G = (V, E) be an isoradial graph. The diamond graph
G° is defined as follows. The vertex-set of G° is V¢ := V U C, where C is the set of
circumcentres of faces of GG; elements of V' shall be called primal vertices, and elements
of C' dual vertices. Edges are placed between pairs v € V, ¢ € C if and only if ¢ is the
centre of a circumcircle of a face containing v. Thus G is bipartite. Since G is isoradial,
the diamond graph G is a rhombic tiling, and is illustrated in Figure B.I.11

From the diamond graph G° we may find both G and its planar dual G*. Write V;
and V5 for the two sets of vertices in the bipartite G®. For i = 1,2, let G; be the graph
with vertex-set V;, two points of which are joined by an edge if and only if they lie in the
same face of G®. One of the graphs G, G is G and the other is its dual G*. It follows
in particular that G* is isoradial. Let e € F and let e* denote its dual edge. The pair e,
e* are diagonals of the same rhombus of G and are thus perpendicular.

Let e* € E* be the dual edge (in the embedding described above) crossing the primal
edge e € E. Then 0« = m—0,, so that p.+pe = 1 by (BL3]). In conclusion, the canonical
measure Pg+ is dual to the primal measure Pg. By (B1.4),

G* satisfies BAP(e) if and only if G satisfies BAP(¢). (3.1.5)
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3.1. Isoradial graphs and rhombic tilings

Figure 3.1.1: The isoradial graph G is drawn in red, and the associated diamond graph
G° in black. The primal vertices of G are those of G; the dual vertices are centres of
faces of G. A track is a doubly infinite sequence of adjacent rhombi sharing a common
vector, and may be represented by a path, drawn in blue. Two tracks meet in an edge of
G lying in some face of G°.

The above construction may be applied to any rhombic tiling 7" to obtain a primal /dual

pair of isoradial graphs.

3.1.3 Track systems

Rhombic tilings have attracted much interest, especially since the discovery by Penrose
[Pen74l, [PenT8| of his celebrated aperiodic tiling. Penrose’s rhombic tiling was elaborated
by de Bruijn [Bru8lal Bru81b|, who developed the following representation in terms of
‘ribbons’ or ‘(train) tracks’. Let G = (V, E) be isoradial. An edge eq of G belongs to
two rhombi 79, 1 of G®. Write e_1 (respectively, e1) for the edge of rq (respectively, r1)
opposite eg, so that e_1, eg, e; are parallel unit-line-segments. The edge e_; (respectively,
e1) belongs to a further rhombus r_; (respectively, r3) that is distinct from rg (respectively,
r1). By iteration of this procedure, we obtain a doubly-infinite sequence of rhombi (r; : i €
Z) such that the intersections (r; N ;41 : ¢ € Z) are distinct, parallel unit-line-segments.
We call such a sequence a (train) track. We write T (G) for the set of tracks of G, and
note that 7(G) = T(G*). The track construction is illustrated in Figure BI1]

A track (r; : i € Z) is sometimes illustrated as an arc joining the midpoints of the
line-segments r; N 741 in sequence. The set 7 may therefore be represented as a family of
doubly-infinite arcs which, taken together with the intersections of arcs, defines a graph.
We shall denote this graph by 7 also. A vertex v of G° is said to be adjacent to a track
(r; 11 € Z) if it is a vertex of one of the rhombi r;.

It was pointed out by de Bruijn, and is easily checked, that the rhombi in a track
are distinct. Furthermore, two distinct tracks may have no more than one rhombus in

common. Since each rhombus belongs to exactly two tracks, it is the unique intersection
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of these two tracks.

Kenyon and Schlenker [KS05] have showed a converse theorem. Let @ be an infinite
planar graph embedded in the plane with the property that every face has four sides.
One may define the tracks of ) by an adaptation of the above definition: a track exits a
face across the edge opposite to its entry. Then ) may be deformed continuously into a
rhombic tiling if and only if (i) no track intersects itself, and (ii) no two tracks intersect
more than once.

A track t is said to be oriented if it is endowed with a direction. As an oriented track
t is followed in its given direction, it crosses sides of rhombi which are parallel. Viewed
as vectors from right to left, these sides constitute a unit vector 7(¢) of R? called the
transverse vector of t. The transverse vector makes an angle with the x-axis called the

transverse angle of t, with value in the interval [0, 27).

Definition 3.1.2. Let I € N. We say that an isoradial graph G has the square-grid
property SGP(I) if its track-set T may be partitioned into three sets T = S UTy U Ty
satisfying the following.

(a) Fork =1,2, Ty, is a set (ti : i € Z) of distinct non-intersecting tracks indexed by Z.
(b) For k=1,2 and s € T \ Ty, the tracks of Ty intersect s in their lexicographic order.

(¢) Fork=1,2,i€Z, and s € T5_y, the number of track-intersections on s between its

intersections with t}; and tfjl 1s strictly less than I.

An isoradial graph G is said to have the square-grid property (SGP) if it satisfies
SGP(I) for some I € N. As before, G denotes the set of all isoradial graphs with the
bounded-angles property and the square-grid property. More specifically, we write G(e, I)
for the set of G satisfying BAP(¢) and SGP(I).

Two tracks belonging to the same T}, are said to be parallel. Thus, G has the square-grid
property if one may partition its tracks into three families: two doubly infinite families of
parallel tracks, and a third family of “additional” tracks, S. Tracks from different families
must intersect. Condition (c¢) requires that two tracks belonging to a family T} remain, in
some sense, close to each other. See also Figure

We refer to 17 UT; as a square grid of G, assumed implicitly to satisfy (c) above. A
square grid is a subset of tracks with the topology of the square lattice (and satisfying
(©).

Since the square-grid property pertains to the diamond graph G© rather than to G
itself,

G satisfies SGP([) if and only if G* satisfies SGP([). (3.1.6)

Let G € G have square grid 77 U T,. It may be seen by the bounded-angles property
that, for k = 1,2, every « € R? lies either in some track of T} or in the region of R?

‘between’ two consecutive elements of T}..
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3.1. Isoradial graphs and rhombic tilings

Figure 3.1.2: A track system with the square-grid property. The blue and red tracks form
Ty and T, respectively. The tracks in S are gray. The number of intersections on sg
between ¢_; and ¢y is bounded by I.

3.1.4 Examples

Here are four families of isoradial graphs with the square-grid property, and one without.

Highly inhomogeneous models as isoradial graphs

The models of M may be viewed as isoradial graphs. The square, triangular, and hexag-
onal lattices, embedded as in Figure [[L3.1], are indeed isoradial graphs, and the measure
associated by (L3J)) is the critical homogeneous measure. More generally we may em-
bed the three lattices isoradially in such a way as to obtain the measures of M. Thus,
each model in M corresponds to an isoradial embedding of one of the three lattices.
Nevertheless, a model in M differs from its isoradial version, but only by its embedding.

Take for instance the triangular lattice T and a measure ]P’pA’(L o of My on it. There
exists an isoradial embedding G of the triangular lattice, with associated percolation
measure Pg, such that, for any edge e,

]PA

ba.q (€ 1s open) = Pg(e is open).

Examples of isoradial embeddings corresponding to models in M and M are given in
Figure B.1.3]

It may be shown that the box-crossing property and the universality of arm exponents
are equivalent in the two embeddings. See Propositions B 1.3l and B1.4] for more precise

statements. In the context of the previous example, the following holds:

(i) (T, IP’pAq q,) has the box-crossing property if and only if (G,P¢g) does,

(ii) the euclidian metric is equivalent to the graph distance on both T and G.
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Figure 3.1.3: Isoradial embeddings corresponding to inhomogeneous (top) and highly in-
homogeneous (bottom) measures on the square and triangular lattices. The lattices are
drawn in red and the diamond graphs in black. These model differ from the ones presented
in Section only by their embedding.

It is easy to check that track systems of the square, triangular and hexagonal lattices
satisfy the square-grid property SGP(2). For e > 0, the models in M(e) correspond to
isoradial graphs in G(¢’,2), with € > 0 depending only on €. So do the models on the
square lattice in Mj(e). For ]P’pA’%q, € Mj(e) it may be that inf{g, : g, > 0} = 0. Such a
measure does not correspond to a graph of G.

In conclusion, the results of Chapter B (Theorems BTl and EI.3)) imply those of
Chapterd (Theorems[Z.T.Tland ELT4]), except for some of the highly inhomogeneous models

on the triangular and hexagonal lattices.

Isoradial square lattices

An isoradial embedding of the square lattice is called an isoradial square lattice The track-
system of such a graph is simply a square grid, and vice versa.

Periodic graphs

Let G be an isoradial embedding of a periodic connected graph H (the embedding itself
need not be periodic). The track system 7 of G (viewed as a set of arcs) is determined
by the structure of H. Since H is periodic, so is T (viewed as a graph). Therefore, T

may be embedded homeomorphically into R? in a periodic manner. After re-scaling, we
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may assume that 7 is invariant under any unit shift of R? in the direction of a coordinate
vector. In fact, 7 may be thought of as the lifting to the universal cover of a track-system
on a torus.

As observed in [KS05] Sect. 5.2], any oriented track ¢ has an asymptotic angle a(t) € S1,
and in addition the reversed track has direction m + «(t). Let ¢t € T, viewed as a subset
of R?. There exists (a,b) € Z2, (a,b) # (0,0), such that ¢ is invariant under the shift
Tap : 2 — 2+ (a,b). We have that tana(t) = b/a. By periodicity, the set of all angles
(modulo 7) of T is finite, and we write it as {a1,aq, ..., any} with m > 1.

Let T} be the set of tracks with asymptotic angle (modulo 7) aj. By periodicity, each
T}, is a set of tracks indexed by Z, and may be ordered according to their crossings of the
line with polar coordinates 6§ = 6y with 0y # a4 for all k. Since tracks t € Ty, t; € 1)
(with k # 1) have different asymptotic angles, they must intersect.

It remains to show that any ¢,¢’ € T, do not intersect (whence, in particular, m > 2).
Suppose the converse, that there exist k € {1,2,...,m} and t,t € T such that ¢t and
t' intersect at some point J € R?. Since t and ¢ have the same angle oy, there exists
(a,b) € Z? such that t and ¢’ are invariant under 7. Therefore, they intersect at J+n(a, b)
for all n € Z, in contradiction of the fact that they may have at most one intersection.

For any distinct pair T}, T}, part (c) of the square-grid property holds by periodicity.

We have proved not only that G has the square-grid property, but the stronger fact

that its track-set may be partitioned into m classes of parallel tracks.

Rhombic tilings via multigrids

The following ‘multigrid’ construction was introduced and studied by de Bruijn [Bru81al,
Bru&1h, Bru86]. A grid is a set of parallel lines in R? with some common perpendicular
unit-vector v. A multigrid is a family of grids with pairwise non-parallel perpendiculars.
Suppose there are m > 2 grids, with perpendiculars vy, vs,...,v,,. The kth grid is given
in terms of a set C) = {c}C : i € Z} of reals, specifically as the set of all z € R? with
ZU = cﬁ; as ¢ ranges over Z. It is assumed that the CZ are strictly increasing in ¢, with
/i —1asi— too.

With the lines of the kth grid, duly oriented, we associate a unit vector wy. It is
explained in [Bru86] how, under certain conditions on the Cj, v, wg, one may ‘dualize’
the multigrid to obtain a rhombic tiling of R%. The track-set of the ensuing tiling is
a homeomorphism of the multigrid with transverse vectors wy. Under the additional
assumption that the differences |c}'€Jrl - c§€| are uniformly bounded away from 0 and oo,
all such tilings have both the bounded-angles property and the square-grid property. The
results of this paper apply to the associated isoradial graphs.

Penrose’s rhombic tiling may be obtained thus with m = 5, the vy, being vectors forming
a regular pentagon, with wy = vk, and Cy = {i + vy : i € Z} with an appropriate vector

(vk). Other choices of the parameters yield a broader class of aperiodic rhombic tilings of
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Isoradial graphs and the star—triangle transformation

Figure 3.1.4: Part of a rhombic tiling without the square-grid property, and one of the
two corresponding isoradial graphs. The square-grid property fails since no two of the
three families of non-intersecting tracks are doubly infinite.

the plane. See [Bru8lal [Bru8Ib]. Percolation on Penrose tilings has been considered in
[Hof9g].
A track-system with no square grid

Figure B4l is an illustration of a track-system without the square-grid property.

3.1.5 Equivalence of metrics

Let G be an isoradial graph. It will be convenient to use both the Euclidean metric | - |
and the graph-metric d° on G. For n € N and u € G° we write AJ(n) for the ball of

d®-radius n centred at u:
AS(n) = {v e G¥:d°(u,v) <n}.

Proposition 3.1.3. Let € > 0. There exists cq = cq(€) > 0 such that, for any isoradial
graph G = (V| E) satisfying BAP(e),

eyt — | <d®(w,v) < eqlv =), v,v' € G°. (3.1.7)

Proof. Let u, v be distinct vertices of G°. Since each edge of G® has length 1, d°(u,v) >
lu — v|. Conversely, let S,, be the set of all faces of G (viewed as closed sets of R?)
that intersect the straight-line segment uv of R? joining u to v. Since the diameter of
any such face is less than 2, every point of the union of Sy, is within Euclidean distance
2 of uv. By BAP(e) and [B.12), every face has area at least sine, and therefore |S,| <
4(|lu—v|+4)/sine. Similarly, there exists § = d(€) > 0 such that |u —v| > 0. The edge-set

90



3.1. Isoradial graphs and rhombic tilings

of elements of S, contains a path of edges of G from u to v, whence

8 8(6+4
PRS- Gl T

d° <
(u,v) < sin e dsine

as required. O

3.1.6 The box-crossing property for graphs in G

This section begins with a definition of the rectangular domains of an isoradial graph
G € G, using the topology of its square grid.

Let (t,') be an ordered pair of non-intersecting tracks of G. A point x € R? is said
to be ‘strictly between’ ¢t and ¢’ if, with these tracks viewed as arcs of R?, there exists
an unbounded path of R? from z that intersects t but not ¢, and vice versa. A face F
of G is said to be between t and t' if: either F is a rhombus of ¢, or every point of F
is strictly between ¢ and t’. Note that this usage of ‘between’ is not reflexive: there are
faces between t and t’' that are not between t’ and t. A vertex or edge of G° is said to be
‘between’ ¢ and t' if it belongs to some face between t and t'. The domain between t and
t" is the union of the (closed) faces between ¢ and ¢'. It is useful to think of a domain as
either a subgraph of G, or as a closed region of R?.

Suppose G € G has a square grid SUT, with S = (sj: j € Z) and T = (t; : i € Z). We
call tracks in S (respectively, T') horizontal (respectively, vertical). For iy,i2,71,j2 € Z
we define D = D(t;,,ti,; 5, Sj,) to be the intersection of the domains between ¢;, and t;,
and between s;, and sj,.

We say that D is crossed horizontally if G' contains an open path 7 such that: (i) every
edge of 7 lies in D, and (ii) the first edge crosses ¢;, and the last vertex is adjacent to
ti,. Write Ch(D) = Cn(ti,, tis; 551, 8j,) for the event that D is crossed horizontally, with a
similar definition of the vertical-crossing event Cy (D). See Figure for an illustration
of the above notions.

The purpose of the following proposition is to restate the box-crossing property in
terms of the geometry of the square grid. Considering the structure of isoradial graphs
in G, if (G,P¢) has the box-crossing property, then it satisfies BXP(3,6) for some § > 0.
Henceforth, for isoradial graphs, we will write BXP(9) for BXP(3, ).

Proposition 3.1.4. Let e > 0, I € N, and let G € G(e,I). The graph G has the boz-
crossing property if and only if there exists § > 0 such that, for N € N and i,j € Z,
P [Ch(tis tivans 55, 554N) ] Pa[Coltis tiy s 55, 5j42n) ] > 0. (3.1.8)

Moreover, if B8] holds, then G satisfies BXP(8") with &' depending on §, €, I and not
further on G.
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Figure 3.1.5: The shaded domain D = D(t;,,ti,; Sj,, Sj,) is crossed horizontally.

Proof. We prove only the final sentence of the proposition. The converse (that the box-
crossing property implies (B8] for some § > 0) holds by similar arguments, and will not
be used this document. Let G € G(¢, I), and assume (BL8]) with 6 > 0.

Let N € N. For i,j € Z, the cell C;; is the domain D(t;n,t(i+1)n; SN, S(j+1)n)- The
cells have disjoint interiors and cover the plane. Two distinct cells C' = C; j, C" = C},; are
said to be adjacent if (i,7) and (k,l) are adjacent vertices of the square lattice, in which
case we write C' ~ C'. More specifically, we write C' ~, C' (respectively, C' ~, C") if
|i — k| =1 (respectively, |j — | = 1). With the adjacency relation ~, the graph having the
set of cells as vertex-set is isomorphic to the square lattice.

Each cell has perimeter at most 4/ N, and therefore diameter not exceeding 2IN. A
cell contains at least N2 faces of G°, and thus (by (3.1.2])) has total area at least N2 sine.

For p € Nwith u > 21, let u = (—puN,0) and v = (uV, 0) viewed as points in the plane.
Let UY be the union of the set S of cells that intersect the straight-line segment uv with
endpoints u, v. Let R be the tube uv + [-2IN,2IN]?. Thus R has area 8IN(uN +2IN),
and U C R. Since each cell has area at least N?sin¢, the cardinality of S2 satisfies

8IN(uN +2IN)  8I(u+2I)

N < = ) 1.
Sl = N2sine sin e (3.1.9)

There exists a chain of cells C',...,Ck € S{L\L such that v € C1, v € Uk and Cf ~ Ciyq
fork=1,2,..., K—1; see Figure B 1.6l Let k € {1,2,..., K—1}, and assume Cy, ~}, Ck1.
Let Hj be the event that Cj and C}yyq are crossed vertically, and Cj U Ci,1 is crossed
horizontally. A similar definition holds when Cj ~, Cy1q, with vertical and horizontal
interchanged. By (B.I8) and the Harris-FKG inequality, Pg(Hj) > 6.
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3.1. Isoradial graphs and rhombic tilings

Figure 3.1.6: The region UJ, is outlined in bold, and contains a chain of cells joining u to
v. The events Hj are drawn explicitly for the first two contiguous pairs of cells.

By the Harris-FKG inequality, the fact that K < |SY, |, and (I3,

K-1
k=1

If the event on the left side occurs, the rectangle
Sun = [—(p—2I)N, (u — 2I)N]| x [-2IN,2IN]

of R? is crossed horizontally.
Let Ry, = [—k, k| x [—3k, 3k] where k > 8I. Pick N such that 4/N < k < 8IN, so
that Ry is ‘higher’ and ‘shorter’ than Syor y. By (BII0) with p = 101,

P¢ (Ry, is crossed horizontally) > §”, (3.1.11)

where 8" = §2881%/sin¢ Smaller values of k are handled by adjusting 6” accordingly.
The same argument is valid for translates and rotations of the line-segment wwv, and

the proof is complete. O

3.1.7 Isoradial square lattices

An isoradial square lattice is an isoradial embedding of the square lattice Z2. Isoradial
square lattices, and only these graphs, have a square grid as track-system.

Let G be an isoradial square lattice. The diamond graph G possesses two families of
parallel tracks, namely the horizontal tracks (s; : j € Z) and the vertical tracks (t; : ¢ € Z).
The graph G, and hence the pair (G, G*) also, may be characterized in terms of two
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Figure 3.1.7: An isoradial square lattice (in red) with the associated diamond graph. The
diamond graph is isomorphic to Z2, and its embedding is characterized by two sequences
a, B of angles.

vectors of angles linked to the transverse vectors. First, we orient sg in an arbitrary
way (interpreted as ‘rightwards’). As we proceed in the given direction along sg, the
crossing tracks ¢; are numbered in increasing sequence, and are oriented from right to left
(interpreted as ‘upwards’). Similarly, as we proceed along ty, the crossing tracks s; are
numbered in increasing sequence and oriented from left to right. Let 7(s;) (respectively,
7(t;)) be the transverse vector of s; (respectively, t;) with transverse angle 3; (respectively,
0;). Rather than working with the 6;, we work instead with «; := 0; — 7 as illustrated in
Figure BT Write a = (o; : 4 € Z) and B = (B, : j € Z), and note that o; € [—7,7),
B € [0,2m). We will generally assume that G is rotated in such a way that ag = 0, so
that §; € [0,7] and 8; — 7 < o; < B; for i,j € Z.

The vertex of G adjacent to the four tracks t;_1, i, sj_1, 85 is denoted v; ;. If not
otherwise stated, we shall assume that the tracks are labelled in such a way that the vertex
vp,0 is a primal vertex of G°.

Tracks ¢;, s; intersect in a rhombus of G¥ with sides 7(t;), 7(s;), —7(t;), —7(s;) in
clockwise order, and thus its internal angles are ; —a; and m— (3; — «;). Thus, G satisfies

the bounded-angles property BAP(¢) if and only if
Bj — oy € [e,m — €, i,j € 7. (3.1.12)

Conversely, for two vectors a, 3 satisfying ([3.1.12]), we may construct the diamond graph
denoted Gg g as in Figure B.I7l This gives rise to an isoradial square lattice denoted
Go,p (and its dual) satisfying BAP(¢e). We write Pq g for the canonical measure of G g.

We introduce now some notation to be used later. For a set W of vertices of G, we
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define the height of W by
h(W) = sup{;j : Ji with v; ; € W}.

This definition extends in an obvious way to sets of edges.

In Section is described an operation of so-called ‘track-exchange’ on isoradial
square lattices. This introduces a potential for confusion between the label and the level
of a track. In the G g above, we say that s; is (initially) at level j. The level of s; may
change under track-exchange, but v; ; shall always refer to the vertex between levels j — 1
and j in the new graph.

Due to this potential confusion, it will be convenient to use a different notation for
domains in square lattices than for general graphs. For My, Ms, N1, No € Z with My < M,
Ny < Na, let B(Mi, Ma; N1, N3) be the subgraph of G induced by the subset of vertices
{Uz}j My <i < My, Ny <j < Ny}. For M, N € N, we use the abbreviated notation
B(M,N)= B(—M,M;0,N). A horizontal crossing of B = B(Mj, My; N1, N2) is an open
path of B linking some vertex vas, », to some vertex vas, n,; a vertical crossing links some
U, N, tO some vy, n,. We write Cy[B] (respectively, Cy[B]) for the event that a box B
contains a horizontal (respectively, vertical) crossing. For a vertex v;; of G, we write
B + v; ; for the translate {v, s : v,_;s—; € B}.

When applied to G, we have that

B(MlaMQ;NLNQ) - D(tM17tM2;8N178N2)7

since sy, and sy, are the tracks at levels N; and Nj respectively. As mentioned before,

the latter will not always be the case. Use of the notation B emphasizes that domains are

defined in terms of tracks at specific levels, rather than of tracks with specific labels.
The following lemma will be used in Section

Lemma 3.1.5. Let G = (V, E) be an isoradial square lattice satisfying the bounded-angles
property BAP(¢) and the following.

(a) For p > 1, there exists n(p) > 0 such that

Pe(Cu[B([pN|,N) +v]) > n(p), NeN veV

(b) There exist pg,no > 0 such that

P (Cy[B(N, [poN]) +v]) > no, N >py", veV.

Then there exists & = 6(po,n0,n(1),n(2p51),€) > 0 such that G has the box-crossing
property BXP(6).
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A A
1—
Do n Do
0]
1_p1 1—])2
B Do C B

Figure 3.2.1: The star—triangle transformation

Outline proof. Assume (a) and (b) hold. Just as in the proof of Proposition £3.2] the
crossing probabilities of boxes of G with aspect-ratio 2 and horizontal /vertical orientations
are bounded away from 0 by a constant that depends only on the aspect-ratios of the
boxes illustrated in Figure 311 (Here, the boxes in question are those of G' viewed as
an isoradial square lattice, that is, boxes of the form B(-;-) defined before the lemma.)
Therefore, the hypothesis of Proposition [3.1.4] holds with suitable constants, and the claim

follows from its conclusion. O

3.2 The star—triangle transformation

In Section B2 we review the basic action of the star—triangle transformation, then, in
Section B.2.3] we show its harmony with isoradial embeddings. The star—triangle transfor-
mation is a central tool in the proofs of Chapters @ and Bl To physicists, the star—triangle

transformation is better known as the Yang-Baxter equation.

3.2.1 Star—triangle transformation

The star—triangle transformation was discovered first in the context of electrical networks,
and adapted by Onsager and Kramers—Wannier to the Ising model. In its base form, it is
a graph-theoretic transformation between the hexagonal lattice and the triangular lattice.
Its importance stems from the fact that a variety of probabilistic models are conserved
under this transformation, including the critical percolation, Potts, and random-cluster
models. The methods of this paper extend to all such systems, but we concentrate here
on percolation, for which we summarize its manner of operation as in [Gri99, Sect. 11.9].

Consider the triangle A = (V,E) and the star A’ = (V' E’) of Figure B2l Let
p = (po,p1,p2) € [0,1)2 be a triplet of parameters. Write Q = {0,1}F with associated
product probability measure IP’§ with intensities p; (as in the left diagram of Figure B.2.1]),
and Q' = {0,1}F" with associated measure ]P’?_p, with intensities 1 — p; (as in the right
diagram of Figure B27]). Let w € Q and o’ € Q. For each graph we may consider open
connections between its vertices, and we abuse notation by writing, for example, x <ﬂ> Y

for the indicator function of the event that x and y are connected in A by an open path
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of w. Thus connections in A are described by the family (x &) y:xz,y € V) of random

variables, and similarly for A’.

Proposition 3.2.1 (Star-triangle transformation). Let p € [0,1)3 be such that

Ka(Po,p1,p2) = po + p1 + p2 — popipe = 1. (3.2.1)

The families
Aw AW
(:E<———>y:ac,y:A,B,C), <x<—>y:aj,y:A,B,C>,

have the same law.

The proof is an elementary computation, and may be found in [Gri99, Sect. 11.9].
Next we explore couplings of the two measures. Let p € [0,1)? satisfy (Z2Z1]), and let
(respectively, Q) have associated measure Pﬁ (respectively, ]P’?_p) as above. There exist
random mappings T : Q@ — Q" and S : Q" — Q such that T'(w) has law P?_p, and S(w')
has law ]P’ﬁ . Such mappings are given in Figure B.22] and we shall not specify them
more formally here. Note from the figure that T'(w) is deterministic for seven of the eight
elements of €2; only in the eighth case does T'(w) involve further randomness. Similarly,
S(w') is deterministic except for one special w’. Each probability in the figure is well

defined since P := (1 — pg)(1 — p1)(1 — p2) > 0.

Proposition 3.2.2 (Star—triangle coupling). Let p be self-dual and let S and T be given
as in Figure 323 With w and w' sampled as above,

(a
(

T(w) has the same law as W',
S

b) S(w') has the same law as w,
G.w . . G'T(w)
(¢c) forxz,y € {A,B,C}, x <= vy if and only if v +—5 y,

(d) forz,y € {A,B,C}, z <ﬂ> y if and only if = M 1.

)
)
)
)
The maps S and T act on configurations on stars and triangles. They act simultane-
ously on the duals of these graph elements, illustrated in Figure B.2Z3l Let w € Q, and
define w*(e*) = 1 — w(e) for each primal/dual pair e/e* of the left side of the figure. The
action of 7" on €2 induces an action on the dual space 2%, and it is easily checked that
this action preserves w*-connections. The map S behaves similarly. This property of the
star—triangle transformation has been generalized and studied in [BR10] and the references

therein.

3.2.2 The star—triangle transformation and open paths

Since the star—triangle transformations S and T preserve connections, they also preserve

open paths, as described below. Let us first give a precise definition of paths.
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/N T | | I |
L/,\,\ > //‘\\ RN /\\ //‘\
Pop1p2 (1 = po)p1p2 po(l —p1)p2 pop1(l — p2)
P P P P
AN . N
2N > e and similarly for all single edges

VANRVANRYVAREVAN : A

\J

| | J I S N

| | | > / \
PN PR RN RN /oA
J S .

> " / _ 5~ and similarly for all pairs of edges

S \ /
PN VAN /\ /o A
Pop1p2 (1 = po)p1ip2 po(1 = p1)p2 pop1 (1 — p2)
P P P P

Figure 3.2.2: The random maps T and S and their transition probabilities, with P :=
(1 —=po)(1 —p1)(1 —p2). Since ka(p) = 0, the probabilities in the first and last rows sum
to 1.

A path T = (Ty) in R? is a continuous function I : [a,b] — R? for some real interval
[a,b]. Note that a path I' may in general have self-intersections, and there may be sub-
intervals of [a,b] on which I' is constant. Let ¢ : [¢,d] — [a,b] be continuous and strictly
increasing with ¢(c) = a and ¢(d) = b. We term the path I'y = (I'y()) a reparametrization
of T over [c,d].

Let | - | denote the Euclidean norm on R2. The space of paths may be metrized by

dpatn (T, 11) = inf § sup |T} — 11| ¢,
t€[0,1]
where the infimum is over all reparametrizations I'" (respectively, II') of T' (respectively, II)
over [0, 1]. Note that dpqe, is not a metric since dpg, (I', V) = 0 if IV is a reparametrization

of I', and thus the corresponding metric acts on a space of equivalence classes of paths
(see [AB99, eqn (2.1)]). We shall use the fact that, if two paths (parametrized over [0, 1])
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Figure 3.2.3: The star-triangle transformation acts simultaneously on primal and dual
graph elements.

satisfy dpaen (I, 1I) < 0, then
rcm, [To—To/ <4 [T1—TL|<s,
where

A :={zx+y:zeA, ly <d}.

Let G = (E,V) be a planar graph. A path « : [a,b] — R? is called a path on G if
its image in R? only uses edges and vertices of G. Moreover, + is such that [a,b] may be
split into a finite family of intervals {[ag,ar+1] : 0 < k < K}, with every interval being
mapped by v onto either an edge or a vertex of G. In other words v may be represented
as a chain of edges, with possible stationary points at vertices. Henceforth all paths will
be paths on graphs (we allow loops and repeated edges). Such a path is called open (in a
given configuration) if it traverses only open edges.

Let P be a percolation measure on G. Suppose G = (V, E) contains a triangle A =
ABC, and that P has intensities p = (po, p1,p2) on the edges of A, as in Figure 3221l Let
T(G) be the graph obtained from G by replacing A with the star A’ with center O. For
a configuration w € Q = {0,1}¥, T'(w) is a random configuration on T(G), identical to
w outside A’ and given by the coupling described in Figure on A’. By Proposition
the operation described above preserves open connections.

Let w € Q be a configuration of open edges of G and v be an w-open path. We will
describe how we associate to v a T'(w)-open path on T'(G), which we call T'(y). Suppose for
simplicity that v has no stationary points, and parametrize it such that it passes through
the sequence ~g, 71, - . ., i of vertices of GG, in order. Hence each (y;: k <t < k+1)is an
open edge of G. The path T'() is also parametrized by [0, K] and is obtained as follows.
If k is such that (7 : k <t < k+ 1) is not an edge of A, then T'(~) is identical to v on
[k, k +1]. If it is an edge of A, say BC, we set T'(v); = B, T(fy)kJr% =0, T)k+1 =C,
and interpolate linearly between these points. By the coupling of w and T'(w), T'(v) is
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Figure 3.2.4: The action of 7" and S on the red open path.

indeed a T'(w) open path, with same endpoints as 7.

Suppose now that G contains a star A’, and that w, + are as above. As for T, we
define S() to be equal to v outside A’. For the sections of v that intersect A’ we proceed
as follows. Let k be such that 7, = O. If k = 0, then v; € {A, B,C}, and let S(v) be
stationary on [0, 1], equal to 7. Similarly, when k = K, S(y); = yx—1 for t € [K — 1, K].
Finally, if 0 < k < K, then we have two cases, either y4_1 = Y41 Or Yx—1 # Y41 In the
first case, S(v) is equal to y,_1 on [k — 1,k + 1]. In the second case, suppose 7x_1 = B
and Ygy1 = C. If the edge BC is S(w)-open, then set S(v)k—1 = B, S(7)kr1 = C and
interpolate linearly. If BC is S(w)-closed, by the coupling of Figure B222] both edges AB
and AC are S(w)-open. We then set S(v)p—14 = BA and S(7) r4+1) = AC. This defines
S(v) as a S(w)-open path on S(G).

The action of S and T on open paths is described in Figure 3241

3.2.3 The star—triangle transformation for isoradial graphs

Let G = (V, E) be an isoradial graph, and let A be a triangle of G with vertices A, B, C.
Seen as a transformation between graphs, the star—triangle transformation changes A into
a star A’ with a new central vertex O € R?. It turns out that O may be chosen in such a
way that the new graph, denoted G’, also is isoradial. The right way of seeing this is via
the diamond graph G°, as illustrated in Figure This construction has its roots in
the Z-invariant Ising model of Baxter [Bax82] [Bax806], studied in the context of isoradial
graphs by Mercat [Mer01], Kenyon [Ken04], and Costa-Santos [CS06] (see also [BATI0]).

The triangle A comprises the diagonals of three rhombi of G®. These rhombi form

the interior of a heragon with primary vertices A, B, C and three further dual vertices.
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Figure 3.2.5: The triangle on the left is replaced by the star on the right. The new vertex
O is the circumcentre of the three dual vertices of the surrounding hexagon of G°.

Let O be the circumcentre of these dual vertices. Three new rhombi are formed from
the hexagon augmented by O (as shown). The star A’ has edges AO, BO, CO, and the
ensuing graph is isoradial (since it stems from a rhombic tiling).

By an examination of the angles in the figure, the intensities associated to A by (L3.0])
satisfy (B2.1]), and the star—triangle transformation may be applied to A. Moreover, this
transformation yields the canonical measure on A’. That is, the star—triangle transforma-

tion maps Pg to Pgr. Furthermore, for € > 0,
G satisfies BAP(e) if and only if G’ satisfies BAP(e). (3.2.2)

The same holds when applying the star—triangle transformation to a star contained in an
isoradial graph.

We shall sometimes view the star—triangle transformation as acting on the rhombic
tiling G rather than on G, and thereby it acts simultaneously on G and its dual G*.

The star—triangle transformation of Figure is said to act on the track-triangle
formed by the tracks on the left side, and to slide one of the tracks illustrated there over
the intersection of the other two, thus forming the track-triangle on the right side.

A natural question when dealing with percolation on isoradial graphs is why do we
associate parameters to edges via ([L3.1]), and not another formula. In light of the above,
we may give a explanation.

Suppose we wish to associate to every isoradial graph G a canonical critical percolation
measure Pg with parameters p. = ¢(6,), where 6, is given as in Figure [[[33] Equivalently
we could ask p. to be a function of the length of e; the expression in terms of 6 is more
harmonious with the computations.

Since we want Pg to be critical, it is reasonable to expect that the canonical measure

associated to the dual graph G* is the dual measure of Pg. Hence we want ¢ to satisfy
p(m—0)=1—¢(0), foroecl0,n]. (3.2.3)
It is also reasonable to ask that the star—triangle transformation may be applied to triangles
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in (G,P¢g). Thus we expect

B(01) + P(02) + ¢(03) — ¢(01)p(02)B(03) = 1,  for 61 + O + O3 = 27. (3.2.4)

If, in addition, we assume that ¢ is continuous on [0, 7], then ¢ is uniquely determined by

BZ3) and [B24]), and is such that

60) _ sin(3r—0)
1—¢(0) sin(10)
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Chapter 4

Universality for inhomogeneous

lattices: a first approach

4.1 Results

This chapter summarizes the proofs of Theorems [[LZ.1] [[.Z.2], and for the inhomoge-
neous and highly inhomogeneous models on the square, triangular and hexagonal lattices.

The approach described here is that of [GMal [GMb]. Although the different methods
of Chapter [l yield more general results, we include the following material as an illustration
of another possible approach. Both methods rely on the star—triangle transformation, but
use it in different ways.

Recall the notation M and M for the inhomogeneous and highly inhomogeneous
models which satisfy the hypothesis of Theorems [[LZ1] and [[Z42] respectively. Since
M C M, we will state the following theorems for M.

Theorem 4.1.1. For e > 0 there exists 0,1y > 0 such that all models in Mi(e) satisfy the
boz-crossing property BXP (I, ).

For models in M7, due to the geometry of the lattices, [y may always be taken to
be twice the length of the edges. In the rest of the chapter we write BXP(J) instead of
BXP(lp, ).

Theorem [ATT] implies criticality for the models in M (Theorems [[L4.1] and [[.4.2))
via Propositions 2ZI.1] and In Section prove the following slightly more general

results.

Theorem 4.1.2. Let p € (0,1) and q,q’ € [0,1)%.
(a) If

Vn € Z, ka(p, qn,q,,) <0, (4.1.1)
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. A . .
then there exists, quq,—a.s., no infinite open cluster.

(b) If there exists v > 0 such that
Vn € Z7 ’%A(pv qn, q;:,) < —v, (412)
then there exist ¢,d > 0 such that, for every vertez v,

]P)A

v (1G] 2 k) <ee™®, k>0,
(¢c) If there exists v > 0 such that
Vn € Z7 ’%A(pv dn, q;:,) > v, (413)

then IP’pAq o is uniformly supercritical.

The same holds for ]P’gq o with ko in place of KA.
Theorem 4.1.3. Let q,q' € (0,1)Z.

(a) If there exists € > 0 such that
Vn € Z, k0(qn, @) <0 and  qn,q), <1 —c¢, (4.1.4)

then there exists, IP’qu,-a.s., no infinite open cluster.

(b) If there exists v > 0 such that
Vn € Z7 HD(QYIA q;) < -,
then there exist c,d > 0 such that, for every vertex v,

Poo(ICs] > k) <ce ™, k>0,

(c) If there exists v > 0 such that, for all n,

ﬁD(qna QZ"L) 2 v,

then IP’E o 18 uniformly supercritical.
Finally, we have a universality result for arm exponents across M.

Theorem 4.1.4. For every m € {p} U{pa; : j > 1}, if m exists for some model M € M,

then it is M-invariant.
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4.2. Lattice transformations via the star—triangle transformation

The above may be used in conjunction with Theorems 2.4.1] 2511 and [£1.1] to obtain
universality results for other critical exponents as in Theorem

The rest of the chapter is structured as follows. Section 3] contains the proof of The-
orem .T.T] for the inhomogeneous models M; the extension to the highly inhomogeneous
models of M is sketched in Section 4] Sections and contain the proofs of The-
orem [£.1.4] and Theorems 1.2, E1.3], respectively. The proofs in Sections - are

based on the lattice transformations presented in Section

4.2 Lattice transformations via the star—triangle transfor-

mation

We show next how to use the star—triangle transformation to convert the triangular lattice
into the square lattice and vice-versa. The transformation will transport self-dual measures
on the first lattice to measures on the second lattice. This permits the transportation of the
box-crossing property from one lattice to the other. This general approach was introduced
by Baxter and Enting [BETS] in a study of the Ising model, and has since been developed
under the name Yang—Baxter equation, [McC10, [PAY06].

Henceforth it is convenient to work with so-called mized lattices that combine the
square lattice with either the triangular or hexagonal lattice. We shall be precise about
the manner in which a mixed lattice is embedded in R?. Let i € R, and let I = R x
{i} be the horizontal line of R? with height i, called the interface; above I consider
the triangular lattice and below I the square lattice. Our triangular lattice comprises
equilateral triangles with side length v/3, and our square lattice comprises rectangles whose
horizontal (respectively, vertical) edges have length /3 (respectively, 1), as illustrated
in the leftmost diagram of Figure 2.1l The embedding is specified up to horizontal
translation and, in order to precise, we assume that the point (0,7) is a vertex of the
lattice. We call the ensuing graph the mized triangular lattice I with interface I = I..

The mized hexagonal lattice IL with interface I = I, is similarly composed of a regular
hexagonal lattice (of side length 1) above I and a square lattice below I (with edge-lengths
as above), as drawn in the central diagram of Figure 211

We define the height h(A) of a subset A C R? as the supremum of the y-coordinates
of elements of A. A mixed lattice . may be identified with the subset of R? belonging to
its edge-set. Thus, for a mixed lattice L, h(1Iy,) is the height of its interface.

We next define two transformations, 7% and TV acting on a mixed triangular lattice
L.

(a) T* transforms all upwards pointing triangles of IL into stars, with centres at the

circumcentres of the equilateral triangles.

(b) TV transforms all downwards pointing triangles into stars.
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Figure 4.2.1: Transformations S*, S7, T%, and T of mixed lattices. The transformations
map the zones with dashes to the bold triangles/stars. The interface-height decreases by
1 from the leftmost to the rightmost graph.

It is easily checked (and illustrated in Figure M.2.1]) that each transformation maps a mixed
triangular lattice to a mixed hexagonal lattice.

We define similarly the transformations S* and S” on a mixed hexagonal lattice;
these transform all upwards (respectively, downwards) pointing stars into triangles. They
transform a mixed hexagonal lattice to a mixed triangular lattice.

The concatenated operators S* o TV and S” o T® map the mixed triangular lattice L

to another mixed triangular lattice, but with a different interface height:

h(Igsopvr) = h(IL) + 1,
h(Isvorsr) = h(IL) — 1.

Loosely speaking, repeated application of S* o TV transforms L into the square lattice,
while repeated application of S o T'* transforms it into the triangular lattice.

We now extend the domains of the above maps to include configurations. Let L. =
(V, E) be a mixed triangular lattice with Qz = {0,1}¥, and let w € Q. The image of L
under T2 is written T2L = (T2V, T*E) and we write Qpep = {0,1}7°E. Let p € [0,1)3
be self-dual. Let T*(w) be chosen (randomly) from Q7a g by independent applications of
the kernel T" within every upwards pointing triangle of L. Note that the random map T
depends on the choice of p.

By Proposition B2.2] for any two vertices A, B on LL, we have:

(4&%8) « <A L), B) . (4.2.1)

The corresponding statements for 7V, S*, and S” are valid also, with one point of note.
In applying the transformations S*, S to a mixed hexagonal lattice, the points A and

B in the corresponding versions of (£2.1]) must not be centres of transformed stars, since
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4.2. Lattice transformations via the star—triangle transformation

these points disappear during the transformations.

Let p = (po,p1,p2) € [0,1)3 be self-dual, and let S*, S*, T, TV be given accordingly.
We identify next the probability measures on the mixed lattices that are preserved by the
operation of these transformations.

Let L = (V, E) be a mixed (triangular or hexagonal) lattice. The probability measure

denoted P, on Q2 is product measure whose intensity p(e) at edge e is given as follows.

(a) p(e) = po if e is horizontal,

(b) p(e) =1 — pg if e is vertical,

(c¢) p(e) = p; if e is the right edge of an upwards pointing triangle,
(d) p(e) = pa if e is the left edge of an upwards pointing triangle,
(e) p(e) =1 — po if e is the right edge of an upwards pointing star,
(f) p(e) =1 —py if e is the left edge of an upwards pointing star.

When it becomes necessary to emphasize the lattice L in question, we shall write ]P’HI;.

Proposition 4.2.1. If p € [0,1) is self-dual in that ka(p) = 0, then Py, is preserved by
the transformations S*, S*, T®, and TV . That is, if U is any of these four transformations
acting on the mized lattice L = (V, E), then

w € Qg has law ]P’HI; & U(w) has law PgL.

As in Section 323 the transformations 7%, TV, S* and S” may be extended to open
paths. We view these transformations as dynamical modifications of open paths, hence
we say a path drifts under the transformations.

Let w be an edge-configuration on a mixed triangular lattice .. Let v be an w-
open path on L, and consider the action of the map T° (illustrated in Figure EZ2).
The image lattice T*L is endowed with the edge-configuration T*(w). The star—triangle
transformations contributing to T» act on disjoint parts of L, hence we may define v as
the path obtained by the procedure described in Section B.2.3] applied separately in each
triangle affected by T®. We obtain thus a T*(w)-open path, which we denote T*(+). Note
that T2 () is equal to v in the square part of L (excluding the interface) and has the same
endpoints as v. The same holds for TV.

We turn now to a mixed hexagonal lattice H under the transformation S” (the same
argument holds for S*). Let w be an edge-configuration on H, and 7 an open path. As
before, through the construction of Section B.2.3] we define a S¥(w)-open path S"(y). The
part of v lying below the interface is not affected by S, but if its endpoints are in the
hexagonal part of H, then they may drift under the action of S”.

An illustration of the transformations is given in Figure
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AVEAVA

1( 9
11

Figure 4.2.2: Transformations of lattice-paths. The transformation T» acts deterministi-
cally on open paths, each edge of a triangle being transformed into two segments of an
upwards pointing star. When applying S”, the segment labelled from 0 to 1 contracts to
one point, as does that labelled from 5 to 7.

The following proposition acts as a (basic) control on the drift of open paths under

the transformations 7%, TV, S* and S".

Proposition 4.2.2. Let v be an open path on a mized lattice. We have that

(a‘) dpath(77TA(/Y)) < % and dpath(’YaTv(’Y)) < %;
(b) dpath(’y’ S*('Y)) <1 and dpath(')/v SY(’Y)) < 1;
(©) dpatn (7, (8* 0 TY)(7)) < 1 and dpaun (v, (S* 0 T#)(7)) < 1,

whenever the transformations are matched to the mixed lattice.

Proof. This follows by examination of the different cases in the transformations, and is
illustrated in Figures B.2.4] and 2.2 O

4.3 Proof of Theorem 4.1.1] for M

4.3.1 Outline of the proof

Theorem ET.T] for the inhomogeneous models in M is an immediate consequence of the

following theorem. Recall that a triplet p € [0,1)3 is self-dual if kA (p) = 0, with ks given
in (CZ2).
Theorem 4.3.1. Let p = (po,p1,p2) € [0,1)? be self-dual.

(a) If Pg)o 1—po) has the box-crossing property, then so does Pﬁ.

(b) If po >0, and if IP’? has the boz-crossing property, then so does ]P’(D]DO 1—po)*

(c) Pﬁ has the box-crossing property if and only if IP’?_p has t.
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4.8. Proof of Theorem[].1.1] for M

Since P'(j% 5 has the box-crossing property, we have by Theorem [3T](a) that IP)(A% p1.92)
has the box-crossing property for all self-dual triplets (%, p1,p2). As (%,pl,pg) ranges
within the set of self-dual triplets, p; ranges over the interval [0, %] By Theorem E3.Tb),
for all p; € (0, %), ]P)gn,l—pl) has the box-crossing property. We then use Theorem 3.Ta)
again to deduce that Ps has the box-crossing property for all self-dual triplets p. Finally,
the conclusion may be extended to the hexagonal lattice by Theorem F3Tc).

Theorem [I.31)(a, b) is proved in the remainder of this section. Part (c) is an immediate
consequence of a single application of the star—triangle transformation, and no more will
be said about this. We assume henceforth that all lattices are embedded in R? in the style

of Figure 211

4.3.2 Specific notation

Before the proof of Theorem .3.1] it will be useful to introduce some notation specific to
this chapter.

Let G = (E,V) be a planar graph and let w € Qg = {0,1}¥. Let Cy(m,n) (respectively,
Cv(m,n)) be the event that there is an open horizontal (respectively, vertical) crossing of
the box By, ,, := [—m, m] x [0,n] of R?. Suppose now that G is invariant under translation
by the non-zero real vectors (a,0) and (0, b) for some least positive a and b. A probability
measure P on QF is called translation-invariant if it is invariant under the actions of these

translations.

Lemma 4.3.2. A translation—invariant, positively associated probability measure P on

Qg has the box-crossing property if and only if the following hold for some Ny:

(a) For p > 1, there exists n(p) > 0 such that, for all N > Ny,

P[Cu(pN,N)] = n(p). (4.3.1)

(b) There exist pg,no > 0 such that , for all N > Ny,

P(Cy(N, poN)] > 0. (132)
Moreover there exists § = 3(po,n0,m(1),n(2p ")) > 0 and Ny > 0 such that P has the
boz-crossing property BXP(Ny,0).

Remark 4.3.3. If the measure P of Proposition [£.3.2] is not translation—invariant, the
proposition remains valid with (£3.1)-(43.2]) replaced by the same inequalities uniformly

for all translates of the relevant rectangles.

Proof. This is sketched. It is trivial that the box-crossing property implies (@3] and
(£32). Conversely, suppose (£31) and [A3.2)) hold. The positive association permits
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2N

polN

Figure 4.3.1: Left: Vertical crossings of copies of By ,,n and horizontal crossings of copies
of B N,NE Ay be combined to obtain vertical crossings of boxes with arbitrary aspect

ratio. Right: Crossings of the type Cy(an,n) and Cy(n,an) may be combined to obtain
crossings of boxes with general inclination.

the combination of box-crossings to obtain crossings of larger boxes. The claim is now
obtained as illustrated in Figure @311 O

4.3.3 Proof of Theorem A.3.T](a)

It suffices to assume py > 0, since the hypothesis does not hold when py = 0. By Propo-
sition 3.2 it suffices to prove the following two propositions.

Proposition 4.3.4. Let p = (po,p1,p2) € [0,1)3 be self-dual with pg > 0. For a > 1 and
N eN,

Py [Cu((cr = 1)N,2N)] > Py, | s [Cu(aN, N)].

Proposition 4.3.5. Let p = (po,p1,p2) € [0,1)3 be self-dual with py > 0. There exist
B = PB(po) >0, and pn = pn(B) > 0 satisfying py — 1 as N — oo, such that

PS[Cy(2N, BN)] > pnPG, 1, [Co(N,N)], N €N,

The constant 3 is given by

5= 1 —/1—po(1—po)

1 —po

: (4.3.3)

and py = pn () may be calculated explicitly by the final argument of this subsection.

Proof of Proposition [[.3.4} Let p € [0,1)3 be self-dual with py > 0, and let a > 1 and
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2N
interface e

o .
NI ,\/\/\_/\ (S” OTA)N

- Y > interface E=

Figure 4.3.2: Transformation of a horizontal crossing of Bony,n by (S o T2)N. The
interface moves down N steps. The path drifts by at most distance N and cannot go
below the interface of the image lattice.

N € N. Let L = (V, E) be a mixed triangular lattice with interface-height h(Iy) = N, and
write P, for the associated product measure on L. Since Bon,ny = [—aN,aN| x [0, N] is
beneath the interface,

Pias.1_po) [Cu(@N, N)] = P [Cu(aN, N)]

Let w € Cp(alN, V). We claim that there exists a horizontal open crossing of B(,_1)n 2N
in (S¥ o T*)N(w), as illustrated in Figure

Let v be an open path of L, parametrized by [0,1], that crosses By, horizontally.
By Proposition E22} dparn (v, 7(N)) < N where v(N) := (S7 o T#)N (v), whence,

170 = 7(N)o| < N, (4.3.4)
71 = y(N)1| < N, (4.3.5)
Y(N) €N C Biyn- (4.3.6)

Since v contains no vertex with strictly negative y-coordinate, and the transformations do

not act in this region, neither does v(N). Hence,
Y(N) SV NR x [0,00) C R x [0,2N].

Taken with (£34)-(@33]), we deduce that y(IN) contains an open path +' that crosses
B(a—1)n2n in the horizontal direction.

Since B(o—1)n,2n lies entirely in the triangular part of (S"oT' )N, we have by Propo-
sition A.2.T] that

PS [Cu(aN, N)] < PY ") Gy (0 — 1N, 2N)
= P% [Cu((a — 1)N,2N))],
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and the proposition is proved. ]

Proof of Proposition [{.3.5, Consider the box By y in the mixed triangular lattice L with
interface-height h(Ir) = N. We follow the strategy of the previous proof by considering the
action of S"oT"” on a vertical open crossing v of the box. In N applications of SToT”, the
lattice within the box is transformed from square to triangular. By Proposition E22)(¢c),
the image of v may drift by distance 1 or less at each step. Drift of v in the horizontal
direction can be accommodated within a box that is wider in that direction. Vertical
drift is however more troublesome. Whereas the lower endpoint of ~ is unchanged by N
applications of SY o T, its upper endpoint may be reduced in height by 1 at each such
application. If this were to occur at every application, both endpoints of the final path
would be on the z-axis. This possibility will be controlled by proving that the downward
velocity of the upper endpoint is strictly less than 1.

Let p € [0,1)? be self-dual with py > 0, and write L¥ = (S¥ o T*)*LL for 0 < k < N.
The lattice ¥ has edge-set E* and configuration space QF = {0, 1}Ek. Let ]P”f, denote the
probability measure on QF given before Proposition E2.1l Recall from that proposition
that SY o T acts as a random mapping from QF to Q**1, via the ‘kernel’ given in Figure
3.2.21 We shall assume that sequential applications of this kernel are independent of one
another and of the choice of initial configuration. More specifically, let (w* : k > 0) satisfy:
(
(

a) w” is a random configuration from QF,
b
(c

(d) the law of w® is ]P’Op.

)
) the sequence (w* : k > 0) has the Markov property,
) given {w w!, ..., wF}, W may be expressed as wFt = SY o T2 (wWF),
)
Let P denote the joint law of the sequence (w”,w!,...). By Proposition 1] the law of
wh is PR

Let D¥ = By oo = [-N —k,N + k] x [0,00) viewed as a subgraph of L¥, and call
the line R x {0} the base of R?. We shall work with the sequence (h* : 1 < k < N) of

random variables given by

k

kw
hF = sup{h : z1, 25 € R with (z1,0) JREAECIN (z2,h)}.

Note that h* acts on QF.
Since LV is entirely triangular in the upper half-plane, it suffices to show the existence
of pxy = pn(B) > 0 such that py — 1 and

P(hY > BN) > pyP(h® > N), (4.3.7)

with 8 as in [@33]). The remainder of this subsection is devoted to proving this.
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Lemma 4.3.6. For 0 < k < N, the following two statements hold:

RFHL > pF 1, (4.3.8)
P(R* >h+ 1| =h)>pB, h>0. (4.3.9)

Proof. We may assume that h¥ < oo for 0 < k < N, since the converse has zero prob-
ability. Let k < N, and let v¥ = 4*(w") be the leftmost path in D* that reaches some
point at height h*. By Proposition 122(c), L*+1 possesses an open vertical crossing of
By ik y1.n+—1, 50 that A5T1 > hF — 1. Inequality @3.8) is proved, and we turn to E33).

Let 0 < k < N, and let G be the set of all paths T' of L* such that there exists h > 0
with:

(a) all vertices of I lie in By .k p,
(b) T has one endpoint (denoted I'p) in R x {0},
(c) its other endpoint (denoted I';) lies in R x {h}.

For T" € G, there is a unique such h, denoted h(T).

Let I € G, and let L(T") be the closed sub-region of [~ N —k, N+k]x [0, h(T')] € R? lying
‘to the left’ of I'. Let G(T') be the subset of G containing all paths IV with A(I") = h(T)
and IV C L(T"). We write I < T if I" C L(T") and I" # I

Suppose that p; < po. The endpoint I'y is the lower left corner of some upwards
pointing triangle denoted ABC' = ABC(I"), where A =T'; and O is its centre. If ps > p1,
we work instead with the similar triangle of which I'; is the lower right corner, and the
ensuing argument is exactly similar. See Figure

We claim that

P(BC is wh-closed | ¥* =T)>1—p;, T €. (4.3.10)
Since the marginal of P on QF is ]P”f), it suffices to show that
PE(BC closed |y* =T) > 1-p;, T€eQg. (4.3.11)

This is proved as follows. Let I' € G. Then {7* =T} = FN G N {I' open} where F is the
event that there exists no IV < T" such that every edge of I'"\ T is open, and G is the event
that there exists no I € G with h(I') > h(T") and every edge of I/ \ T' is open. Since
F NG is a decreasing event that is independent of the states of edges in I', we have by the

positive association of IP’];; that

k(k _ _ pk k
Pp(v" =T | BC closed) = P5(I" open)P5(F NG | BC closed)
k k _ Pk k
> Pp(T open)Pp (FNG) =Pp(y" =T).
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Figure 4.3.3: An illustration of the action of ¥ 0T when ¥ = I'. The top endpoint A of
I is preserved under 7. If w¥(BC) = 0, there is a strictly positive probability that AO
is open in T4 (w"), in which case R**1 > pF + 1.

Therefore,
PX(BC closed)
k k _ mwk(k __ b
P (BC closed [ v" =T) =P5(v" =T | BC closed)w
> ]P’];;(BC’ closed) =1 — py,
and ([@3.10) is proved.

Consider the state of the edge AO in the configuration 7 (w"). By Figure B.:2.2] for
any w € QF with w(BC) = 0,

IP’];’; (AO open in T*(w) | wh = w) >
It follows that

P(RF > pF 4+ L |wh =w) > pob2 lep o, weQk
( = 2‘ )_(1—p0)(1—p2) {w(BC)=0}

Recall that BC' = BC(v*(w)). Therefore, for T' € G,

P(RF > pk 2 1|4k =) > Pop2 P(W*(BC)=0|~* =T
( - 2‘7 )_(1—]70)(1—]?2) ( ( ) |7 )
(1 = p1)pop2

~ (1 =po)(L—p2)’

by (£310]).
Now py is fixed, p1 < po, and ka(p) = 0. Hence, the last ratio is a minimum when

p1 = p2, whence
(L—=pypopa 1= /1= po(l - po)
(1 =po)(1 —p2) — 1 —po

and the claim of the lemma follows. O

=B,

There are at least two ways to complete the proof of Proposition 3.5l of which one
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involves controlling the mean of A*¥*' — h*. We take a second route here, via a small
standard lemma. For a real-valued discrete random variable X, we write £(X) for its
law, and S(X) := {z € R: P(X = z) > 0} for its support. The inequality <y denotes

stochastic domination.

Lemma 4.3.7. Let (X0, X1) and (Yo, Y1) be pairs of real-valued discrete random variables
such that:

(a) XO Sst Yb;

(b) for z € S(Xy), y € S(Yy) with x < y, the conditional laws of X1 and Yy satisfy
L(X1|Xo=2) < LY1|Yo=1y).

Then Xl Sst Yl.

Proof. We include a proof for completeness. By Strassen’s Theorem (see [Lin02bl Sect.
IV.1]), there exists a probability space and two random variables X{), Y{, distributed
respectively as Xy and Yp, such that P(X) <Y{) = 1. Now,

P(X1>u)=) PXi>u|Xo=2)P(Xj=2Y]=y)

r<y
<Y P> ul| Yo =y)P(X)=2,Y] =)
<y
=P(Y1 >u),
where the summations are restricted to x € S(Xp) and y € S(Yp). O

Let (H* : k > 0) be a Markov process with H? = h° and transition probabilities

3 if j =i+ 3,
1-8 ifj=i-1,

PHM = j | HF =) = (4.3.12)

with 8 as above. By Lemma and an iterative application of Lemma E.3.7]
P(hN > BN) > P(HY > BN).

Since h? and H have the same distribution,

P(hN > BN)
P(hO > N)

P(HN > BN)
P(HO > N)
> P(HY > BN | H* > N) =: pn(B).

v

Now, (Hy) is a random walk with mean step-size —1+33/2. By the law of large numbers,
pn — 1 as N — oo. In addition, py > 0, and ([E3.7) follows. O
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4.3.4 Proof of Theorem [4.3.7](b)

By Proposition 3.2, it suffices to prove the following two propositions.

Proposition 4.3.8. Let p = (po,p1,p2) € [0,1)% be self-dual with pg > 0. There exists
B = B(po) €N and Ny = No(pg) € N such that, for a € /3N with o > 3, and N > Ny,

P y[Cul(a = BIN, BN)] > (1 — ae”™)PL [Cu(aN, N)]. (4.3.13)

(po,1—po

Proposition 4.3.9. Let p = (po, p1,p2) € [0,1)3 be self-dual. For a > 0 and N € 2N,

Pl 1po) [Col((@ + 3)N, 3N)| = PR[Cy(aN, N)]. (4.3.14)

Proof of Proposition [{.3.8 Let p satisfy the hypothesis of the proposition. The idea is to
consider repeated applications of the transformation S*oT"V to an open horizontal crossing
of a box in the triangular part of a mixed lattice. The interface moves upwards, and the
crossing may ‘drift” upwards at each step. A new technique is required to control the rate
of this drift. This will be achieved by bounding the vertical displacement of the path by
a certain growth process.

We partition the plane into vertical columns
Co=(nV3,(n+1)V3) xR, nez,

of width v/3. Let L = (V, E) be a mixed lattice, and w € Qg. The C, correspond to the
columns of the square sublattice of L, as illustrated in Figure £3.4]

For any (parametrized) open path I' = (I'; : a < ¢t < b) on L, let
H,(T') = sup{h(T) : t such that I'y € C, }

be its height in C,. (The supremum of the empty set is taken to be —oc.) Note that
h(I') = sup,, H,(I'). The growth of the H,(I') may be bounded as follows under the
action of the random map S* o TV.

For future use, we define n: (0,1) — (0,1) by

n(z) = (1—1—3:— \/1—x+x2)2, (4.3.15)

and note that 7 is increasing.

Lemma 4.3.10. Let L be a mized triangular lattice, and let w, I' be as above. There exists
a family of independent Bernoulli random variables (Y, : n € Z) with parameter 1 —n(po),
such that, for alln € Z,

H,((5* o T7)(T)) < max{Hy_1(T"), Hy(T") + Yy, Hyp1(T) ).
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4.8. Proof of Theorem[].1.1] for M

We delay the proof of this lemma until later in this subsection.

Let LY = (V,E) be the mixed triangular lattice with interface-height h(Ijo0) = 0,
and let w® € Qp. Let a € v/3N, and let 4 be an open path of L? in the box Bon,N-
We shall use the notation introduced at the start of the proof of Proposition E3.5] with
the difference that the transformation S o T'® there is replaced here by S* o TV. Thus,
LF = (8* o TV)*LL, and w¥ is the edge-configuration on L* given by w* = S* o TV (wF1)
for k > 1. Recall that w* is a random function of w*~! generated via the kernel of Figure
3221 and we assume as before that sequential applications of this kernel are independent.
We shall study the heights of the image paths 4% = (S* o TV)*(70).

As before, if w® is chosen according to Pg, then the law of w* is IP”I“). The law of the
sequence (w* : k > 0) is written P, although for the moment we take w® to be fixed and
write P(- | w®) for the corresponding conditional measure.

We shall show that the speed of growth of the maximal height of 7* is strictly less
than 1. This will be proved by constructing a certain growth process that dominates
(stochastically) the family (H,(v*):n € Z, k > 0).

Let ¢ € (0,1). Let (Y,F : n € Z, k > 0) be a family of independent Bernoulli random
variables with parameter 1 — (. The Markov process X* := (XF : n € Z) is given as

follows.

(a) The initial value X° is given by

N forn € [-aN/V3,aN/V3),
—oo for n ¢ [~aN/V3,aN/V/3).

Xy =

n

(b) For k > 0, conditional on X*, the vector X**! is given by

XpHh = max{ X3, Xp + Yy, X5} nel

Lemma 4.3.11. Let ¢ € (0,1). There exist B, Ny € N depending on ¢ only (independent
of a, N) such that, for a € /3N and N > Ny,

P (mrz}xXﬁN < BN) >1—ae N,

We postpone the proof of this lemma, first completing that of Proposition 138 Let
¢ = n(po), and let B and Ny be given as in Lemma E311l Since H,(v%) < X0 for all n,
we have by Lemma E3.10) that, given w®, h(y*) is dominated stochastically by max,, X*.

By Lemma [£3.17]

P(h(y"N) < BN |w°) > 1—ae ™™, N > Nj. (4.3.16)
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Ci Co Cs C1 Co Cs

Figure 4.3.4: The evolution of the heights of a crossing within columns, when applying
TV and S*. The heights in each column are the same in the first and second lattice. In
the third: Hp increases by 1; Hs increases by 2; Hs does not change.

Since h(Ijo) =0 and h(fjn) = N,

P5[Ch(aN, N)] = P(w° € Cy(al, N)),
P o1 —poy [Cu((@ = BN, BN)] = P(w™N € Cu((a = B)N, BN)).

Hence,

PO o Ca((a = BN, BN)]
Py’ [Ch(aN, N))]

> P[wN € Cy((a—B)N,BN) |’ € Ch(aN,N)]. (4.3.17)

Let «° € Cn(aN,N) and let 7% be an w-open crossing of Ban,n. By Proposition
E22, the leftmost point of 4V lies to the left of B(a—p)n,an, and the rightmost point to
the right of that box. Moreover v*"V is contained in the upper half-plane, since the lower

half-plane is in the square-lattice part of every L*. If, in addition, h(7*") < BN, then

BN contains a w?N-open horizontal crossing of B(a—p)yn,an- In conclusion,

P(uﬁN € Cu((a — BN, BN) ( W € Cu(aN, N))
> P (h(»yﬁN) <BN|w’e Ch(aN,N))
>1—ae W, N > Ny,

by [@3I6]). The claim follows by ([@3I7]). O

Proof of Lemma [{-5.10. We recall two properties of the transformations S* and 7V when
applied to an w-open path I'. In constructing TV (T'), we apply TV to downwards pointing
triangles of L containing either one or two edges of I'. As illustrated in Figure B.22 TV
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4.8. Proof of Theorem[].1.1] for M

acts deterministically on such triangles, and hence TV (T") is specified by knowledge of T.

By inspection of Figure 34 or otherwise,
H,(T"(T)) = Hy(T), neZ. (4.3.18)

The situation is less simple when applying S* to TV (T'). Let S be the set of upwards
pointing stars of TVL, and let (Z7, Z¢ : s € S) be independent Bernoulli random variables

with parameter

v:=+1—1vy where 15:=1-— p1b2 .
(1 =p1)(1—p2)

For s € S, let Z° = min{Z/, Z{}, noting that
P(Z°=1)=1?=1-u,. (4.3.19)

We call s € S a horizontal star (for T') if TV(T') includes the two non-vertical edges of s.
By ([{3I38), any changes in the H,, occur only when applying S*. The height H, (T")
may grow under the application of S* o TV for either of two reasons: (i) the highest part
of I' within C,, may move upwards, or (i) part of I" in a neighbouring column may drift
into C,, (in which case, we say it ‘invades’ C,,). These two possibilities will be considered
separately.
Let n € Z. Assume first that

H,(T') < max{H, 1(T), Hy41 ()} — 1. (4.3.20)

By Proposition [£2.2] the part of I" within C,, cannot drift upwards by more than 1. By
considering the ways in which parts of I' may invade C,, we find that such invasions may
occur only horizontally, and not diagonally upwards (see Figure [£34]). Combining these
two observations, we deduce under ([L.3.20) that

Hy, (8% o TY(T)) < max{H,_1 (), Hps1(D)}. (4.3.21)

Suppose next that
H,(T) > max{H, 1(T), Hy41(I)}. (4.3.22)

By Proposition .222] ([A318]), and the above remark concerning invasion,
H,(S*oTV(T)) < H,(T")+1=H,(T) +1,

where IV = TV(T"). Assume that H,(S*(I")) = H,(I") + 1. Then there must exist a star
s € § such that:
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Figure 4.3.5: Three examples of growth of path-height within a column under the action
of S*, under the assumption H,(I") > max{H,_1(I"), H,+1(I')}. Left: The base of the
marked triangle is present in the image, and the height does not increase. Middle: The
base of the rightmost marked triangle is absent. The heights in the central and right
columns increase. There is a strictly positive probability that both marked bases are
present, and that the height in the central column does not increase. Right: The base of
the marked triangle is absent, and the height increases by 1.

(a) s is a horizontal star for T,

(b) s intersects Cp,

(¢) Hp(TY(T)) = h(O) where O is the centre of s,
(d) the base of S*(s) is closed in S* o TV (w).

(See the middle and rightmost cases of Figure for illustrations.)

Let s satisfy (a), (b), and (c), and write A for the highest vertex of s, so that TV (T")
includes the edges BO and CO. The edge BC' is open in S* o TV (w) with (conditional)
probability

1 if AO is closed in TV (w),

vy if AO is open in TV (w).

See also Figure 322221 This conditional probability is achieved by declaring BC' to be open
if and only if: either AO is closed in TV(w), or AO is open in TV (w) and Z* = 0. With
this coupling,

if (d) above holds, then Z° = 1, and hence Z = Z; = 1.

We return to (£3.22]). If the highest part of I' in C,, comprises a single horizontal star
s, as on the right of Figure [£.3.5]

H,(S* o TY(D)) — Ho(T) < max{Z¢, Z°} =: Y, (4.3.23)
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4.8. Proof of Theorem[].1.1] for M

Figure 4.3.6: The black squares represent the bricks at step k in the growth process. The
blue and red squares are the additions at time k£ + 1. The lateral extensions (blue) occur
with probability 1, and the vertical extensions (red) with probability 1 — (.

If, on the other hand, the highest part of I'" in C,, corresponds to two stars, s; and so,
that also intersect C,,—1 and C,4+1 respectively (as in the first and second diagrams of the

figure),
H,(S* oTY(I')) — Hy(T') < max{Z', Z*} = Y,,. (4.3.24)

Recalling the properties of the Z°, Z?, we have that the Y, are independent Bernoulli

variables with parameter 1 — n’ where

n’::(1-ﬂ)2:<1—\/( P12 )>2. (4.3.25)

1—p1)(1—po

The proof is completed by the elementary exercise of showing that 7" > n(po). O

Proof of Lemma[f-3.11. The process X = (X* : k > 0) may be represented physically as
follows. Above each integer is a pile of bricks, illustrated in Figure At each epoch
of time, each column gains a random number of bricks. If a column is as least as high as
its two nearest neighbouring columns, a brick is added with probability 1 — (. Otherwise,
bricks are added to the column to match the height of its higher neighbour.

We study the process via the times at which bricks are placed at vertices. For each
pair A, B of neighbours in the upper half-plane Z x Zg of the square lattice with the usual
embedding, we place a directed edge denoted AB from A to B, and similarly a directed
edge BA from B to A. Let £ be the set of all such directed edges. The random variables

(Tap : AB € &) are assumed independent with distributions as follows.

1 if AB is horizontal,
0 if AB is directed downwards,

TAB =

and 74p has the geometric distribution with parameter 1 — { if AB is directed upwards,
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that is,
Plrap=7r)=¢C"11-¢), r>1

Thinking about 745 as the time for the process to pass along the edge AB, we define the
passage-time from C' to D by

7(C,D) = inf { 7(T) := ZTE Te Pe.p ¢,
ecl’

where Pc p is the set of all directed paths from C to D.

Let o € V3N and L; := [~aN/V/3,aN/v/3] x {i}. The initial state G of this growth
process is the set Uf\i o Li- 1t is easily seen that the state G}, at time k comprises exactly
the set of all vertices D such that there exists C' € Ly with 7(C,D) < k.

Let 8 > 3 be an integer, to be chosen later. By the above,

P(h(Ggn) = BN) < > P(r(C,D) < BN). (4.3.26)
C,D:

CeLy,h(D)=BN
Now, 7(C, D) < BN if and only if there exists a directed path ['e Pc,p with passage-time
not exceeding SN, so that

P(h(Gsn) = BN) < Y~ P(r() < BN), (4.3.27)
TFePy

where Py is the set of directed paths whose endpoints C, D are as in ([@3.26]). Consider
such a path f, and let u, d, h be the numbers of its upward, downward, and horizontal
edges, respectively. Since upward and horizontal edges have passage-times at least 1,
we must have u + h < SN. By considering the heights of the first and last vertices,
u—d = (8 —1)N. Therefore, I has no more than (8 + 1)N edges in total, of which at
least (8 — 1)N are upward.

There are |Ly| < 2aN possible choices for C, so that

(B + 1)N>'

< 2aN42N
[Pn| < 20 ( N

(4.3.28)

For T € Pn, T(f) is no smaller than the sum of the passage-times of its upward edges.

Therefore,
P(r(T) < BN) < P(S < BN), (4.3.29)

where S is the sum of (8 — 1)N independent random variables with the Geom(1 — ()
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4.8. Proof of Theorem[].1.1] for M

distribution. It is elementary that
P(S<BN)=P(T > (B-1)N),

where T" has the binomial distribution bin(SN,1 — {). By Markov’s inequality (as in the

proof of Cramér’s Theorem),
N g (BA=QY
limsup P(T > (B—1)N)'" <p <7> , (4.3.30)
N—o0 /8 -1

when (1 — () < 8 — 1, that is, 8 > 1/(.
By E327)-330), there exists Ng = No(f, () such that, for N > Ny,

N
P(h(Gs) 2 BN) < 2aN4*N <(5 ;\})N> {2,@ <%>6}

By Stirling’s formula, there exists ¢ = ¢(¢) and N7 = Ny(3,() such that, for N > Ny,

—enAY Y
P(h(GBN)zﬁN)ga{cﬁ3 <%> } . (4.3.31)

Choose 3 = B(¢) sufficiently large that the last term is smaller than ce™, and the proof

is complete. ]
This concludes the proof of Lemma .3.1T] and thus of Proposition [£3.8

Proof of Proposition[{.3.9 Let N € 2N. Let L = (V, E) be the mixed triangular lattice
with interface-height 0, so that

PS [Co(aN, N)| = P5[Ce(aN, N)].

Let w € Qp, and let v be an w-open vertical crossing of Boy,n. In %N applications of
S* o TV, the images of the lower endpoint of v remain in the square part of the lattice,
and thus are immobile. By Proposition 22}, (S* o TV)N/2(y) contains a vertical crossing
of B(a+%)N7N/2 that is open in (S* o TV)N/2(w). Since B(a+%)N7N/2 lies entirely within the
square part of (S* o TV)N/2L, we deduce that

SroTVIN/2
PO 1 [Cel(a+ DN AN = BFTTE [Cy((a+ SN, V)]
> P& [Cy(aN, N)],

and the claim is proved. O
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Figure 4.4.1: A mixed triangular lattice (left) with the highly inhomogeneous measure
above the interface. The transformation S¥ o T moves the interface down by one unit.
Every triangle is parametrized by a self-dual triplet.

4.4 Proof of Theorem 4.1.1] for M;

We will only sketch how to adapt the proofs of Section to incorporate the highly
inhomogeneous models.

The proof of Theorem [ZT.T] for the highly inhomogeneous models on T and H follows
exactly that of Section 3.3l on noting that: each triangle of the mixed triangular lattice of
Figure 4Tl has three edges with parameters forming a self-dual triplet, and the constants
of Propositions [£.3.4] to depend only (in the current setting) on the value of p and
not otherwise on q and q'. The hexagonal-lattice case follows by a single application of
the star—triangle transformation.

We now focus on highly inhomogeneous models on the square lattice. Let q =1 — ¢’
satisfy (L44) with € > 0, and let p =1 —p' = %e. We may pick r, € (0,1) such that
EA(Dy qn,n) = 0 for all n, and we write v}, = 1 — r,,. By the above the measure Pﬁq,r has
the box-crossing property, and we propose to transport this property to the square-lattice
measure Pg o via the star-triangle transformation.

Let L = (V, E) be the mixed triangular lattice on the left of Figure f42] and denote
by Pqrp the product measure given there. Under Pq ;. all triangles in IL have self-dual
triplets. Thus, TV acts on Qg endowed with Pq,, in the manner of Section (with
parameters varying between triangles), and the ensuing measure is given in the middle
figure. Then S* acts on edge-configurations of TVIL (with parameters varying between
stars). The ensuing lattice (S* o T"V)L is illustrated on the right, and it may be noted that
the corresponding measure is precisely that of IL shifted upwards and rightwards.

In the triangular part of I, Pg r , corresponds to the measure Pﬁ q,r» While in the square

part it corresponds to ]P’E - By Theorem [T Tl for the highly inhomogeneous models on T,
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Figure 4.4.2: Left: The measure Py, on LL. In the triangular part the measure is IP’pA, q,r On
a rotated lattice, and in the square part it is ]P’D ad Middle, right: Application of S* o TV
transforms IL to a copy of itself shifted upwards and sideways.

]P’pA, q,r has the box-crossing property, and thus it remains to adapt the proofs of Propositions
E38 and

Proposition 3.9 holds because of its non-probabilistic bound for the drift of a path
under S* o TV. Its proof is easily adapted to give, as there, that, for « > 0 and N € 2N,

Py [Co((a+ 3N, 3N)] > PE,[Co(aN, N)].

The proof of Proposition B3.8] requires the probabilistic estimate of Lemma 3710
This hinges on the application of S* to configurations on upwards pointing stars. The
key fact is that n(pg) > 0, with n as in ([£3.1I5]) and py the parameter associated with
a horizontal edge in the triangular lattice. In the present situation, such edges have
parameters ¢,. Since g, > €, we have that n(g,) > n(e) > 0. This results in an altered
version of Lemma [L.3.10] with n(pg) replaced by n(e). The proof continues as before, and a
version of (A313]) results. Theorem ATT] for highly inhomogeneous models on the square

lattice is proved.

4.5 Universality of arm exponents

4.5.1 Outline of proof

The main goal of this section is to prove the following proposition.

Proposition 4.5.1. Letk € {1,2,4,... } and e > 0. There exist constants ¢; = ¢;(k,€) > 0
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and Ng = No(k,€) such that for any model (L,P) € Mj(e) and any n > 2N > 2Ny,

cl]P’g,%[Ak(N, n)] < P[A(N,n)] < CQPE%[Ak(N,n)]. (4.5.1)
Theorem T4 follows directly from the above, and the rest of the Section is dedicated
to Proposition [I.5.1] Its proof is structured as follows. We use transformations similar to
those in the proof of Theorem ET.T] to transport arm events from one model to another.
To do that we introduce in Section a modified version of the mixed lattices used in
Section @3] and the corresponding transformations. In Section 5.3 we give an alternative
definition of arm events, adapted to our context, and relate it to the regular definition. In
Section 5.4l we use the modified arm events to prove Proposition E5.11
For the remainder of this section ¢ > 0 is fixed and, unless otherwise stated, all
constants ¢; > 0, Ny € N depend only on € and on the number k of arms in the event
under study. We use the expression ‘for n > N large enough’ to mean: for n > ¢g/N and
N > Ny.

4.5.2 Mixed lattices: a second version

Whereas the mixed lattices of Section L2 were suited for proving the box-crossing property,
a slightly altered hybrid is useful for studying arm exponents.

Let m > 0, and consider the mixed lattice L™ = (V", E™) drawn on the left of Figure
A5T] formed of a horizontal strip of the square lattice centred on the z axis of height
2m, with the triangular lattice above and beneath it. The embedding of each lattice
is otherwise as in Section the triangular lattice comprises equilateral triangles of
side length /3, and the square lattice comprises rectangles with horizontal (respectively,
vertical) dimension v/3 (respectively, 1). We require also that the origin of R? be a vertex
of the mixed lattice.

Let p € [0,1)3, and let PP be the product measure on Q™ = {0, 1}E™ for which edge
e is open with probability p(e) given by:

I
s
(=)

oy
L r}
)
o
»n
=
)
=
=
N
o)
5
+
Y
\.i—‘

Suppose further that p is self-dual, in that ks (p) = 0, and let w™ € Q™. We denote
by T* (respectively, TV) the transformation T of Figure applied to an upwards (re-
spectively, downwards) pointing triangle. Write T" for the transformation of w™ obtained
by applying T to every upwards pointing triangle in the upper half plane, and TV sim-
ilarly in the lower half plane; sequential applications of star—triangle transformations are

required to be independent of one another.
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Figure 4.5.1: The transformation S+ o TF (respectively, S~ o T~) transforms L' into 1.2
(respectively, I.? into L'). They map the dashed graphs to the bold graphs.

Similarly, we denote by S* (respectively, SY) the transformation S of Figure
applied to an upwards (respectively, downwards) pointing star. Write ST for the trans-
formation of (TtIL™, T (w™)) obtained by applying S* to all upwards pointing stars in
the upper half-plane and similarly S in the lower half-plane. It may be checked that
W™t = ST oTH(w™) lies in Q™*! and has law P!, That is, viewed as a transformation
acting on measures, we have (ST o TP = Pptt,

The transformations T~ and S~ are defined similarly, and illustrated in Figure [£5.11
As in that figure, for m > 0,

StorHL™ =1Lt (St oTHP7" = prt!
b p p )
(S~ 0T L™ =L™, (S~ oT )Pyt =P

We turn to the operation of these two transformations on open paths, and will con-
centrate on ST o T'"; similar statements are valid for S~ o T~. Let w™ € Q™ and let 7
be an w™-open path of L. As in Section F.2], the image of © under S* o T contains
some w™-open path 7/. Furthermore, 7’ lies within the 1-neighborhood of 7 viewed as a
subset of R?, and has endpoints within unit Euclidean distance of those of 7. Any vertex
of 7 in the square part of " is unchanged by the transformation. The corresponding
statements hold also for open® paths of the dual of IL”*. These facts will be useful in
observing the effect of ST o T on the arm events.

Let L = (V, E) be a mixed lattice duly embedded in R?, and write V; for the subset
of V lying on the z-axis. Let w € Q@ = {0,1}*. For R C R? and A, B C RNV}, we
write A <24 B (with negation written A @& B) if there exists an w-open path joining
some a € A and some b € B using only edges that intersect B. We remind the notation
R'={r+d:reR,|d <1}

Proposition 4.5.2. Let m > 0, w € Q™, R C R?, and u,v € RNVy. Fort € {STo
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TS 0T Y,
1 T
(a) ifu LA v, then u <R’—(w)> v,

(b) ifugfim), thenu&&v
Proof. (a) Let 7 = ST o T; the case 7 = S~ o T is similar (we assume m > 1 where
necessary). If u PR v, there exists an w-open path w of L from u to v using edges that
intersect R. Since u, v are not moved by 7, the image 7(7) contains a 7(w)-open path of
TIL from w to v. It is elementary that 7 transports paths through a distance not exceeding
1 (see Proposition A2.2]). Therefore, every edge of () intersects R'.
(w)

R7 . . . . .
(b) Suppose u T . By considering the star—triangle transformations that constitute

. . RY,
the mapping 7 (as in part (a)), we have that u S5 O

As in Section [£4], we may also define highly inhomogeneous measures on the mixed
lattices .. The transformations T, T, ST and S~ are defined similarly, with star—
triangle transformations depending on the local parameters of the lattices. We extend

M;(e) to accommodate the highly inhomogeneous models on the mixed lattices.

4.5.3 Modified arm-events

Let L be one of the square, triangular, and hexagonal lattices, or a hybrid thereof as in
Section Let x; = (z'\/g,O), i > 0, denote the vertices common to these lattices to
the right of the origin, and y; = ((i + 3)v/3,3), i > 0, the vertices of the dual lattice L*
corresponding to the faces of L lying immediately above the edge z;x;+1. We recall the
notation A,, = [~n,n]? C R?, with boundary dA,,, and that C, (respectively, C,) denotes
the open cluster of L containing x (respectively, the open* cluster of L* containing y).
For n > 1 and any connected subgraph C' of either L or L.*, we write C N 9A, # @ if C
contains vertices in both A, and R?\ (—r,7)%. Note that we may have C N A, # @ even
when there are no vertices of C belonging to JA,..

For j,n € N with j > 2, let

Ai(n) = {Cy, NOA,, # @},

Ag(n) = {Cy, NOA, # 3, Cy, NOA, # T},
Asj(n) = ﬂ {C’mi NOA, # @, and x; <—A7”L“—)> {z0,21,. .. ,:L‘Z'_l}}.

0<i<j

We write /Iﬂ,;(n) when the role of L is to be stressed. Note the condition of disconnection
in the definition of /_12]- (n): it is required that the z; are not connected by open paths of
edges all of which intersect A,,.

A proof of the following elementary lemma is sketched at the end of this subsection.
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4.5. Universality of arm exponents

Proposition 4.5.3. Let (L,P) € Mj(e) and k € {1,2,4,6,...}. There exists Ny =
No(k) € N and ¢; = ¢i(e, N, k) > 0 such that

P[Ay(N,n)] < coP[Ax(n)], (4.5.2)
\P[AL(20n))]. (4.5.3)

P[Ag(n)]
P[Ag(n)]

IN

IA
o

forn > N > Nj.

Proof. First, a note concerning the event Agj(n) with j > 2. If w € Ayj(n), the vertices x;,
0 <1 < j, are connected to JA,, by open paths. We claim that j such open paths may be
found that are vertex-disjoint and interspersed by j open* paths joining the y; to dA,,. This
will imply the existence of 2j arms of alternating types joining {zo,v0,x1,¥y1,...,Z;—1}
to OA,, such that the open primal paths are vertex-disjoint, and the open* dual paths
are vertex-disjoint except at the y;. The claim may be seen as follows (see also the left
diagram of Figure E5.2]). The dual edge e with endpoints +yg is necessarily open*. By
exploring the boundary of Cy, at e, one may find two open* paths denoted 7o, (), joining
Yo to OA,, and vertex-disjoint except at yg. Let 0 < r < j — 2. Since ., x,41 M oA,
and x, <—A—7—Ui> Zr+1, we may similarly explore the boundary of C,, to find an open* path
mr of A, that joins y, to JA,, and is vertex-disjoint from either my or 7(), and in addition
from 7y, s # r. The dual paths 7(,, 7o, 71, ..., Tj_9 are the required open* arms. The first
inequality in ([L35.2) follows immediately.

For the second inequality in (£5.2), as well as for [@53]), we will need to use the
box-crossing property and the separation theorem.

First we note that both P and P* have the box-crossing property BXP(4), with a
constant 0 = d(e) > 0 that depends only on €, not otherwise on L and P. If L is one of
the square, triangular, or hexagonal lattices, then the above is proved in Theorem [Z.1.1]
For a mixed lattice L™, the box-crossing property holds in both the square and triangular
sections of the lattice, in order to deduce it in the whole of the plane we need a short
argument which we detail in the next two paragraphs.

Suppose for simplicity that we work with an inhomogeneous measure PE' with py €
(6,1 —€). Recall the notation By, ny = [-M, M] x [0, N], and denote by Cy(Ba,n) (re-
spectively, Cy(Bys,n)) the event that there exists a horizontal (respectively, vertical) open
crossing of By, n (with a similar notation C{, C; for dual crossings). For every translation
f, f(Bmsn) contains a rectangle with dimensions 20 x N lying in either the square or
triangular part of ™. Thus

Py [Cu(f(Baran))] = min{Pg [Cu(M, N)], P 1 o [Cu(M, N)]} > &, (4.5.4)

with an adjusted value of & = §'(€) > 0, given by the box-crossing property. The dual

model lives on a mixed square/hexagonal lattice and the same inequality holds with Cy
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oA, ) J O\,

OAap|

Yo U1 \\H k T OAN
0 g x&

Figure 4.5.2: Left: The event As;(n) implies the existence of j primal arms (red) and j
dual arms (blue) extending to OA,,. Right: Combining A’(N) and A’*?(2N,n) to form
A(n). The primal fences of A'(N) and A"?(2N,n) are the thick red paths. The dual
ones are the thick blue paths. They are connected inside A(N,2N) by the thin paths
forming Hy. These may be constructed via crossings of boxes of determined aspect ratio,
as shown for the primal arm originating at .

replaced by Cy.
For vertical crossings we may adapt the proof of Proposition [£.3.9] to obtain

PI(Cy(f(Ban,n))] = P5[Ce(Bran)] > 6, (4.5.5)

where f is any translation and §” = ¢”(e) > 0 is given by the box-crossing property for
IP’§ . The same inequality holds with C, replaced by C}. Inequalities ([I5.4]), (£54), along
with Proposition 1321 imply the box-crossing property for P. The same is valid for the
dual measure P*.

We now come back to the proof of (£5.2). Since P and P* satisfy the box-crossing
property, we may use the separation theorem. Fix n = n(k) > 0, so that (231 holds,
and let I be a n-landing sequence of length k. It will be convenient to introduce the
notation A’(n) for the event A(n) with the additional requirement that the k arms are
fences with landing points in I. The definition is similar to that of AE’I(N ,n), and by a
straightforward adaption of the separation theorem, there exist ¢; > 0 such that, for N

large enough,

P[AL(N)] < ctP[AL(N)]. (4.5.6)

130



4.5. Universality of arm exponents

Moreover, by the separation theorem, for n > N large enough,
P[AL?(2N,n)] < cP[Ax(2N,n)]. (4.5.7)

Fix N = N(e, k) such that both (£5L6]) and (£57) hold. Let Hy be the event described in
the right diagram of Figure by the thin paths. It only depends on the configuration
inside A(N,2N). For n large enough, we have

AL(NYN AL(2N,n) N Hy C Ai(n)

Finally, by the box-crossing property for P and P*, we bound the probability of Hy by a
constant cz(e, k) > 0, and by Lemma 233l

P [Ag(n)] > P [AL(N)] P [AL(2N,n)] P[Hy] > cicocsP [Ax(N)] P[Ax(2N,n)].

A careful inspection of the local properties of the lattice shows that there exists ¢4 =
cy (€, k) such that
P [Ak(N)] > cy.

This concludes the proof of ([E5.2]).

The proof of ([A53)) is exactly similar to that of Corollary and uses inequality
(50 along with a construction using box-crossings. We do not give further details
here. ]
4.5.4 Proof of Proposition [4.5.4]

The proof of the universality of the box-crossing property was based on a technique that
transforms one of these lattices into the other while preserving primal and dual connec-

tions. The same technique will be used here to prove the following results.

Proposition 4.5.4. Fiz k € {1,2,4,6,...} and € > 0. There exist constants c1,co,ng > 0
such that, for p € [0,1)3, self-dual, with po € (e,1 —€), and n > ng,

(o,1—po)

The above is enough to prove Theorem T4 for M. In order to extend the theorem

to M7 we need a similar statement for highly inhomogeneous models.

Proposition 4.5.5. Let p € (¢,1 —¢) and q,q’ € [0,1]% be such that

KA (D, Gns @) = 0, forn € Z. (4.5.8)

For any k € {1,2,4,6,...} and there exist ¢c;;n1 > 0, depending only on € and k, such
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that, for all n > nq,

coﬂbﬁq’q/ [Ak(n)] < PG, [Ak(n)] < clpﬁqg, [Ar(n)] (4.5.9)
Pl o [Ak(n)] <P [Av(n)] < a2 o [Ak(n)] . (4.5.10)

At the end of the Section we will give the proof of Proposition [£54 The similar
proof Proposition [15.5] is omitted. Before we do this, let us prove Proposition 5.1 using
Propositions [£.5.4] and [£.5.7]

Proof of Proposition [{.5.1] This is done in several steps.
We say a measure P satisfies [L5.IT)) if there exist constants c1,ce,ng > 0 such that,

for n > ng

cl]P’g [A)(n)] <P[Ak(n)] < CQ]P)E’ [Ak(n)] . (4.5.11)

1
2

A

Fix € > 0. By Proposition €.5.4] ]P’(l p1p2) satisfies (LEII]) for all py,py € [0,1] such
27 I
A

that /@A(%,pl,pg) = (0. By Proposition €:5.3], so does P(php%%)

Through another application of Proposition 45.4], ]P(Dpl,l_pl) satisfies (L5.I1)) for all
p1 € (6,3). By [@EE2), we have proved {@5I) for the models of M(e) on the square
lattice. A third application of Proposition 5.4} together with ([@5.2]), extend (@51 to
all models in M (e).

We use ([£59]), along with (£5.2)), to deduce (£51]) for models in M;(€) on the square
lattice, and, via (L510) and [@5.2]), we extend ([@5T) to all models in My(e).

Note that all constants in the comparison inequalities above come from Propositions

53 54 and E5.5 and only depend on e. O

The proof of Proposition [15.4] relies on the following lemma, in which the measure
P, is utilized within the star-triangle transformations comprising the map 7. Let k €
{1,2,4,6,...}.

Lemma 4.5.6. Let L = (V,E) be a mized lattice as defined in Section [{.5.3, and let Py
be a self-dual measure on Q = {0,1}¥. Forn/v/3>k+2 and 7€ {SToT+, S~ oT},

T/_lﬂ,;(n) - flgﬂ‘(n -1).

The proof of the lemma is deferred to the end of this section. Let p be self-dual, with
po € (6,1 —¢€). Let ¢ and Ny be as in Proposition 53] By making n applications of
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4.6. Proofs of Theorems[{.1.9 and[].1.3

7 =8t oT* to L%, we deduce that T”AH,;O (2n) C AY" (n). Therefore, for n > Ny,
Py, 1—po) [ Ak (0)] = Pp[ Ak (n)]
> PY[A(2n)] by Lemma @56

= P& [Ax(2n)]
> PR [Ak(n)] by EE3) .

This proves the first inequality of Proposition 5.4l

Fix n > max{kv/3, N1}, and consider the event Aj(n) on the lattice L". If we apply n
times the transformation S~ o7~ to ", we obtain via Lemma applied to the event
Ag(2n) that:

BY 1oy [Ar(n)] = BA[A(n)

(po,1—po
< ¢ 'PhlAk(2n)] by @E3)
< c_llP’g[Ak(n)] by Lemma 5.6
= ¢ 'Po[Ak(n)].

Proposition 541 is proved.

Proof of Lemma[].5.06 Let k € {1,4,6,...}, we shall consider the case k = 2 separately.
Let 7 € {SToT*, S~ oT "} and w € AF(n). Note that the points z,, r = 0,1,..., are
invariant under .

It is explained in Section (see also Section B.2.2)) that the image 7(m) of an w-
open path 7 contains a 7(w)-open path of 7L lying within distance 1 of 7. Therefore, for
n/V3 > 2r + 2, if O, (w) NOA, # @, then Cp, (7(w)) NOA,_1 # @. The proof when
k = 1 is complete, and we assume now that k > 4. Let j = k/2 and n/v/3 > k + 2. By
Proposition [£5.2] =, m zs for 0 <r < s<j—1, whence 7(w) € ATM(n — 1).

Finally, let k = 2. Let 7 € {StoT% S~ o T~} and w € A¥(n). Let v (respectively,
~*) be an open primal (respectively open* dual) path starting at xo (respectively yg), that
intersects dA,,. Since xy and yy are unchanged under 7, they are contained, respectively,
in 7() and 7(7*). By the remarks in Section concerning the operation of 7 on open*
dual paths, we conclude that C,, N 0A,_1 # @ in 7L, and similarly C;O NOA,_1 # D in
TIL*. The proof is complete. O

4.6 Proofs of Theorems 4.1.2] and [4.1.3

Since ]P’pAq o is increasing in q and q’, and since the non-existence of an infinite component
is a decreasing event, Theorem [LT.2|(a) follows from Proposition ZTTIIb).

Turning to part (b) of Theorem ELI.2 assume ([I2) holds with § > 0. Let ¢ = 16
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Universality for inhomogeneous lattices: a first approach

and note from ([@I2]) that p, gy, q), <1 — € for n € Z. Therefore, p+€,q, +€,q, +€ < 1
for all n, and
Ea(p+eanteq,+e) <0, ne

By Theorem 1.1l and the monotonicity of measures, the measure of the dual process,

O
]P)l—p—e,l—q—e,l—q’—e’

2IT(c) with v =e.
Assume finally that (ZI3) holds with 6 > 0. Let e = £ min{d, p} and write

has the box-crossing property. The claim follows by Proposition

J’_

7 =max{z,0}, T ==zl

Then
ka(p—" (= (¢, =€) >0, neZ

By Theorem 1.1l and the monotonicity of measures, the associated product measure on
the triangular lattice has the box-crossing property. By Proposition ZZT2(b) with v = €
we have that P5 g g is supercritical. By monotonicity of measures, P, o is supercritical
as claimed.

The same arguments are valid for the hexagonal lattice.

Finally, consider Theorem T3] and assume [EI1.4). Let v, = (1—¢,—¢,)/2, and apply
Theorem .T.T] to the self-dual measure ]P’E tuq v Part (a) then follows by Proposition
2IT(b). The proofs of (b, ¢) hold as for the triangular lattice.
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Chapter 5

Universality for isoradial graphs

5.1 Results

We recall the notation G(e, I) for the class of isoradial graphs with the bounded-angles
property BAP(¢e) and the square-grid property SGP(I) (Section B]). The main technical
result of this chapter is the following. Criticality and universality will follow.

We recall from Section the fact that, for isoradial graphs, we write BXP(J) for
BXP(3,9).

Theorem 5.1.1. For e >0 and I € N, there exists 6 = §(e,I) > 0 such that if G satisfies
BAP(e) and SGP(I), Pg satisfies BXP(0)

Note that, if G € G(¢,I), then G* € G(¢, I) also. The following criticality result follows
by Propositions 2.1 and

Theorem 5.1.2 (Criticality). Let G = (V,E) € G(e,I), and let v > 0. All constants in

the following depend only on €, I and v, not otherwise on G.

(a) There exist a,b,c,d > 0 such that, for v eV,

ak™" < Pg(rad(Cy) > k) < ck™?, k> 1.

(b) There ezists, Pg-a.s., no infinite open cluster.

(¢) There exist f,g > 0 such that, forv eV,

P (ICol 2 k) < fe ', k>0

(d) There exists h > 0 such that, for v €V,

Pé(v > 00) > h.
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e) There exists, P -a.s., exactly one infinite open cluster.
G
Our universality theorem is presented next.
Theorem 5.1.3 (Universality).

(a) Let m € {p} U{pej:j >1}. If m exists for some G € G, then it is G-invariant.

(b) If either p or n exists for some G € G, then p, n, § are G-invariant and satisfy
(C52).
(¢) If p and p4 exist for some G € G, then v, 3, v and A are invariant in the set of

graphs of G which are periodic and invariant under rotation and reflection. Also the

exponents satisfy (LE3).

Point (a) will be proved in Section (4l Points (b) and (c) of the above are direct
consequences of (a) and of Theorems 24T and 2571

Finally, we make some comments on the proofs. There are two principal steps in the
proof of Theorem BTl Firstly, using a technique involving star—triangle transforma-
tions, the box-crossing property is transported from the homogeneous square lattice to an
arbitrary isoradial embedding of the square lattice (with the bounded-angles property).
Secondly, the square-grid property is used to transport the box-crossing property to gen-
eral isoradial graphs. This method may be used also to show the invariance of certain
arm exponents across the class of such isoradial graphs, as in Theorem BE.I1.3] (a). The
basic approach is similar to that of Chapter dl but the geometrical constructions used
here differ in substantial regards from the previous. The following use of the star—triangle

transformation is inspired by work of Kenyon [Ken04].

5.2 Proof of Theorem B.1.1k Isoradial square lattices

5.2.1 Outline of proof

The proof for isoradial square lattices is based on Proposition (.2.1] below. We recall from
Section B.I.7 the notation G ¢ for the isoradial square lattice generated by the sequences
of angles ar, 3. For £ € [0,27), we write G ¢ for the isoradial square lattice generated by

the angle-sequence a and the constant sequence (&).

Proposition 5.2.1. Let §,¢ > 0. There exists &' = §'(d,¢) > 0 such that the following
holds. Let Go g be an isoradial square lattice satisfying BAP(€), and let £ € [0,2m) be such
that o and the constant sequence (&) satisfy BAP(e), BII2). If Ga ¢ satisfies BXP(6),
then G g satisfies BXP(d').

Corollary 5.2.2. Let € > 0. There exists 6 = 0(e) > 0 such that every isoradial square
lattice satisfying BAP(€) has the boz-crossing property BXP(J).
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5.2. Proof of Theorem [L11: Isoradial square lattices

Since G(e, 1) is the set of isoradial square lattices satisfying BAP(€), the corollary is
equivalent to Theorem BT with I = 1.

By Lemma[3.T.5] Proposition 5.2 follows from the forthcoming Propositions 5.2.4] and
(.28 dealing respectively with horizontal and vertical crossings. Both these propositions

rely on a technique called track-exchange, which we present in Section [£.2.2

Remark 5.2.3. The material in Section B.24] and specifically Proposition B.2.8, may be
circumvented by use of Theorem [Z.1.T] where the box-crossing property is proved for highly
inhomogeneous square lattices. We do not take this route here since it would reduce the
integrity of the current proof, and would require the reader to be familiar with the method
of Chapter @l

Here is an outline of the alternative approach. An isoradial square lattice G ¢ satis-
fying BAP(e) has the measure of a highly inhomogeneous square lattice of Mj(p¢). By
Theorem 1.T] such a lattice has the box-crossing property. Moreover, the box-crossing
property is equivalent in the isoradial and the Z? embedding (with ¢ differing by a factor
bounded uniformly in €, see Propositions B4l and £.3.2]). By Proposition [5.2.4], horizontal
box-crossings may be transported from Gq ¢ to the more general isoradial square lattice
Ga,g- Similarly, by interchanging the roles of the horizontal and vertical tracks of G g,
we obtain the existence of vertical box-crossings in that lattice. Such crossing probabilities
are now combined, using Proposition B.1.4] to obtain Theorem E.I.1] for G(e, 1).

Proof of Corollary[5.Z2. Let € > 0 and let G g satisfy BAP(e).

First, assume that one of the two sequences «, 3 is constant. Without loss of generality
we may take a to be constant, and by rotation of the graph, we shall assume o = 0. There
exists 0 > 0 such that the homogeneous square lattice G/, satisfies BXP(d) (see, for
example, [Gri99, Sect. 1.7]). By Proposition B2l with £ = 17, G4 g satisfies BXP (') for
some &' = 0'(d,¢) > 0.

Consider now the case of general a, 8. By the above, G g, satisfies BXP(d'). By
Proposition B2l with § = Sy, Ga g satisfies BXP(8”) for some ¢ = §"(',€) > 0. O

The following is fixed for the rest of this section. Let ¢ > 0, and let «, 3 be sequences of
angles satisfying BAP(¢), (B.112]). Let £ be an angle such that a and (§) satisfy BAP(e),
(BI12). All constants in this section may depend on €, but not further on «, 3, £ unless

otherwise stated.

5.2.2 Track-exchange in an isoradial square lattice

Let G be an isoradial square lattice. The tracks of G are to be viewed as doubly-infinite
sequences of rhombi with a common vector. In this section, we describe a procedure for
interchanging two consecutive parallel tracks.

Consider a vertical strip G = G g of the square lattice, where o = (a; : =M < i < N)
and B = (B; : j € Z) are vectors of angles satisfying BAP(e), (B1.12)). Thus every finite
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B g o

Figure 5.2.1: A new rhombus is introduced on the left (marked in green). This is then ‘slid’
along the pair of tracks by a sequence of star—triangle transformations, until it reaches the
right side where it is removed.

face of G has circumradius 1. There are two types of tracks in G, the finite horizontal
tracks (s;), and the infinite vertical tracks (¢;). We explain next how to exchange two
adjacent horizontal tracks by a sequence of star—triangle transformations, employing a
process that is implicit in [Ken04]. Track s; has transverse angle (3;, as illustrated in
Figure BT and the ‘exchange’ of two tracks may be interpreted as the interchange of
their transverse angles.

We write X; for the operation that exchanges the tracks at levels j — 1 and j. When
applied to G, ¥; exchanges s;_1 and s;, and we describe X; by reference to GC. If
Bj = Bj—1, there is nothing to do, and ¥, interchanges the labels of the tracks without
changing the transverse angles. Assume 3; > 3;_1. We insert a new rhombus on the left
side of the strip formed of s;_; and s;, marked in green in Figure B2l This creates a
hexagon in G, containing either a triangle or a star of G. The star—triangle transformation
is applied within this hexagon, thereby moving the new rhombus to the right. By repeated
star—triangle transformations, we ‘slide’ the new rhombus along the two tracks from left
to right. When it reaches the right side, it is removed. In the new graph, the original
tracks s;_; and s; have been exchanged (or, more precisely, the transverse angles of the
tracks at levels j — 1 and j have been interchanged). Let ¥; be the transformation thus
described, and say that X, ‘goes from left to right’ when §; > §;_1. If 8; < B;_1, we
construct ¥; ‘from right to left’.

Viewed as an operation on graphs, ¥; replaces an isoradial graph G' by another isoradial
graph ¥;(G). It operates also on configurations, as follows. Let w be an edge-configuration
of G, and assign a random state to the new ‘green’ edge with the distribution appropriate
to the isoradial embedding. The star-triangle transformations used in ¥; are independent
applications of the kernels T" and S of Figure The ensuing configuration on X;(G)
is written ¥;(w). Thus ¥; is a random operator on w, with randomness stemming from
the extra edge and the star-triangle transformations. Note that ¥; is not a local trans-
formation, in that the state of an edge in ¥;(G) depends on the states of certain distant
edges.

Let o; denote the permutation that exchanges the j — 1 and jth terms of a sequence.
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Initial Principal Secondary Probability
configuration outcome outcome of secondary

? =~ N

EAVAN
ERry EOLL L L
AL LY e
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Pr—09P05—0;

n / M / p92p7r—92+91
o, / / \/\ DPr—69P09—6;

TRy OLL] DL e

p91p92 6,

Figure 5.2.2: The six possible ways in which v may intersect the strip in two edges
between height j — 1 and j + 1, and the corresponding actions of ¥;. In five cases, the
resulting configuration can be non-deterministic. If the dotted edge is closed, the resulting
configuration is in the second column. If it is open, the resulting configuration is that of
the third column with the given probability (recall from B3] that pr_o =1 —p,). The
movement of black vertices can cause the height increases marked in blue. The tracks s
are drawn as horizontal for simplicity, and 01 = ' — auy,, 02 =  — a4y, where vy, j denotes
the black vertex, and 8'/f is the transverse angle of the lower/upper track.
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Initial Resulting

Vg
N

Resulting

Figure 5.2.3: If an endpoint of ~ lies between the two tracks, the corresponding edge is
sometimes contracted to a single point.

We may write

Ej(Gaﬂa Paﬂ) - (Ga,ajﬂa Pa,crjﬂ)'

When applying the ¥; in sequence, we distinguish between the label s; of a track and its
level. Thus, 3; interchanges the tracks currently at levels j — 1 and j.

We consider next the transportation of open paths. Let w be a configuration on G g,
and let v be an w-open path. The action of a star—triangle transformation on -y is discussed
in detail in Section The transformation ¥; comprises three steps: the addition of
an edge to G g, a series of star-triangle transformations, and the removal of an edge.
The first step does not change ~, and the effect of the second step is discussed in Section
and the following paragraphs. If the removed edge is in the image of the path ~ at
the moment of removal, we say that ¥; breaks . Thus, ¥;(v) is an open path of 3;(G)
whenever 3; does not break v. In applying the 3;, we shall choose the strip-width M + N
sufficiently large that open paths of the requisite type do not reach the boundary, and
therefore are not broken.

Finally, we summarise in Figures the action of X; on the path ~, with M
and N chosen sufficiently large. Consider two tracks s, s at respective levels j — 1 and j,
with transverse angles 8’ and 3. Edges of « lying outside levels 7 — 1 and j are unchanged
by ¥;. The intersection of v with these two tracks forms a set of open sub-paths of length
either 1 or 2; there are four possible types of length 1, and six of length 2. We do not
describe this in detail, but refer the reader to the figures, which are drawn for the case
B > 3. The path v may cross the tracks in more than one of the diagrams on the left of
Figure 3.2.2] and the image path contains an appropriate subset of the edges in the listed
outcomes. Note that, if the intersections of v with s and s’ are at distance at least 2 from
the lateral boundaries, then X; does not break -,

In the special case when = ', ¥, interchanges the labels of s’ and s but alters
neither embedding nor configuration. In this degenerate case, we set ¥;(v) =, and note
that Figure remains accurate.
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5.2.3 Horizontal crossings

We recall from Section B.I.7 the notation B(M, N) for the subgraph of an isoradial square
lattice induced by the vertices {v; j : —M <i < M,0<j < N}.

Proposition 5.2.4. There exist A\, Ng € N, depending on € only, such that, for p € N and
N > NO;

Pos(Cu[B((p — )N, AN)])
> (1—pe” N)]P’Q,S(Ch (pN,N)))
X Pag(Cy[B(=pN —( —1)N;0,N)])
X Pae (Cy[B((p N,pN;0,N)]).

Proof. We shall make repeated track-exchanges to transform G, ¢ into G g, while main-
taining the existence of an open path of requisite type.
Fix p € N with p > 1, and A\, Ny € N to be chosen later, and let N > Ny. Let

- £ if j < N,
Bj =
Bj-n ifj > N.

We refer to the part of G = Ga,B above height N as the irreqular block, and that with
height between 0 and N as the reqular block. The regular block may be viewed as part
of G, and the irregular block as part of Go 3. We will only be interested in the graph
above height 0.

We work on a vertical strip {v; j : =M < i < M} of G with width 2M, where
M = (p+2X\+1)N, (5.2.1)

and we truncate a to a finite sequence (a; : =M <i < M —1).
We will work with graphs obtained from G by a sequential application of the transfor-
mations ¥; of Section .2.2] and to this end we let

Uk = Zk o Zk+1 ©--+0 ZN+k—17 k > 1. (5.2.2)

Note that U, moves the track at level N + k — 1 to level k — 1, while raising the tracks
at levels k —1,...,N + k — 2 by one level each (see Figure (.24]). We propose to apply
U,Us, ..., Uy to G in turn, thereby moving part of the irregular block beneath the
regular block.

Let En be the event that there exists an open path of G within B(pN,N), with
endpoints vz, ¢ and vy, o for some zg € [-pN,—(p — 1)N] and z; € [(p — 1)N, pN]. By
the definition of ,@, B(pN,N) is entirely contained in the regular block of G. By the
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YN4h—1
V_pN,N+k—1 R
’ 32N+k—2
3Ek+1
hy
V_pN K k

V_
PN»O UCC(),O /Uxh()

Figure 5.2.4: The transformation Uy, raises the (shaded) regular block by one unit, and
moves the track above by N units downwards.

Harris—FKG inequality,

P, 5(En) > Pag(CulB(pN, N)]) (5.2.3)
X Pa,§ (CV[B(_pN7 _(p - 1)Na 07 N)])
X Pove (Cy[B((p = 1)N, pN; 0, N)]).

Let w® be a configuration on G, chosen according to Pg. For k € N, let G* = G and
GF=Upo---oU)(G), wF=Upo-- olUyw).

The family (w* : k& > 0) is a sequence of configurations on the G* with associated law
denoted P. Note that P is given in terms of the law of w’, and of the randomizations
contributing to the U;. The marginal law of w* under P is Pgs.

For w® € Ey, and let 4° be a path in B(pN, N) with endpoints v, o and vy, ¢ for some
z9 € [-pN,—(p — 1)N] and 21 € [(p — 1)N, pN]. Let ¥¥ = Up o --- 0o Uy(7°). The path
evolves as we apply the Uy sequentially, and most of this proof is directed at studying the
sequence 7, vt . MY,

First we show that the path is not broken by the track-exchanges. For 0 < k < AN,

set
DF = {v,, € (G 1|z < (p+ )N +2k—y, 0<y < N +k}.

The proof of the following elementary lemma is summarised at the end of this section.
Lemma 5.2.5. For 0 <k < AN, +* is an open path contained in D*.
The set {vy 0 : © € Z} of vertices of G° is invariant under the Uy, whence the endpoints

of the ~* are constant for all k. It follows that the horizontal span of vV is at least
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2(p—1)N.

If v*V has maximal height not exceeding AN, then it contains a w*-open horizontal
crossing of B((p — 1)N,AN). The graph G agrees with Gq g within B((p — 1)N, AN),
SO

Pe,s(Cu[B((p — )N, AN)]) = P(h(+™V) < AN | Ex)P(EN).

By ([&23]), it suffices to show the existence of A\, Ny € N such that,
P(A("™) < AN |w®) >1—pe™™, N> Np, o’ € Ey, (5.2.4)

and the rest of the proof is devoted to this. The basic idea is similar to the corresponding
step of Chapter @] (Proposition E3.8]), but the calculations are more elaborate.

Let w” € Ey and let 4° be as above. We observe the evolution of the heights of the
images of 'yo within each column. For n € Z and 0 < k < AN, set

Cp={vny:y€Z}, hE= h(v*NCa) iy NC # 2,
n — n,y * s —

n
—00 otherwise.

Thus, h(yM) = sup{h)V : n € Z}.

The process (hﬁ :n € Z), k=0,1,...,AN, has some lateral drift depending on the
directions of the track-exchanges ¥;. We will modify it in order to relate it to the growth
process of Proposition 3.8l The track above the regular block is transported by Uy
through the regular block, and thus all ¥; contributing to Uj, are in the same direction.
Let (di : k > 0) be given by dyp = 0 and

di+1 = 9 dj, if B = ¢,
and set HY = h2+d,€' The rest of the proof is devoted to the process H* = (HF : n € 7),
kE=0,1,...,AN.
We introduce some notation to be used in the proof. A sequence R = (R, :n € Z) €
(Z U {—o0})? is termed a range. The height in column n of R is the value R,, and the
height of the range is sup{R, : n € Z}. For two ranges R', R?, we write R! < R? if
RL < R? for n € Z. The mazimum of a family of ranges is the pointwise supremum

sequence. The range R is called reqular if
|Rny1 — Ryl <1, n € Z. (5.2.5)

The mountain at a point (n,r) € Z? is defined to be the range M(n,r) = (M (n,r); :
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[e] [e]
o [ ] o o [ ] o o o o
[e] [e] [ ] o o o [ ] [ ] [ ] [ ] [ ] [ ] o
[e] (@] [e] [ ] o o o o [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] o

Figure 5.2.5: Left: One step in the evolution of H. The initial range H? has only one
occupied column (black). The blue/black squares form the mountain of the black column.
The red square is added at random. Right: One step in the evolution of the X* (or H*
when regular). The black squares are the configuration at step k, the blue squares are the
additions at time k -+ 1 due to the covering, and the red squares are the random additions.

l € Z) given by

—|n—=I+1 forl+#n,
M(nar)l: " ‘ ‘ ?é

r for [ = n.

Note that mountains have flat tops of width 3 centred at (n,r), and sides with gradient
+1. The covering of a range R is the range C'(R) formed as the union of the mountains
of each of its elements:

C(R) =max{M(n,R,):ncZ}.

We note that R < C(R) with sometimes strict inclusion, and also that R and C(R) have
the same height. If R is regular, the heights of R and C'(R) in any given column differ by
at most 1. See Figure for an illustration of these definitions. We return to the study
of (HF).

Lemma 5.2.6. There exists n = n(e) € (0,1), and a family of independent Bernoulli
random variables (Y,¥ :n € Z, 0 < k < AN) with common parameter 1 such that

HM < max{C(H"),, H* + Y}, neZ 0<k<AN. (5.2.6)

The (Y*) are random variables used in the star-triangle transformations, and the
probability space may be enlarged to accommodate these variables.

The proof of the lemma is deferred until later in the section. Meanwhile, we continue
the proof of (5.2.4]) by following that of Proposition E3.8. Let (Y;¥) be as in Lemma [5.2.6]
and let X¥ := (XF:n€Z), k=0,1,..., AN, be the Markov chain given as follows.
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(a) The initial value XY is the regular range given by

N for n € [-pN, pN],

Xy =
N+ pN —|n| for n ¢ [-pN,pN].

(b) For k > 0, conditionally on X*, the range X**! is given by

XFH — max {Xj;_l, Xk 1 yk X,’;fﬂ} . neZ (5.2.7)

We show first, by induction, that X* > HF for all k. It is immediate that X is regular,
and that X° > H°. Suppose that X*¥ > H*. By (5.2.7)), each range X" is regular and

X > oxk) > oHP). (5.2.8)
By (5Z6), H¥! > C(H*),, only if V¥ = 1. Since X > HF we have in this case that
XMl>xk 1>k 41 =g (5.2.9)

By (23)-GE23), X+ > H*! and the induction step is complete.

The X* are controlled via the following lemma.

Lemma 5.2.7. There exist A\, Ny € N, depending on n only, such that
P (maxXn)‘N < )\N) >1—pe ™, peN, N> N,
n

Sketch proof. 1t is very similar to that of Lemma 3Tl A small difference arises through

the minor change of the initial value X, but this is covered by the inclusion of smaller-

order terms in (L33T). O

Let A and Ny be given thus. For N > Ny and w° € Ey,

P (h(ny) <AN| w0> > P <m3x XMW < )\N)

zl—pe_N.

This concludes the proof of Proposition [£.2.41 O

Proof of Lemma[Z2Z8. Let k > 0 and let w be a configuration on G*. Let v be an open
path on G* that visits no vertex within distance 2 of the sides of G* and with h(y) < N+k.
We abuse notation slightly by defining H* and H**! as in the proof of Proposition [.2.4]

k+1

with v and Uy (7) instead of 4% and v**1, respectively. That is,

HY = h(yNCpia,): HET =0Uki1(7) NCiayyy), nEZ.
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We will prove that there exists a family of independent Bernoulli random variables (Y}, :
n € Z), independent of w, with some common parameter 7 = n(e) > 0 to be specified
later, such that

HFY < max{C(H"),,H: +Y,}, neZ. (5.2.10)

Once this is proved, the i.i.d. family (Y,¥ : n € Z, 0 < k < AN) may be constructed
step by step, by applying the above to the pair w*, v¥ for 0 < k < AN. By Lemma [5.2.5]
the assumptions on v are indeed satisfied by each v*. By the independence of (Y}, : n € 7Z)
and w above, the family (Y;* : n, k) satisfies the conditions of the lemma.

It remains to prove (B2I0) for fixed k. If B = &, no track-exchange takes place,
hence H**! = H* and (5.Z10) holds. Suppose 8 # €. Without loss of generality we
may suppose [ > £, so that dp.1 = di + 1 and the track-exchanges in the application of
U := U1 are all from left to right. To simplify notation we shall assume dj = 0.

Equation (5210)) is proved in two steps. First, we will show that

HMY < max{HF . —|i|+1:ie7}. (5.2.11)

This equation is a weaker version of (0.ZI0) in which each Y}, is replaced by 1.

We prove (5.2.17]) by analysing the individual track-exchanges of which U is composed.
For k<j<N+klet ¥;=%;,10---0Xysi Thus, Uxny is the identity, ¥;, = U, and
W;_1 = XjoW,. Recall that the diamond graph is bipartite, with the primal and dual
vertices as vertex-sets. A vertex vy, is said to be contained in a range R if r < R,,. A set
of vertices is contained in R if every member is thus contained.

Let the sequence (L7 : j = N +k,N +k —1,...,k) of ranges be defined recursively

LY+F = H*. We obtain L~ from L7 by increasing its height in certain

as follows. First,
columns: for each primal vertex v, ; contained in L/, the heights in columns n 4+ 1 and
n + 2 increase to j + 1 and j, if not already at that height or greater.

We claim that ¥;(v) is contained in L’ for N 4+ k > j > k, which is to say that
W¥;(v)NC) < LY,  nei (5.2.12)

The above holds for j = N + k by the definition of LN** and we proceed by (decreasing)
induction on j as follows. The path W,_;i(v) is obtained by applying ¥; to ¥;(v), as
illustrated in Figure Possible increases in column heights are marked in blue. Since
the black vertices in Figure [5.2.2] are contained in L7, the blue ones are contained in L7~
This concludes the induction.

Therefore, U(y) = Wx(7) is contained in L*, and hence inequality (5.2.11)) follows once

we have proved that

L <max{HF_, —|i|+1:i>—1}. (5.2.13)
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° ° °
s| e e|o| e e |o| e e | o | e
o o|e]| o o|le|o| e o|le|o| e
—> —> B —
° e|o| e e |o|e|oO e|o|e|o| e
o o| e o o|le|o| e o|le|o|e|o| e
0 0 1 2 0 1 2 3 01 2 3 4 5

Figure 5.2.6: An illustration of the sequence INJ(O, s)j beginning with the initial column
L(0,s)N** = A(0,s). This column is unchanged up to and including j = s, and then it
evolves as illustrated.

This we shall do by observing that the sequence (L7) is, in a certain sense, additive with
respect to its initial state. We think of LN¥** as a union of columns, each of whose
evolutions may be followed individually.

Let r,s € Z be such that s < N + k and r + s is even, so that v,, is a primal

vertex. Let A(r,s) be the range comprising a single column of height s at position 7.

Consider the sequence (L(r,s)’) with the same dynamics as (L) but with initial state
L(r, s)N*t* = A(r, s). The evolution of L(r, s) is illustrated in Figure 526l We have that

L(r,s)) = A(r,s) for N +k > j > s and, for s > j > k,

-0 ifm<rorm>r+s—75+1,
L(r,s)) =< s if m=r,

s—(m—-r)4+2 ifr<m<r+s—j+1
The range L7 is obtained by combining the contributions of the columns of H*, in that
L= max{i(r, HFY o r e Z} ., N+k>j>k (5.2.14)

A rearrangement of the above with j = k implies (5.2.13)); (5.2.I1)) follows by extending
the maximum in (E.2I3)) over i € Z.
Let n € Z be such that

HE+1<max{HF , —|i|+1:ie€Z\{0}}. (5.2.15)

Then (5.2.I1) implies HET! < C(HF),,, whence (5:210) holds for this particular value of

n.

It remains to prove (B.2.I0) when (5.2.15) fails. Assume n does not satisfy (E2.15), so
that (G2ZI1) implies HE*! < H¥ + 1. We shall prove that

HFY < HY 4V, (5.2.16)
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Cn Cn+1

Figure 5.2.7: The environment around v, ;. By (BZIR), the black blocks contain HP.
The range L!, and hence the path W;(7), is contained in the aggregate range shown. The
height in C, 11 increases only if the red block appears when applying ;.

where the Y,, are independent Bernoulli random variables with respective parameters

_ Pr—¢tanPr—pp+€
pg_anp/jk_f

Me(n) : (5.2.17)

(with pp given in (313])), and which are independent of w.
Let | = Hﬁ We first analyse the action of ¥; = ¥;,10---0Xn4k, and then that of 3.
The vertex vy, is necessarily primal. Since (G.2ZI5) fails,

HY . <i+i—-1, iez\{o}.
Since each v, _;;1;—1 is a dual vertex, we have the strengthened inequality
HFY <i1+i| -2, ieZ\{0}. (5.2.18)

See Figure B.2.7] for an illustration of the environment around v, ;.

By (£.2.12), and (5:2I8)) substituted into (G214,
hUy() NCri) < LL ; <1+i,  i>-1 (5.2.19)

Note that ¥; is the final track-exchange with the potential to add vertices to the path at
height [+ 1. Hence, H¥*' = [+ 1 only if v, 11,41 is contained in ¥;_1(v), or, equivalently,
only if the height in C,,41 increases to [ + 1 when applying 3; to ¥;(7).

By (5219]) with i = 0, 1, the only cases in which this may happen are those of the third
and sixth lines of Figure (with vy, ; the black vertex). (See Figure B.Z8] for a more
detailed illustration of the third case.) Moreover, the height in C,,41 increases only if the
secondary outcome occurs. In both cases, the secondary outcome occurs with probability

ni(n) if the edge e = (v, 1, Up41,41) is open, and does not occur if e is closed. We therefore
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Un+1,1+1
[+1
‘ i

l
Q
Cn

............

Figure 5.2.8: The third case of Figure If the dashed edge in the initial configuration
(left) is open then, with probability nx(n), the resulting configuration is that on the right
side.

provide ourselves with a Bernoulli random variable Y,,, with parameter n(n), for use in
the former situation. We have that H ™! = H¥ 4 1 only if V,, = 1, and (52Z10) follows.

Let A=¢ — a, and B = f; — &. By (0.2.17),

_ DPr—ADr—-B SlH(%A) SIH(%B)
Uk(n) - - .1 .1
PAPB sin(z[m — A]) sin(z[7 — B])
cos(:[A — B]) — cos(2[A + B])
= T 3 T 3 =:g(A, B).
cos(5[A — B]) — cos(3[2m — A — B])
By assumption, B > 0, and so by I12),
e<A<A+B<m—e (5.2.20)

There exists c(€) > 0 such that, subject to (B2.20),
cos(3[A — B]) > cos(3[A + B]) > cos(3[2mr — A — B]) + c(e).

Therefore,
n::sup{g(A,B):ESASA—FBSW—E}

satisfies < 1, and this concludes the proof of the lemma. O

Proof of Lemma 523, We sketch this. Since B(pN, N) C D°, we have that 4° C D°. Tt
suffices to show that, for 0 < k < AN and v an open path in D*, U, does not break v and
Uy(y) € DM

By considering the individual track-exchanges of which U}, is composed, it may be seen
that W,;(7) is an open path contained in D¥*1 for all j (with W; = ;1 0 W, ; as in the
last proof). In considering how W;(y) is obtained from W, (7), it is useful to inspect
the different cases of Figure 5.2.2] and in particular those involving blue points. The path

may be displaced laterally and, during the sequential application of track-exchanges, the

149



Universality for isoradial graphs

[(w) 3 Y N—k+2
YN—k+1

Figure 5.2.9: The transformation Vj, moves sy_j upwards by N units.

drift may be extended laterally as it is propagated downwards. The shapes of the D? have
been chosen in such a way that W;(y) is contained in DFF! for all j. The argument is

valid regardless of the direction of X;. O

5.2.4 Vertical crossings

Proposition 5.2.8. Let § = %pﬁ_e S (0,%). There exists cy = cn(0) > 0 satisfying

cy — 1 as N — oo such that
Po,(Cy[B(4N,0N)]) > enPag(Cy[B(N, N))), N eN.

Proof. The notation of Section (.23 will be used. We work on the graph Ga,B of the proof
of Proposition [£.2.4] and use transformations ¥; to transport a vertical crossing from the
regular block to the irregular section.

Let N € N, and recall that G _ » is a vertical strip of the original graph G of width

a7B
2M. For this proof we take M = 5N. For k € {0,1,..., N — 1}, set

Vk = ZQN—k ©---0 EN—k—i—l' (5221)

The map V; exchanges the track at level N — k with the IV tracks immediately above it.

The sequential action of Vj, V1, ..., Vy_1 moves the regular block upwards track by track,
see Figure [£.2.91

Let w” be a configuration on G° := G, 3 chosen according to its canonical measure
Pa,B? and let

Gt =V, _j0---0 Vo(G,, 5)’
wk g Vk—l Q-+ 0 ‘/b(wo)’

Dk:{vx,yE(Gk)0:|ac| <N+2k+y, 0<y<2N},

k . Dk,w’C
h" = Sup{h < N :3dzy,29 € Z with vy, g +—— vm’h}.

150



5.2. Proof of Theorem [L11: Isoradial square lattices

That is, h* is the greatest height of an open path of G* starting in {vg,0 : v € Z} and
lying in the trapezium D*. The law P of the sequence (w* : k € Np) is a combination of
the law of w® with those of the star-triangle transformations comprising the Vj.

The box B(N,N) is contained in D°, and lies entirely in the regular block of GV.
The box B(4N,JN) contains the part of DYV between heights 0 and 6NV, and lies in the
irregular section of GV (§ < % is given in the proposition). Therefore, it suffices to prove

the existence of ¢y = ¢y (0) > 0 such that ¢y — 1 and
P(hN > §N) > enyP(h° > N). (5.2.22)

The remainder of this section is devoted to the proof of (G.2.22).

Let (A; : i € N) be independent random variables with common distribution
P(A=0)=20, PA=-1)=1-20. (5.2.23)

The A; are independent of all random variables used in the construction of the percolation

processes of this section. We set
k
H*=H+) A, (5.2.24)
i=1

where HY is an independent copy of h?, independent of the A;. The inequalities <y, >«

refer to stochastic ordering.
Lemma 5.2.9. Let 0 < k < N. If h* >y H*, then h*t1 >, HFHL.

Inequality (5.222)) is deduced as follows. Evidently, h° >4 H° and, by Lemma 529
N > HY. In particular,

P(hYN > 6N) > P(HY > 6N).

Since kY and H° have the same distribution,

P(hY > 5N)
P(h0 > N)

P(HN > §N)
P(H® > N)
> P(HYN > 6N | HY > N) =: en(6).

v

Now, (H*) is a random walk with mean step-size 25 — 1. By the law of large numbers,
ey — 1 as N — oco. In addition, ey > 0, and (5222]) follows. O

Proof of LemmaZ29. Let 0 < k < N. We apply Vi to G*, and study the effects of the
track-exchanges in V3. For N —k < j <2N —k,let ¥V; = ¥;0---0Xy_j41, and let D;?
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be the subgraph of ¥;(G*)¢ induced by vertices v, , with 0 <y < 2N and

N+2k+y+2 ify<j,
lz| < S N+2k+y+1 ify=j+1, (5.2.25)
N +2k+y ify >4+ 1.

The Df increase with j, and D* C D, Dk, , C D**+1,
Let wf = U, (w*) and

k kK

DFE Wk
hf = sup{h < N :3dzy,29 € Z with vy, o VERREN ng,h},

noting that
R < hko o RETI>pE (5.2.26)

First, we prove that, for N — k < j < 2N — k,

Wk >k, (5.2.27)
Wi 2 h5 ARy #j+1, (5.2.28)
P(hE, > h|hf=h)>25  ifh=j+1 (5.2.29)

Fix j such that N — k < j < 2N — k. Let v be an wf—open path of ¥;(G¥), lying in
Df, with one endpoint at height 0 and the other at height hf.

By consideration of Figure B.2.2] ¥;1(7) is a wé? ,1-open path contained in D;? +1- The
lower endpoint of « is not affected by ;1. The upper endpoint is affected only if it is
at height j + 1, in which case its height decreases by at most 1 (see Figure [.2.3]). This

proves ([0.2.27)) and (5.2.28)), and we turn to (5.2.29]).

Let P; be the set of paths «y of \Ilj(Gk), contained in D;?, such that there exists h > 0
with:
(a) v has one endpoint in {v, ¢ : x € Z},
(b) its other endpoint lies in {v,  : © € Z}, and
(¢) with the exception of its endpoints, all vertices of 7 have heights between 1 and h—1.
For « € P}, there is a unique such h, which equals its height h(7).
We perform a preliminary computation. Let v,7" € Pj. We write o/ < v if 4/ # 7,

h(y") = h(7), and +' contains no edge strictly to the right of v within {v,, :z € Z, 0 <
y < h(7)}. Note that

hf = sup{h(’y) iy €Pj, vis wf—open},
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and denote by T' = F(w;?) the wf-open path of P; that is the minimal element of {y € P; :
h(y) = h?, v is wf—open} with respect to the order <.
We have that

{F(wf) =~} ={yis wf—open} N N, v € Py, (5.2.30)

where NV, is the decreasing event that:

(a) there is no 4" € P; with h(y") > h(7y), all of whose edges not belonging to v are
w;?—open,

(b) there is no v < v with h(y') = h(y), all of whose edges not belonging to v are

w;?—open.

Note that N, is independent of the event { is wé?—open}.

Let F' be a set of edges of \Ifj(Gk), disjoint from ~, and let C'r be the event that every
edge in F'is wf—closed. Let IP’? denote the marginal law of w;? , and p. the edge-probability
of the edge e of ¥;(G*). By (5230) and the Harris-FKG inequality,

P*(Cr) (5.2.31)

where we have extended the domain of P to include the intermediate subsequence of

k_ )k k ko kit
W =WUN o WN k1 WoN—fp =W

Let v € P;j with h(y) = j + 1 and suppose F(w;?) = ~. Without loss of generality, we
may suppose that ¥,,1, applied to \Ilj(Gk), goes from left to right; a similar argument
holds otherwise.

Let z = v, j41 denote the upper endpoint of v and let 2’ denote the other endpoint of
the unique edge of 7 leading to z. Either 2’ = vy41; or 2 = v,_1 ;. In the second case, it
is automatic as in Figure that A(X,41(y)) > j+ 1.

Assume that 2’ = v,y j, as illustrated in Figure (210, and let F' = {e1, ez, e3,€4}

where

e = <'U;g7j+1,vx—1,j+2>7 €2 = <Uw—1,j+2,vw—2,j+1>’

e3 = (Ug—2j41,Vz—1j)s €4 = (Va1 Vz j+1),

are the edges of the face of W;(G*) to the left of 2. By definition of P;, F is disjoint from

7. By studying the three relevant star-triangle transformations contributing to ¥, as
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(FENE SNAY AR

Figure 5.2.10: Three star—triangle transformations contributing to 3;1, from left to right.
The dashed edges are closed, the bold edges are open. The first and last passages occur
with probability 1, and the second with probability pe,pe, /(1 — pe,) (1 — pe,)-

illustrated in Figure B.2.10] we find as in Figure B:2.2] that

. PeyPe
WM%HWD23+HF=7ﬁ2u_p3in)Wﬁﬂfzw
e eq
PeiPey
> P(Cr),
(1 = pe, ) (1 = pey)
by (.2.37]).
In summary, we have that
PeqPe
P(hf > hf [T =7)> Voo [T =pp) (5.2.32)
(1 _pel)(l _pe4) fer

= p61p84(1 - peg)(l _pe;g)
> pf‘r_ﬁ = 20,

by (BI4]). The proof of (5.2:29) is complete.

It remains to show that (B227)-(E229) imply the lemma. Suppose h* >y HF.
We shall bound (stochastically) the hf by a Markov chain, as follows. Let (X; : j =
N—Fk,...,2N —k) be an inhomogeneous Markov chain taking values in Ny, with transition

probabilities given by
Xjip=X;, if X;#5+1,
26 ifx=74+1,

PXjn=z|X;=7+1)=
1-925 ifz=j

One may construct a random variable Aj ,, with law given by (2.2.23)), independent of
XnN_#, such that Xony_ — Xy_p > A;c+1'

By (.220)-E229), for all j,
]P)(h?—i-l zm\hf:y)zP(XjH >z | X;=2), wzyz€Ny z<uy.

Let Xy_p = HF. By the induction hypothesis, HF < hF < hﬂ“v_k, whence Xon_p <t
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h5 . by Lemma [L3.7 iterated. Therefore,
REFE > hE > Xonvok > Xvok + Afq =s HF T,

as claimed. O

5.3 Proof of Theorem [5.1.1t The general case

Let G € G(e,I). By SGP(I), there exist two families (s; : j € Z) and (t; : i € Z) of tracks
forming a square grid of GG. A star—triangle transformation is said to act ‘between s; and
so’ if the three faces of G® on which it acts are between s and sg. (Recall from Section
BI6l that such faces may belong to s but not to sg). A path is said to be between sy and
sy if it comprises only edges between sy and s (that is, edges belonging to faces between
so and si). A vertex of G° is said to be just below sq if it is adjacent to sy and between
s_1 and sg.
Let Exy = En(G) be the event that there exists an open path vy on G such that:

(a) v is between sg and sy,
(b) the endpoints of v are just below sg,

(c) one endpoint is between t_sn and t_n and the other between ¢y and toy.

We claim that there exists 6 = d(e, I) > 0, independent of G and N, such that
Po(Ey)>6, N>1. (5.3.1)

Since such a path 7 contains a horizontal crossing of the domain D = D(t_n,tnN; S0, SN),
(E310) implies

Pa [Ch(t_N,tN; S0, SN)] > 0.

Since § depends only on € and I, the corresponding inequality holds for crossings of
translations of D, and also with the roles of the (s;) and (t;) reversed. By Proposition
BI4] the claim of the theorem follows from (5.31]), and we turn to its proof.

The method is as follows. Consider the graph G between sy and sy. By making a
finite sequence of star-triangle transformations between sy and sg, we shall move the s;
downwards in such a way that the section of the resulting graph, lying both between t_on
and toy and between the images of sy and sy, forms a box of an isoradial square lattice.
By Corollary [5.2.2] this box is crossed horizontally with probability bounded away from 0.
The above star—triangle transformations are then reversed to obtain a horizontal crossing
of D in the original graph G.

Since a finite sequence of star—triangle transformations changes G at only finitely

many places, we may retain the track-notation s;, ¢; throughout their application. We say

155



Universality for isoradial graphs

5j,8j41,---, 854k are adjacent between ty, and ty, if there exists no track-intersection in
the domain D(tn,,tn,; Sj,5j4%) except those on sj,5j11,...,54k. The proof of the next

lemma is deferred until later in this section.

Lemma 5.3.1. There exists a finite sequence (T, : 1 < k < K) of star—triangle transfor-
mations, each acting between sy and sg, such that, in T o---0T1(G), the tracks s, ..., SN

are adjacent between t_on and ton.

Let (T : 1 < k < K) be given thus, and write G® = G and G¥ = Ty 0--- o T1(G?). Let
Sk, be the inverse transformation of T}, as in Section B.2.1], so that Si(G*) = G*~1. Since
the track notation is retained for each G¥, the event E is defined on each such graph. By
a careful analysis of its action, we may see that Sy preserves Ey for k= K, K —1,...,1.
The details are provided in the next paragraph.

Let 1 < k < K and let v be an open path of G¥ satisfying (a)—(c) above. Since T},
does not move sg, Si(7y) has the same endpoints as . Furthermore, T}, acts between sy
and sg. Thus the three faces of (G¥)© on which Sy acts are either all strictly below sy, or
two of them are part of sy and the third is above. In the first case Si(y) may differ from
~ but is still contained between sy and sp; in the second case Sy does not influence . In
conclusion, Sy(7) is an open path on G*~! that satisfies (a)(c).

Since the canonical measure is conserved under a star—triangle transformation, the
remark above implies

P(En) > Pox(Ey). (5.3.2)

It remains to prove a lower bound for Pgox (En).

Write (r; : @ € Z) for the sequence of all tracks other than the s;, indexed and oriented
according to their intersections with sg, with r9 = tg, and including the ¢; in increasing
order. Let 3; be the transverse angle of s;, and 7 + «; that of r;. Since each r; intersects
each s;, the vectors a = (o; : i € Z), B = (B : j € Z) satisty (B11I2)), and hence G g is an
isoradial square lattice satisfying BAP(e). By Corollary B:2.2] there exists ¢’ = §'(e) > 0
such that G g satisfies the box-crossing property BXP(d').

The track-system of G¥ inside D(t_an, tan; 50, Sn) is isomorphic to a rectangle of Z2,
and comprises the horizontal tracks sg, s1,..., sy, crossed in order by those r; between
(and including) t_on and tay. Thus, GE agrees with Gq g inside this domain.

Consider the following boxes of (G¥)°:

Vi =D(t—an,t—N; S0,5N),
Vo =D(tn,tan; S0, SN)s

H =D(t_an,tan; S0, 5N)-
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t—2N th
i I l l / ly*

S1
Y

Y1 |1

Y2

w l T B TN

| N |

Figure 5.3.1: The black points are indicated. The path v from y» to y; is drawn in red.
The points y and y; are maximal, and are not comparable. The region R is shaded.

By the Harris—FKG inequality,

Pex (En) > Par [Co(Vi) NCy(Va) NCy(H)] (5.3.3)
> Pax[Co(V1)|Pgr [Co(Va)|Par [Cn(H)).

The boxes Vi, Vs in (GK)® may be regarded as boxes in Gg 8 and have height N and
width at least N. Similarly, the box H has height N and width at most 4IN. By BXP(¢')
and (.33)), there exists 0 = d(e, I) > 0 such that Pox (Ex) > 0, and (G.32) is proved.

Proof of Lemma [5.31 We shall prove the existence of a finite sequence (T}, : 1 < k < K)
of star—triangle transformations, each acting between s; and sg, such that, in T o --- o
T1(G), the tracks sg, s1 are adjacent between ¢_on and ton. The general claim follows by
iteration.

In this proof we work with the graph G only through its track-set 7. Tracks will be
viewed as arcs in R2. A point of T is the intersection of two tracks, and we write P for
the set of points.

Let NV be the set of tracks that are not parallel to sg. Any r € A intersects both sq
and s; exactly once, and we orient such r in the direction from its intersection with sg to
that with s.

An oriented path v on the track-set 7 is called increasing if it uses only tracks in A/
and it conforms to their orientations. For points yi,y2 € P, we write y; > yo if there
exists an increasing path « from gy to y1. By the properties of T given in Section B3]
the relation > is reflexive, antisymmetric, and transitive, and is thus a partial order on P.

Let Ry be the closed region of R? delimited by t_j, t, so, s1, illustrated in Figure
BE3Tl A point y € P is coloured black if it is strictly between sp and s1, and in addition
y > 1/ for some 7/ in R := Ron or on its boundary. In particular, any point in the interior

of R or of its left /right boundaries is black. We shall see that the black points are precisely
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A A s Y A A s1
L\ t_2N t—2N
z
Ti+1 z
"
So S0

Figure 5.3.2: Left: The oriented track ;41 crosses r; from right to left, in contradiction of
the choice of v as highest. Right: The track r;,q crosses r; from left to right.

those to be ‘moved’ above s1 by the star—triangle transformations Tj.

We prove first that the number B of black points is finite. By BAP(¢), the number
of tracks intersecting R is finite. Let y™ (respectively, y~) be the rightmost (respectively,
leftmost) point on s; that is the intersection of s; with a track r that intersects R. We

claim that
if r € T has a black point, then it intersects s; between y~ and y™. (5.3.4)

Assume (534) for the moment. Since a black point is the unique intersection of two
tracks, and since (.3.4]) implies that there are only finitely many tracks with black points,
we have that B < oo.

We prove (0.3.4) next. Let y be a black point. If y € R, (5.3.4) follows immediately.
Thus we may suppose, without loss of generality, that y is strictly to the left of R. There
exists an increasing path ~, starting at a point on the left boundary of R and ending at
y. Take 7 to be the ‘highest’ such path. Let (r; : 1 <1 < L) be the tracks used by 7 in
order, where L < oo. We will prove by induction that, for [ > 1,

r; intersects s between y~ and y™T. (5.3.5)

Clearly (B.3.35]) holds with I = 1 since r; intersects R.

Suppose 1 <[ < L and (533 holds for r;, and let z = r; N ry4q. If 7741 intersects R
(before or after z), (B.3.3]) follows trivially. Suppose 7,11 does not intersect R. There are
two possibilities: either r;;; crosses r; from right to left, or from left to right. The first
case is easily seen to be impossible, since it contradicts the choice of v as highest. Hence,
7141 crosses 1 from left to right (see Figure (3.2)). The part of the oriented track r;4q
after z is therefore above the corresponding part of r;. Since 7,41 intersects s; after z,
and does not intersect R, the intersection of 7,1 and s lies between ¥y~ and y™, and the
induction step is complete.

In conclusion 7, intersects s between y™ and y~. Let r denote the other track contain-

ing y. By the same reasoning, r intersects r, from left to right, whence it also intersects
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s1 between y* and y~. This concludes the proof of (5.3.4]), and we deduce that B < oo.

If B = 0, there is no point in the interior of either R or its left /right sides, whence sq,
s1 are adjacent between t_on and top.

Suppose B > 1. We will show that B may be reduced by one by a star—triangle
transformation acting between sy and s1, and the claim of the lemma will follow by
iteration.

Since B < o0, there exists a black point that is maximal in the partial order >, and
we pick such a point y = r1 Nry. By the maximality of y, the tracks r1, ro, s1 form a
track-triangle. By applying the star—triangle transformation to this track-triangle as in
Figure B2Z.5] the point y is moved above s1, and the number of black points is decreased.
This concludes the proof of Lemma [5.3.11 O

5.4 Universality for arm exponents

5.4.1 Outline of proof

We recall the isoradial embedding G /o of the homogeneous square lattice, with associ-

ated measure denoted Pg /5.

Proposition 5.4.1. Let k € {1,2,4,...}, € > 0, and I € N. There exist constants
ci = ci(k,e,I) > 0 and Ny = No(k,e,I) € N such that, for N > Ny, n > coNy, G € G(e, I),

and any vertex u of G°,
1Py r2[Ak(N, n)] < PalAR(N,n)] < 2P 7 po[Ar(N, n)].

Part (a) of Theorem is an immediate consequence. Sections are de-
voted to the proof of Proposition B.4.Jl In Section is presented a modified definition
of the arm-events, adapted to the context of an isoradial graph. This is followed by Propo-
sition ©.4.2] which asserts in particular the equivalence of the two types of arm-events. The
proof of Proposition [(.4.1] follows, using the techniques of the proof of Theorem (.11} the
proof for isoradial square lattices is in Section .43l and for general graphs in Section
B44l Section contains the proof of Proposition

For the remainder of this section, € > 0 and I € N shall remain fixed. Unless otherwise
stated, constants ¢; > 0, Ny € N depend only on ¢, I, and on the number & of arms in the
event under study. We use the expression ‘for n > N large enough’ to mean: for n > ¢y N
and N > Nj.

5.4.2 Modified arm-events

Let G € G(e,I), k € {1,2,4,...}, and let s be a track and u be a vertex of G, adjacent

to s. For n > N, we define the ‘modified arm-event’ ZZS (N,n) as follows. For simplicity
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of notation, we omit explicit reference to u© and s when no ambiguity results, but in such a
case we say that Ay(N,n) is ‘centred at u’. Recall the notation A (n) from Section BT
and the constant cg of (BL7). A vertex u € G is said to satisfy (5.4 if it is primal and
its open cluster C,, satisfies

Cyu C AS(3c3n), (5.4.1)

and to satisfy ([L.AI)* if it is dual and (B.4.0]) holds with C,, replaced by C;.
The modified arm-events Ag(N,n) = A1"*(N,n) are defined thus:

(i) For k =1, A;(N,n) is the event that there exist vertices z; € AS(N) and y; & AS(n),
both adjacent to s, on the same side of s as u and satisfying (B.4.0]), such that
Tl < Y1

(ii) For k = 2, Ay(N,n) is the event that there exist vertices r1,7; € AS(N) and

y1, 95 ¢ AS(n), all adjacent to s and on the same side of s as u, such that:

(a) z1 and y; satisfy (B40)), and z7 and yj satisfy (GLI)*,
(b) z1 <= y1 and x] <5 7.

(iii) For k = 2j > 4, Ay(N,n) is the event that there exist vertices z1, ... ,xj € AJ(N)

and y1,...,y; & AS(n), all adjacent to s and on the same side of s as u, such that:

(a) each z; and y; satisfies (B.4.1]),
(b) z; +=> y; and x; 5 xy for i # i

The technical assumption (B.4J]) will be useful in Section (43, when applying star—
triangle transformations to isoradial square lattices.

The following proposition contains three statements, the third of which relates the
modified arm-events to those of Section All arm-events A; and gk considered here
are centred at the same vertex v € G°. The event Zk(N ,m) is to be interpreted in terms

of any of the tracks to which u is adjacent.

Proposition 5.4.2. There exist constants ¢; > 0 such that, for n > N large enough,

PolAk(N,2n)] < PglAk(N,n)] < e1Pg[Ak(N, 2n)], (5.4.2)
]PG [Ak(N, n)] § Pg[Ak(QN, n)] § CQ]PG [Ak(N, n)], (543)
e3PG[AR(N, n)] < Pg[AR(N,n)] < csPa[Ar(N,n)). (5.4.4)

By (B:44]), for n > N large enough, there exist constants cs,cg > 0 such that, if u is

adjacent to the tracks s and ¢,

csPal Ay (N, n)] < Po[AL'(N,n)] < cgPa[Ap* (N, n)].
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The proof of Proposition (.4.2] is deferred to Section (.45l It relies on the separation
theorem of Section

5.4.3 Proof of Proposition 5.4.1t Isoradial square lattices

Let G be an isoradial square lattice satisfying the bounded-angles property BAP(¢), and
let u be a vertex of G. As usual, the horizontal tracks are labelled (s; : j € Z) and the
vertical tracks (¢; : ¢ € Z).

As explained in Section B.I17, G = G4 g for angle-sequences o = (o 1 @ € Z), B =
(Bj : j € Z) satisfying (BI12). We label a and B in such a way that v = v, whence u
is adjacent to ¢y and s¢ (here we do not require vp o to be primal). The latter track may
change its label through track-exchanges. Let & be such that a and the constant sequence
(&) satisfy BAP(e), (B1.12). All arm-events in the following are centred at u = v .

Lemma 5.4.3. There exist constants ¢; > 0 such that, for n > N large enough,
Cl]P)a@[Ak(N, n)] < ]PG [Ak(N, n)] < CQ]P’Q’S[Ak(N, n)]

Proof. Let N,n € N be picked (later) such that N and n/N are large, and write M =
[305711. For 0 < m < M, let G™ be the isoradial square lattice with angle-sequences
&= (o:—4M <i<4M)and B8, with

& if —m<j<m,

~ itm if —(m+M §‘<_m7

G ) it ( )< (5.4.5)
Bj—m ifm<j<m+ M,

£ ifj<—(m+M)orj>m+ M.

Thus G™ is obtained from G by taking the horizontal tracks s;, —(m+ M) < j <m+ M,
splitting them with a band of height 2m, and filling the rest of space with horizontal tracks
having transverse angle £. By the choice of £, each G™ satisfies BAP(¢). Moreover, inside
A (M), GO is identical to G, and GM is identical to Gq.

For 0 <m < M, let

Un = (Zmt10-0Zmim) 0 (E_(mi1) 0 Z_ (i)

where the ¥; are given in Section [5.2.21 Under U,,, the track at level m + M is moved to
the position directly above that at level m — 1, and the level —(m + M + 1) track below
the level —m track. We have that

Un(G™) = G+,
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Let w® be a configuration on G° such that ZZ’SO(N, n) occurs. Set j =1 when k =1,
and j = k/2 when k > 2. There exist vertices z1,...,2;, y1,...,y; and, when k = 2, z7,

y;, all lying in the set {v, o : m € Z} of vertices of G°, such that:

GOwO GO W . ./
x; —— y; and x; «—F— xy for i # 7/,
GOY,wo
x] «— y], when k = 2,

v0,0,%;) < N, d°(vo0, i) > n,

—~~

v0.0,27) < N, d°(vop,y}) > n, when k = 2,

As we apply Ups_10---0 Uy to (GY,w?), the images of paths from each of z;, y;, and
x7],y] retain their starting points.

Each Aff (r) has a diamond shape. By an argument similar to that of Lemma [B.2.5]
for 0 <m < M,

Coy (@™ C AL (M +2m),  Cje(w™) C AT (M + 2m).

Moreover, since Cy, (w™) and C;T (w™) do not extend to the left/right boundaries of G™,

these clusters neither break nor merge with one another. Therefore,
GM WM GM WM .
(a) z; %y and ﬁ& xy for i # 4,
GM M
(b) zj «——"yj, when k = 2,

so that w™ € Ay (cqN, c;ln). This step is similar to that of Section 5.3l In conclusion,
there exists c¢3 > 0 such that

Po[Ar(N,n)] < esPgo[AR(N,n)] by (G.44)
S CS]P)GM [Ak(CdN, C;ln)].

Since the intersection of any G™ with A(cqN,c;'n) is contained in AS (M), we have
by the discussion after (5.4.5)) that there exists ¢4 > 0 with

Pg[AR(N,n)] < c3Pqe[Ar(caN, C,;l”)]
< 0304]P’a7§[Ak(N7 n)]?

by (BZ2) and (B43]), iterated. The second inequality of Lemma [5.4.3] is proved.
Turning to the first inequality, let w™ be a configuration on GM such that Ek(N ,n)
occurs (the arm event is defined in terms of vy and the horizontal track at level 0). It

may be seen as above that w® = Up;_1 0 --- 0 Up(wM) is a configuration on G° contained
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in Ag(cqN, cgln). Furthermore,
]P)a’g[Ak(N, n)] < Cg]P)GM [Zk(N, n)] < 0364]13)@[Ak(N, n)]

The proof is complete. O

Corollary 5.4.4. There exist constants ¢; > 0 such that, for n > N large enough and any
isoradial square lattice Go.g € G(€,1),

c1Po 7 /2[Ak(N,n)] < Py g[Ar(N,n)] < coPg 7 /2[Ax(N,n)]. (5.4.6)

Proof. If av is a constant vector (ap), (4.0 follows by Lemma B43 with £ = o + 7/2.
For ax non-constant, we apply Lemma B43] with £ = 3y, thus bounding the arm-event
probabilities for G4 g by those for G g,. Now, G4 g, is of the type analysed above, and

the conclusion follows. O

5.4.4 Proof of Proposition 5.4.1k The general case

Let G € G(e,1I), and let (s; : j € Z) and (t; : i € Z) be two families of tracks forming
a square grid of G, duly oriented. Write (r; : i € Z) for the sequence of all tracks other
than the s;, indexed and oriented according to their intersections with sg, with ro = g,
and including the ¢; in increasing order. Let 3; be the transverse angle of s;, and 7™ + o
that of r;. Since each r; intersects each s;, the vectors a = (o; 11 € Z), B= (B : j € Z)
satisfy ([B.112]), and hence G g is an isoradial square lattice satisfying BAP(e). As in
Lemma [5.3.1], we may retain the labelling of tracks throughout the proof. Let u be the
vertex adjacent to sg and tg, below and respectively left of these tracks. All arm-events in

the following are centred at the vertex u and expressed in terms of the track so.

Lemma 5.4.5. There exist constants c1,co > 0 such that, for n > N large enough,
Cl]P’aﬂ[Ak(N,n)] < ]Pg[Ak(N, n)] < CQ]P’aﬁ[Ak(N, n)]

This lemma, together with Corollary B.4.4] implies Proposition E.41] for arm events
centred at u. By the square-grid property, any vertex is within bounded distance of one
of the tracks (s; : j € Z). This allows us to extend the conclusion to arm events centred

at any vertex.

Proof. Let n € N and M = [¢4n|. By Lemma B3] applied in two stages above and
below sg, there exists a finite sequence R' of star-triangle transformations such that, in
GM .= R (@), the tracks s_pr,..., sy are adjacent between ¢t_jy; and ¢, Moreover, no
star—triangle transformation in R* involves a thombus lying in sg. The sequence R™ has
an inverse sequence denoted R~. Note that GM agrees with G4 g inside A, +u C A (M).
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Let w be a configuration on G belonging to gk(N,n), and let vertices x;, y; be given
accordingly. Consider the image configuration w™ = R*(w°) on GM. By considering the

action of the transformation R™, we may see that

GM M aGM M

(a) z; «——— y; and z; «—F— xy for i # 4/,
GM UJM

(b) z} «+——" vy}, when k = 2.

Taken together with (B1.7)), this implies that w™ € Ay (cqN, c;ln). Therefore, there exist
¢; > 0 such that

P[Ak(N,n)] < csPa[AR(N,n)] by E.44)
< c3Peau [Ag(caN, ;' n)]
= c3Pa, g[Ak(calN, cgln)]
< c3caPa gAR(N,n)] by (6-42) and B.43),

and the second inequality of the lemma is proved.

Conversely, let w™ be a configuration on GM belonging to gk (N,n). By applying the

inverse transformation, we obtain the configuration w = R~ (w™) on G. As above,

Po glAk(N,n)] = Peu [Ag (N, n)]

< esPau [Ag(N,n)] by (G.4.4)
< e3PG[Ag(caN, c;'n)]
< c3e4Pa Ak (N, n)] by (£4.2) and (B43]).
This concludes the proof of the first inequality of the lemma. O

5.4.5 Proof of Proposition [5.4.2

This section is devoted to the proof of Proposition 5.4.2] and is not otherwise relevant to

the rest of the paper. The two main ingredients of the proof are the separation theorem
(Theorem [Z3.1]) and the equivalence of metrics, (ZI7T).

Proof of Proposition [5.4.2 Inequalities (5.4.2) and (5.4.3]) follow from Corollary 2.3.2] and
the box-crossing property for G (Theorem [E.1.T]).

Consider the first inequality of (5.4.4]) (the second is easier to prove). The idea is
as follows. Suppose that Ai(N,n) occurs (together with some additional assumptions).
One may construct a bounded number of open or open* box-crossings in order to obtain
jk(N ,n). These two arm-events are given in terms of annuli defined via different metrics

— the Euclidean metric and d°, respectively — but the radii of these annuli are comparable

by B.L7).
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Assume n/N > 2, and let
M = cglN, m = cqn, (5.4.7)

with ¢4 as in BIT). Let k € {1,2,4,...}, 0 = (1,0,1,0,...), and consider the corre-
sponding arm-event A (M, m). All constants in the following proof may depend on k,
€, and I but, unless otherwise specified, on nothing else. All arm-events that follow are
assumed centred at the vertex u adjacent to a track s. By translation, we may assume

that u is the origin of R?. In order to gain some control over the geometry of s, we may

assume, without loss of generality, that its transverse angle [ satisfies g € [%ﬂ', %7‘1’].

Let n = n(k) > 0 satisfy ([Z31J), and let J be an n-landing sequence of length k,
entirely contained in {1} x [0, 1], with J; being the lowest interval. Henceforth assume
M > Nj, where Nj is given in Theorem [Z31] with 19 = 7. By that theorem, there exists
co > 0 such that

Pa[A) (M, m)] > coPg [Ax(M,m)]. (5.4.8)

Let (M,v;) be the lower endpoint of M.J;, and (M,w;) the upper. Let Hjps be the
event that, for i € {1,2,...,k}, the following crossings of colour o; exist:
(a) a horizontal crossing of [—w;, M| X [v;, w],
(b) a vertical crossing of [—w;, —v;] X [—w;, w;],
(c) for ¢ odd, a horizontal crossing of [—w;, w;] X [—w;, —v;],
(d) for ¢ even, a horizontal crossing of [—wj;, wi| X [—w;, —v;].
If £ > 4, we require also an open* vertical crossing of [vg, wg] X [—wy, 0]. The event Hys
depends only on the configuration inside Ajs, and is illustrated in Figure B.4.11
Let (m,v;) be the lower endpoint of mJ;, and (m,w;) the upper. Let K,, be the event
that, for i € {1,2,...,k}, the following crossings of colour o; exist:
(a) a horizontal crossing of [m, (m + w;)] X [v;, w;],
(b) a vertical crossing of [(m + v;), m + w;] X [—(m + w;), w;],
(
(d) if 4 is odd, a vertical crossing of [—(m + w;), —(m + v;)] X [—(m + w;), m + w;],

)
)
c¢) a horizontal crossing of [—(m + w;), m + w;] X [—(m + w;), —(m + v;)],
)
)

(e) if 7 is even, a vertical crossing of [—(m + w;), —(m + v;)] X [—(m + w;), m + wg].
We require in addition the following:
(f) when k = 1, an open* circuit in A(2m, 3m),

(g) when k = 2, an open circuit in A(2m, 3m),
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Figure 5.4.1: Left: The event Hjys for K = 4. The red paths are open, the blue paths are
open®*. The thin coloured paths are parts of the interior fences of AZ’J(M ,m). Right: The
event K, for k = 2, together with parts of the exterior fences of the arm-event. The track
s intersects the open/open* crossings just above the points labelled z; and y;.

(h) when k > 2, an open* circuit in A(m + vg, m + wy).

The event K, depends only on the configuration inside A(m,3m), and is illustrated in
Figure 5411

Set j =1 when k = 1, and j = k/2 when k > 2. We claim that, on Hy; N K, N
AZ’J(M, m), there exist vertices x1,...,xj, y1,...,y; and, when k = 2, 27, yi, all adjacent
to s and on the same side of s as u, such that:
(a Ti € AM» Yi ¢ A, and, when k = 2, Jf{ € AM7 yik ¢ AM7
(b
(c
(d) Cz; € Ay, and, when k = 2, C;T C Asgp.

)
) x; <= y; and x; <5 xy for i £

) =7 < yf when k =2,

)

This claim holds as follows. The crossings in the definition of Hy; (respectively, K,,)
may be regarded as extensions of the arms of AZ’J(M ,m) inside Ajs (respectively, outside
Apn). Let A be the straight line with inclination 5 € [%77, %7‘1’], passing through u. Since
s corresponds to a chain of rhombi with common sides parallel to A, it intersects A only
in the edge of G crossing s and containing u. Therefore, the part of s to the left of
necessarily intersects all the above extensions. These intersections provide the x;, y; and,

when k£ = 2, 27, y]. The remaining statements above are implied by the definitions of the

relevant events.

By B.L7), B.4I), and B.4D),

Hyr 0 Ky 0V AP (M, m) C Ay (caM, ¢ m).
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By Lemma 233,
Pe | Hy 0 Ko 0 AT (M, m)] > Pe(Har)Po(Km)Po [A,{’J (M, m)] .

The events Hj; and K, are given in terms of crossings of boxes with aspect-ratios inde-
pendent of M and m. Therefore, there exists ¢; > 0 such that, for m and M large enough,
Pa(Hpr) > ¢ and Pg(K,,) > ¢1. In conclusion, by (B4T), there exists ¢5 > 0 such that,
for n/N > 2,

Po[Ay(N,n)] > Bo(Har)Pe(Kpn)PalAL (M, m)]

> c?copg[Ak(M, m)] by
> cteoesPalAg(caM, cgtm)]
= C%COC5PG [Ak (N7 Tl)] by

where the third inequality holds by iteration of (L.A2)—(ZZ43]). The first inequality of
(B44) follows.

The second inequality is simpler. Set M = ¢4N and m = cgln. By the equivalence
of the euclidian and graph distance @I1.7), Ay (c;'M,cqm) C Ax(M,m). By iteration of
EA2)—-([E43), there exists ¢g > 0 such that, for m > M large enough,

Pg [Zk(cglM, cqgm)] < Pa[Ax(M,m))

< c6Pg[Ag(c; M, cam)].

This concludes the proof of Proposition [£.4.2] U
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List of Notation

Against each entry is the page at which the notation was introduced.

Set notation :

-

[[-loo

A6

A+

A(N,n), A*(N,n)

Euclidian norm on R?

L> norm on R?

Fattening of a set: {a + x : |z] < ¢}
Translate of a set: {a +v:a € A}

Annulus of inner ||.||oo-radius N and outer ||.||oo-radius n
(centered at u)

Bmn [—m,m| x [0, n]; planar domains used in Chapter [
B(m,n) [0,m] x [0,n]; rectangular planar domain

dpath Distance between paths

D Planar domain

oD 7] Boundary of the domain D

h(.) Height

A, 25 Ball of radius r in (R?,]|.]|s)

Graph notation :

a, 8 Sequences of transverse angles

B(m,n) Domains defined in terms of tracks in isoradial square lat-
tices

BAP(e) Bounded angles condition with bound e

Cd Constant in the equivalence between d° and |.|

d® Graph distance on G¥

D(ty,to; 51, 52) Domain between tracks t; and ¢ and between s; and s

e, e 14 Pair of primal, dual edges of G, G*

G=(V,E) Graph, usually planar

G* = (V* E¥) Dual graph of G

G° Diamond graph of the isoradial graph G

Gapa 941 Isoradial square lattice
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!

5
=
0

Paths on graphs

H Hexagonal lattice

L. I Bound on the length of edges of graphs

Ly, Ky I Bounds on the density of vertices of graphs

L Mixed lattice

A (r) 90) d®-ball of radius r, centered at u

SGP(I) Square grid property with bound I

T Triangular lattice

T(G) 85 Track system of the isoradial graph G

0, Angle associated to the edge e of an isoradial graph
7> 18] Square lattice

Percolation notation :

G,w

TR st Open connection in w

é& 13 Negation of £

e 14 Open* connection (in the dual graph)

A%(N,n), Ax(N,n) Arm-events

A{,’J(N ) 19 Arm-event with imposed landing sequences

Ak(n) 128 Arm-event adapted to mixed lattices

j}ivs(]\[ M) Arm-event adapted to isoradial graphs

BXP(ly,0) 27 Box-crossing property with constants ¢ and Iy

B, v, v, A Exponents near criticality

Cu(B), Cy(B) 7] Existence of horizontal,respectively vertical, open crossings
of B

Cn(m,n), Cy(m,n) 109 Ch(Bm,n) and Cy (B, n) respectively

Cu(t1,t2;81,82), O] Existence of horizontal, respectively vertical, open crossings

Cy(t1,to; 51, 52) of D(ty,tq; 51, 52)

Cy Open cluster containing v

0, m, p Exponents at criticality

G, G(e,I) Family of isoradial graphs with the bounded-angles property
and the square-grid property

KO, KA, KO Functions defining criticality for the square, triangular and
hexagonal lattices

M Family of critical inhomogeneous models

My, Mj(e) Family of critical highly inhomogeneous models

Q=1{0,1}* Set of percolation configurations on G

w, w* 14 Primal (respectively dual) configuration



P2 o

PY P
p,q,94"’ ~ p,a,q’

q,9”’

Pa
Po,p
rad(Cy)
Pos Pk
S, T

%

Other notation :

14
v, A

)9 = =
HEHE

= [
od d

=] =

HEB

-GFi
gsﬂ

H

HEHBHEEBEEBEEE

Percolation intensity
Family of percolation intensities

Parameter associated to an edge e of an isoradial graph, with
0. =10

Percolation measure

Percolation measure with intensities p

Percolation measure with shifted parameters

Homogeneous percolation on the square, triangular and
hexagonal lattices, with parameter p € [0, 1]

Inhomogeneous percolation on the square, triangular and
hexagonal lattices, with parameters p € [0,1]?, and p €
[0, 1] respectively

Highly inhomogeneous percolation on the square, triangular
and hexagonal lattices

Canonical percolation measure on the isoradial graph G
Percolation measure associated to G g

Radius of C, in the ||.||sc norm

Arm exponents

Star—triangle transformations

Track exchange in isoradial square lattices

Indicator function of the event A
Maximum, respectively minimum
Greatest integer not greater than x
Least integer not less than x
Stochastic ordering

f/g is bounded away from 0 and oo

f/g is bounded away from 0 and oo uniformly in ¢
log f(t)/logg(t) — 1

Cardinality of the set A

The complex plane

Expectation

The set of strictly positive integers
The set of non-negative integers

The set of real numbers



The set of integers
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