Non-decay of correlations in the dimer model and phase transition in lattice permutations in \mathbb{Z}^d , d > 2, via reflection positivity

Lorenzo Taggi

Weierstrass Institute for Applied Analysis and Stochastics, Berlin

Overview

The dimer model

- Overview
- Results

2 Lattice permutations

- Overview
- Results

3 Proof

- Proof Overview
- An Infrared bound
- Derivation of the key inequality
 - Random path model
 - Chessboard estimate
 - Derivation Key Inequality
 - Reflection Positivity

Overview

Definition (Dimer Cover)

A dimer cover of the graph $\mathcal{G} = (V, E)$ is a spanning sub-graph of \mathcal{G} such that every vertex has degree one.

- Exact enumeration on ℤ² (Kasteleyn, Fisher and Temperley, 1961).
- Correlations on planar graphs (Fisher and J. Stephenson, 1963)
- Connections to critical planar Ising model (Kasteleyn 1961, Fisher 1966).
- No phase transition in monomer-dimer model (*Heilmann*, *Lieb*, 1972)
- Arctic circle phenomenon (H. Cohn, N. Elkies, J. Propp, 1996)
- Scaling limits, conformal invariance (Kenyon, 2000 2014).

What about \mathbb{Z}^d , d > 2?

- Hammersley et al, 1969: 'Negative Finding for the Three-Dimensional Dimer Problem'.
- Jerrum, 1987: 'Monomer-dimer systems are computationally intractable'.

Definition (Monomer-monomer correlation)

Define $\mathbb{T}_L := \mathbb{Z}^d / L\mathbb{Z}^d$ and, for any $M \subset \mathbb{T}_L$ (set of monomers), let $\mathcal{D}(M)$ be the set of dimer covers of $\mathbb{T}_L \setminus M$. We define the monomer-monomer correlation,

$$\forall z \in \mathbb{T}_L \quad \Xi_L(z) := rac{|\mathcal{D}(\{o, z\})|}{\mathcal{D}(\emptyset)}$$

• **Conjecture** (Fisher and Stephenson):

On
$$\mathbb{Z}^2$$
 $\lim_{L\to\infty} \Xi_L(z) \sim \frac{1}{|z|^{\frac{1}{2}}}$

- Proved for:
 - z along the cartesian axis (Fisher, Stephenson, 1963)
 - z along diagonals (*Hartwig*, 1966)

••	•• • • •
	, , , , .
· · · · ·	· · · · · · · ·
· • • •	

The dimer model

Let r_d be the expected number of returns of a simple random walk on \mathbb{Z}^d . Define the *odd and even sub-lattices*

 $\mathbb{T}_L^e := \{x \in \mathbb{T}_L : d(o, x) \in 2\mathbb{N}\}, \quad \mathbb{T}_L^o := \{x \in \mathbb{T}_L : d(o, x) \in 2\mathbb{N} + 1\},$

Theorem (Taggi, 2019+)

Suppose that d > 2. For any $L \in 2\mathbb{N}$, we have that,

$$\frac{1}{|\mathbb{T}_L^o|} \sum_{x \in \mathbb{T}_L^o} \Xi_L(x) \ge \frac{1}{2d} (1 - \frac{r_d}{2}).$$
(1)

Moreover, there exists $c \in (0, \frac{1}{2})$ such that for any $L \in 2\mathbb{N}$ and any odd integer $n \in (0, c L)$,

$$\Xi_L(n \boldsymbol{e}_1) \geq \frac{1}{2d} (1 - r_d). \tag{2}$$

Remark

 $r_3 \simeq 0.52$ (exact computation Watson, 1939). Moreover, $r_{d+1} \leq r_d$.

Remark

$$\Xi_L(x) = 0$$
 if $x \in \mathbb{T}_L^e$ and $L \in 2\mathbb{N}$.

Theorem (Lees, Taggi, 2019)

Suppose that $L \in 2\mathbb{N}$, let $z \in \mathbb{T}_L$ be such that $n = z \cdot e_i$ is odd for some $i \in \{1, \ldots, d\}$, suppose that $n \in (0, \frac{L}{2})$. Then,

$$\Xi_{L}(z) \leq \Xi_{L}(\boldsymbol{e}_{i}n) \leq \Xi_{L}(\boldsymbol{e}_{i}(n-2)) \leq \Xi_{L}(\boldsymbol{e}_{i}) = \frac{1}{2d}.$$
 (3)

Remark

Since $r_d \to 0$ as $d \to \infty$, the lower and upper bound are sharp in the limit $d \to \infty$,

$$\frac{1}{2d}(1-\frac{r_d}{2}) \leq \frac{1}{|\mathbb{T}_L^o|} \sum_{x \in \mathbb{T}_L^o} \Xi_L(x) \leq \frac{1}{2d}.$$

Remark

The site monotonicity properties (Lees, Taggi 2019) hold for other models, e.g, Spin O(N) model with arbitrary $N \in \mathbb{N}_{>0}$, Loop O(N) model, lattice permutations, and are not limited to the inequalities in (3).

Definition

Let $\Omega_{x,y}$ be the set of *bijections* $\pi : \mathbb{T}_L \setminus \{y\} \to \mathbb{T}_L \setminus \{x\}$ such that $\forall z \in \mathbb{T}_L \setminus \{y\}$, $|\pi(z) - z|_1 \leq 1$. Define $\Omega = \bigcup_{x \in \mathbb{T}_I} \Omega_{o,x}$. Fix arbitrary $N, \lambda \geq 0$, define

$$orall \pi \in \Omega \qquad \mathbb{P}_{L,N,\lambda}ig(\pi) := rac{\lambda^{\mathcal{H}(\pi)} \ (N/2)^{\mathcal{L}(\pi)}}{Z_{L,\lambda,N}},$$

where $\mathcal{H}(\pi) := |\{z \in \mathbb{T}_L : \pi(z) \neq z\}|$ is the number of (directed) edges in the picture and $\mathcal{L}(\pi)$ is the number of loops and double dimers in π .

Terminology: Loops, double dimers, monomers, walk.

- Closely related to Loop O(N) model
- $\lambda = 1$, N = 0: uniform SAW in a box (Duminil-Copin, Kozma, Yadin, 2014)
- N = 2 related to quantum Bose gas (Feynmann, 1953) (Ueltschi, Betz, 2010, 2011) (Elboim, Peled, 2017)

Lattice permutations

Define the fully-packed lattice permutation model,

$$\mathcal{P}_{L,N}(\pi) := \lim_{\lambda \to \infty} \mathbb{P}_{L,N,\lambda}(\pi)$$

We say that π is *fully-packed* if it contains no monomer.

Let $X : \Omega \to \mathbb{T}_L$ be the last point of the walk (*target point*).

Theorem (Taggi, 2019+)

In any dimension d > 2, for any integer N such that $0 < N < \frac{4}{r_d}$, the following holds for any $L \in 2\mathbb{N}$:

$$onumber A \subset \mathbb{T}_L, \quad \mathcal{P}_{L,N}ig(X \in Aig) \leq rac{1}{1 - rac{Nr_d}{4}} rac{|A|}{L^d}$$

- For example plug in $A = \mathbb{T}_{\epsilon L}$ for small enough ϵ ,
- When N is large, exponential decay for all λ:
 - Intersecting loops on \mathbb{Z}^d : Chayes, Pryadko, Shtengel, 1999.
 - Loop O(N) on honeycomb: Duminil-Copin, Peled, Samotij, Spinka, 2014.

Definition (Two point function)

Let Ω^{ℓ} be the set of *permutations* $\pi : \mathbb{T}_{L} \to \mathbb{T}_{L}$ such that, for any $z \in \mathbb{T}_{L}$, $|\pi(z) - z|_{1} \leq 1$.

$$Z^\ell_{L,N,\lambda} := \sum_{\pi \in \Omega^\ell} \lambda^{\mathcal{H}(\pi)} (N/2)^{\mathcal{L}(\pi)}$$

and, for any $x, y \in \mathbb{T}_L$, we define

$$Z_{L,N,\lambda}(x,y) := \sum_{\pi \in \Omega_{x,y}} \lambda^{\mathcal{H}(\pi)} (N/2)^{\mathcal{L}(\pi)},$$

Finally, we define the two point function,

$$G_{L,N,\lambda}(x,y) := \frac{\lambda Z_{L,N,\lambda}(x,y)}{Z_{L,N,\lambda}^{\ell}},$$

and note that, in the limit $\lambda \to \infty,$ it collects only the contribution of fully packed configurations,

$$G_{L,N,\infty}(x,y) := \lim_{\lambda \to \infty} G_{L,N,\lambda}(x,y) = \frac{\sum\limits_{\substack{\pi \in \Omega_{x,y}:\\ \pi \text{ is f.p.}}} \left(\frac{\underline{N}}{2}\right)^{\mathcal{L}(\pi)}}{\sum\limits_{\substack{\pi \in \Omega^{\ell}:\\ \pi \text{ is f.p.}}} \left(\frac{\underline{N}}{2}\right)^{\mathcal{L}(\pi)}}.$$

Theorem (Taggi, 2019+)

Suppose that d>2. For any integer N such that $0 < N < \frac{4}{r_d},$ and $L \in 2\mathbb{N},$ we have that,

$$\frac{1}{|\mathbb{T}_L^o|}\sum_{x\in\mathbb{T}_L^o}G_{L,N,\infty}(o,x)\geq \frac{1}{2d}(\frac{2}{N}-\frac{r_d}{2}).$$

Moreover, there exists $c \in (0, \frac{1}{2})$ such that for any $L \in 2\mathbb{N}$ and any odd integer $n \in (0, c L)$,

$$G_{L,N,\infty}(o, n \boldsymbol{e}_1) \geq \frac{1}{2d}(\frac{2}{N}-r_d).$$

Remark

From the monotonicity properties (Lees, Taggi 2019) and the fact that $r_d \to 0$ as $d \to \infty$, we deduce that the lower and upper bound are sharp in the limit $d \to \infty$,

$$\frac{1}{2d}(\frac{2}{N}-\frac{r_d}{2}) \leq \frac{1}{|\mathbb{T}_L^o|} \sum_{x \in \mathbb{T}_L^o} G_{L,N,\infty}(x) \leq \frac{1}{2d} \frac{2}{N}$$

Relation between lattice permutations and dimers

Lemma

$$G_{L,2,\infty}(x,y) = \Xi_L(x,y).$$

Proof.

There exist two bijections Π^1, Π^2 ,

$$\begin{aligned} \Pi^{1} : \mathcal{D}(\emptyset) \times \mathcal{D}(\{x, y\}) &\mapsto \quad \tilde{\Omega}_{x, y} := \{\pi \in \Omega_{x, y} : \pi \text{ is f.p.} \} \\ \Pi^{2} : \mathcal{D}(\emptyset) \times \mathcal{D}(\emptyset) &\mapsto \quad \tilde{\Omega}^{\ell} &:= \{\pi \in \Omega^{\ell} : \pi \text{ is f.p.} \} \end{aligned}$$

Hence,

$$G_{L,2,\infty}(x,y) = \frac{|\tilde{\Omega}_{x,y}|}{|\tilde{\Omega}^{\ell}|} = \frac{|\mathcal{D}(\emptyset)| |\mathcal{D}(\{x,y\})|}{|\mathcal{D}(\emptyset)|^2} = \frac{|\mathcal{D}(\{x,y\})|}{|\mathcal{D}(\emptyset)|} = \Xi_L(x,y).$$

•••••••••••••	·····
• • • • • • • • • • • •	
• • • _Z •···• • • • • •	• • • • • • • • • • • • • • • • • • •

9 / 25

Comment: Inspired by the famous proof of *Fröhlich, Simon, Spencer 1976* for the spin O(N) model

Method overviews: Biskup, Friedli and Velenik, Spinka and Peled, Ueltschi.

Positivity Cesaro sum given Key Inequality

Dual torus,
$$\mathbb{T}_{L}^{*} := \left\{ \frac{2\pi}{L} (k_{1}, \dots, k_{d}) \in \mathbb{R}^{d} : k_{i} \in \left(-\frac{L}{2}, \frac{L}{2}\right] \cap \mathbb{Z} \right\}$$
. For $f \in \ell^{2}(\mathbb{T}_{L})$,
 $\forall k \in \mathbb{T}_{L}^{*}, \quad \hat{f}(k) := \sum_{x \in \mathbb{T}_{L}} e^{-ik \cdot x} f(x)$.
 $\forall x \in \mathbb{T}_{L}, \quad f(x) = \frac{1}{|\mathbb{T}_{L}|} \sum_{k \in \mathbb{T}_{L}^{*}} e^{ik \cdot x} \hat{f}(k)$.

Put $G_{L,N,\infty}(x) := G_{L,N,\infty}(o,x).$

Lemma

Define the Fourier modes $p := (\pi, \dots, \pi), o := (0, \dots, 0) \in \mathbb{T}_L^*$. We have that,

$$\frac{2}{|\mathbb{T}_L|}\sum_{x\in\mathbb{T}_L}G_{L,N,\infty}(x)=G_{L,N,\infty}(\boldsymbol{e}_1)-\frac{1}{|\mathbb{T}_L|}\sum_{k\in\mathbb{T}_L^*\setminus\{o,\rho\}}e^{ik\cdot\boldsymbol{e}_1}\,\hat{G}_{L,N,\infty}(k).$$

Proof: From the inverse Fourier transform formula:

$$G_{L,N,\infty}(oldsymbol{e}_1) \,=\, rac{1}{|\mathbb{T}_L|} \, \hat{G}_{L,N,\infty}(o) + rac{e^{i
ho \cdot oldsymbol{e}_1}}{|\mathbb{T}_L|} \, \hat{G}_{L,N,\infty}(
ho) + rac{1}{|\mathbb{T}_L|} \sum_{k \in \mathbb{T}_L^* ackslash \{o,
ho\}} \, e^{i k \cdot oldsymbol{e}_1} \, \hat{G}_{L,N,\infty}(k)$$

the fact that $\hat{G}_{L,N,\infty}(p) = -\hat{G}_{L,N,\infty}(o)$ since we are in the **fully packed regime** $(\lambda = \infty)$ and from the Fourier transform formula: $\hat{G}_{L,N,\infty}(o) = \sum_{x \in \mathbb{T}_I} G_{L,N,\infty}(x)$.

Positivity Cesaro sum given Key Inequality

Dual torus,
$$\mathbb{T}_{L}^{*} := \left\{ \frac{2\pi}{L} (k_{1}, \dots, k_{d}) \in \mathbb{R}^{d} : k_{i} \in \left(-\frac{L}{2}, \frac{L}{2}\right] \cap \mathbb{Z} \right\}$$
. For $f \in \ell^{2}(\mathbb{T}_{L})$,
 $\forall k \in \mathbb{T}_{L}^{*}, \quad \hat{f}(k) := \sum_{x \in \mathbb{T}_{L}} e^{-ik \cdot x} f(x)$.
 $\forall x \in \mathbb{T}_{L}, \quad f(x) = \frac{1}{|\mathbb{T}_{L}|} \sum_{k \in \mathbb{T}_{L}^{*}} e^{ik \cdot x} \hat{f}(k)$.

Put $G_{L,N,\infty}(x) := G_{L,N,\infty}(o,x).$

Lemma

Define the Fourier modes $p:=(\pi,\ldots,\pi), o:=(0,\ldots,0)\in\mathbb{T}_L^*.$ We have that,

$$\frac{2}{|\mathbb{T}_L|}\sum_{x\in\mathbb{T}_L}G_{L,N,\infty}(x)=G_{L,N,\infty}(\boldsymbol{e}_1)-\frac{1}{|\mathbb{T}_L|}\sum_{k\in\mathbb{T}_L^*\setminus\{o,p\}}e^{i\boldsymbol{k}\cdot\boldsymbol{e}_1}\,\hat{G}_{L,N,\infty}(k).$$

Note:
$$G_{L,N,\infty}(\boldsymbol{e}_1) = \frac{1}{2d} \frac{2}{N}$$

Goal: bound $\frac{1}{|\mathbb{T}_L|} \sum_{k \in \mathbb{T}_L^* \setminus \{o, p\}} e^{ik \cdot e_1} \hat{G}_{L,N,\infty}(k)$ away from $\frac{1}{2d} \frac{2}{N}$ uniformly!!

Theorem (Key inequality)

For any $N \in \mathbb{N}_{>0}$, $\lambda \in \mathbb{R}_{>0} \cup \{\infty\}$, $L \in 2\mathbb{N}_{>0}$, any real vector $\mathbf{h} = (h_x)_{x \in \mathbb{T}_L}$,

$$\sum_{y\in\mathbb{T}_L} G_{L,N,\lambda}(x,y)(\triangle h)_x (\triangle h)_y \leq \sum_{\{x,y\}\in\mathbb{E}_L} (h_y - h_x)^2,$$

where $(\triangle h)_x := \sum_{y \sim x} (h_y - h_x).$

• Case of Fröhlich, Simon and Spencer: $< S_x \cdot S_y >$ in place of G(x, y) and factor $\frac{1}{\beta}$ in the RHS

Application of Key Inequality with $h_x := cos(k \cdot x)$ (Fröhlich, Simon, Spencer 1976)

For any
$$k = (k_1, \ldots, k_d) \in \mathbb{T}_L^*$$
, define $\varepsilon(k) := \frac{1}{2\sum_{i=1}^d (1 - \cos(k_i))}$
 $k \in \mathbb{T}_L^* \setminus \{o\}, \qquad \hat{G}(k) \leq \frac{1}{\varepsilon(k)}.$

Note: $\hat{G}(k)$ is real.

Positivity Cesaro sum given Key Inequality

$$\frac{1}{|\mathbb{T}_L|} \sum_{k \in \mathbb{T}_L^* \setminus \{o, \rho\}} e^{ik \cdot \mathbf{e}_1} \hat{G}_{\infty}(k) = \frac{1}{|\mathbb{T}_L|} \sum_{k \in \mathbb{T}_L^* \setminus \{o, \rho\}} Re\left(e^{ik \cdot \mathbf{e}_1} \hat{G}_{\infty}(k)\right) = \frac{1}{|\mathbb{T}_L|} \sum_{k \in \mathbb{T}_L^* \setminus \{o, \rho\}} \cos(k \cdot \mathbf{e}_1) \hat{G}_{\infty}(k)$$

- Goal: bound red expression away from $\frac{1}{2d}\frac{2}{N}$ (uniformly in L) to conclude.
- Apply: $\hat{G}_{\infty}(k) \leq \frac{1}{\epsilon(k)}$ (derived from Key Inequality)
- Define: $\mathbb{H} := \left\{ k \in \mathbb{T}_L^* : k_1 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right] \right\},$
- Define bijection $\Psi : \mathbb{H} \setminus \{o\} \mapsto \mathbb{H}^c \setminus \{p\}$ such that $\Psi(k) = k + (\pm \pi, \dots, \pm \pi)$.
- Note: $\hat{G}_{\infty}(k + (\pm \pi, ..., \pm \pi)) = -\hat{G}_{\infty}(k)$ since $G_{\infty}(x) = 0$ at even sites (f.p. regime!)

Positivity Cesaro sum given Key Inequality

$$\frac{1}{|\mathbb{T}_L|} \sum_{k \in \mathbb{T}_L^* \setminus \{\sigma, \rho\}} e^{ik \cdot \mathbf{e}_1} \hat{G}_{\infty}(k) = \frac{1}{|\mathbb{T}_L|} \sum_{k \in \mathbb{T}_L^* \setminus \{\sigma, \rho\}} Re\left(e^{ik \cdot \mathbf{e}_1} \hat{G}_{\infty}(k)\right) = \frac{1}{|\mathbb{T}_L|} \sum_{k \in \mathbb{T}_L^* \setminus \{\sigma, \rho\}} \cos(k \cdot \mathbf{e}_1) \hat{G}_{\infty}(k)$$

- Goal: bound red expression away from $\frac{1}{2d}\frac{2}{N}$ (uniformly in L) to conclude.
- Apply: $\hat{G}_{\infty}(k) \leq \frac{1}{\epsilon(k)}$ (derived from Key Inequality)
- Define: $\mathbb{H} := \left\{ k \in \mathbb{T}_L^* : k_1 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right] \right\},$
- Define bijection $\Psi : \mathbb{H} \setminus \{o\} \mapsto \mathbb{H}^c \setminus \{p\}$ such that $\Psi(k) = k + (\pm \pi, \dots, \pm \pi)$.
- Note: $\hat{G}_{\infty}(k + (\pm \pi, \dots, \pm \pi)) = -\hat{G}_{\infty}(k)$ since $G_{\infty}(x) = 0$ at even sites (f.p. regime!)

$$\begin{split} &\frac{1}{|\mathbb{T}_{L}|}\sum_{k\in\mathbb{T}_{L}^{*}\setminus\{o,p\}}\cos(k\cdot\boldsymbol{e}_{1})\hat{G}(k) = \frac{1}{|\mathbb{T}_{L}|}\sum_{k\in\mathbb{H}\setminus\{o\}}\left(\cos(k\cdot\boldsymbol{e}_{1})\hat{G}(k) + \cos(\Psi(k)\cdot\boldsymbol{e}_{1})\hat{G}(\Psi(k)\right)\right) \\ &= \frac{1}{|\mathbb{T}_{L}|}\sum_{k\in\mathbb{H}\setminus\{o\}}2\cos(k\cdot\boldsymbol{e}_{1})\hat{G}(k) \leq \frac{1}{|\mathbb{T}_{L}|}\sum_{k\in\mathbb{H}\setminus\{o\}}\frac{2\cos(k\cdot\boldsymbol{e}_{1})}{\epsilon(k)} \\ &= \frac{1}{2d}\frac{1}{|\mathbb{T}_{L}|}\sum_{k\in\mathbb{H}\setminus\{o\}}\frac{2\cos(k\cdot\boldsymbol{e}_{1})}{1 - \frac{1}{d}\sum_{i=1}^{d}\cos(k\cdot\boldsymbol{e}_{1})} \longrightarrow \frac{1}{2d}\frac{1}{2}\frac{1}{(2\pi)^{d}}\int_{H}dk\frac{2\cos(k\cdot\boldsymbol{e}_{1})}{1 - \frac{1}{d}\sum_{i=1}^{d}\cos(k\cdot\boldsymbol{e}_{1})} \\ &= \frac{1}{4d}r_{d}, \quad \text{where } H := [-\frac{\pi}{2}, \frac{\pi}{2}] \times [-\pi, \pi] \dots \times [-\pi, \pi]. \end{split}$$

- arbitrary number of undirected loops, double dimers and walks,
- such objects are allowed to 'use' the same edge multiple times,
- it can be used to represent different models by choosing the weight function appropriately: e.g. spin O(N) model, loop O(N) model, random permutations, dimer model.
- it will be possible for the walks to enter 'from the top'

Definition (Set of configurations)

- Undirected finite graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Link cardinalities $m \in \mathcal{M}_{\mathcal{G}} := \mathbb{N}^{\mathcal{E}}$. More specifically

$$m = (m_e)_{e \in \mathcal{E}},$$

where $m_e \in \mathbb{N}$ represents the number of links on the edge e.

- A pairing $\pi = (\pi_x)_{x \in \mathcal{V}}$ for $m \in \mathcal{M}_{\mathcal{G}}$ is such that π_x pairs links incident to x so that
 - any link incident to x is paired at x to at most an other link incident to x
 any link incident to x might be unpaired at x
- $\mathcal{W}_{\mathcal{G}}$ set of configurations $w = (m, \pi)$ such that $m \in \mathcal{M}_{\mathcal{G}}$ and π is a pairing for m.

Definition (Set of configurations)

- Undirected finite graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Link cardinalities $m \in \mathcal{M}_{\mathcal{G}} := \mathbb{N}^{\mathcal{E}}$. More specifically

$$m = (m_e)_{e \in \mathcal{E}},$$

where $m_e \in \mathbb{N}$ represents the number of links on the edge *e*.

- A pairing $\pi = (\pi_x)_{x \in \mathcal{V}}$ for $m \in \mathcal{M}_G$ is such that π_x pairs links incident to x so that
 - any link incident to x is paired at x to at most an other link incident to x
 - any link incident to x might be unpaired at x
- $\mathcal{W}_{\mathcal{G}}$ set of configurations $w = (m, \pi)$ such that $m \in \mathcal{M}_{\mathcal{G}}$ and π is a pairing for m.

$$\begin{array}{c|c} 0 & -1 & 0 & -1 & 0 \\ \hline 1 & & & & 1 \\ 0 & & 0 & -1 & 0 \\ \hline 0 & & & & 1 \\ 0 & & & & 1 \\ 0 & & & & 1 \\ 0 & & & & 1 \\ \end{array}$$

Definition (Set of configurations)

- Undirected finite graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Link cardinalities $m \in \mathcal{M}_{\mathcal{G}} := \mathbb{N}^{\mathcal{E}}$. More specifically

$$m = (m_e)_{e \in \mathcal{E}}$$

where $m_e \in \mathbb{N}$ represents the number of links on the edge e.

- A pairing $\pi = (\pi_x)_{x \in \mathcal{V}}$ for $m \in \mathcal{M}_{\mathcal{G}}$ is such that π_x pairs links incident to x so that
 - any link incident to x is *paired at x* to at most an other link incident to x
 any link incident to x might be *unpaired* at x
- $\mathcal{W}_{\mathcal{G}}$ set of configurations $w = (m, \pi)$ such that $m \in \mathcal{M}_{\mathcal{G}}$ and π is a pairing for m.

Definition (Measure)

For any $w \in \mathcal{W}_\mathcal{G}$, define the (not normalised, possibly signed) measure,

$$\forall w = (m, \pi) \quad \mu_{\mathcal{G}, N, \lambda}(w) = \left(\prod_{e \in \mathcal{E}} \frac{\lambda^{m_e}}{m_e!}\right) \left(\prod_{x \in \mathcal{V}} U_x(w)\right) N^{\mathcal{L}(w)}$$

where $U = (U_x)_{x \in \mathcal{V}}$ are the weight functions, U_x has domain $\{x\}$ and $\mathcal{L}(w)$ is the number of *link-connected components of w*.

Random path model

Random path model

Definition

Let $\boldsymbol{h} = (h_x)_{x \in \mathbb{T}_l}$ be a real vector, define

$$\mathcal{Z}_{L,N,U}(\boldsymbol{h}) := \mu_{N,\lambda,U} \Big(\prod_{x \in \mathbb{T}_L} h_x^{u_x} (-2 d h_x)^{u_{H(x)}} \Big),$$

where u_y is the number of links **unpaired** at $y \in \mathcal{V}_L$ and for any $x \in \mathbb{T}_L$ (original torus), H(x) is the vertex on top of x.

Definition

Let n_x be the number of pairings at at x. We define $U = (U_x)_{x \in \mathcal{V}_L}$:

$$\forall x \in \mathbb{T}_L \qquad U_x := \begin{cases} 1 & \text{if } n_x \leq 1 \text{ and no link on } \{x, H(x)\} \text{ is unpaired at } x, \\ \frac{1}{2} & \text{if } n_x \leq 1 \text{ and } \geq 1 \text{ links on } \{x, H(x)\} \text{ are unpaired at } x, \\ 0 & \text{if } n_x > 1. \end{cases}$$
$$\forall x \in \mathbb{T}_L^{(2)} \qquad U_x := \mathbb{1}_{\{n_x = 0\}}$$

H(x) is the vertex "placed on top" of $x \in \mathbb{T}_L$, i.e, $H(x) \in \mathbb{T}_L^{(2)}$

Loops and double dimers are vertex-self-avoiding and cannot touch virtual vertices, walks are 'not entirely' vertex-self-avoiding and can end on virtual vertices.

Definition

Let n_x be the number of pairings at at x. We define $U = (U_x)_{x \in \mathcal{V}_L}$:

$$\forall x \in \mathbb{T}_L \qquad U_x := \begin{cases} 1 & \text{if } n_x \leq 1 \text{ and no link on } \{x, H(x)\} \text{ is unpaired at } x, \\ \frac{1}{2} & \text{if } n_x \leq 1 \text{ and } \geq 1 \text{ links on } \{x, H(x)\} \text{ are unpaired at } x, \\ 0 & \text{if } n_x > 1. \end{cases}$$
$$\forall x \in \mathbb{T}_L^{(2)} \qquad U_x := \mathbb{1}_{\{n_x = 0\}}$$

H(x) is the vertex "placed on top" of $x \in \mathbb{T}_L$, i.e, $H(x) \in \mathbb{T}_L^{(2)}$

Loops and double dimers are vertex-self-avoiding and cannot touch virtual vertices, walks are 'not entirely' vertex-self-avoiding and can end on virtual vertices.

Figure: A configuration w such that $\mu(w) = 0$.

We have,

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

in the limit as $\varphi \rightarrow 0$, where

$$\begin{aligned} \mathcal{Z}_{L,N,\lambda}^{(2)}(\boldsymbol{h}) &:= -\sum_{\{x,y\}\in\mathbb{Z}_{L}} (h_{y} - h_{x})^{2} \, \frac{N\lambda}{2} \, Z_{L,N,\lambda}^{\ell} \, + \\ &+ \frac{N\lambda^{2}}{2} \sum_{x,y\in\mathbb{T}_{L}} Z_{L,N,\lambda}(x,y) \, (\triangle h)_{x} \, (\triangle h)_{y} \end{aligned}$$

We have,

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

in the limit as $\varphi \rightarrow 0$, where

$$\begin{split} \mathcal{Z}_{L,N,\lambda}^{(2)}(\boldsymbol{h}) &:= -\sum_{\{x,y\}\in\mathbb{E}_{L}} (h_{y} - h_{x})^{2} \, \frac{N\lambda}{2} \, Z_{L,N,\lambda}^{\ell} \, + \\ &+ \frac{N\lambda^{2}}{2} \sum_{x,y\in\mathbb{T}_{L}} Z_{L,N,\lambda}(x,y) \, (\triangle h)_{x} \, (\triangle h)_{y} \end{split}$$

We have,

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

in the limit as $\varphi \rightarrow 0$, where

$$\begin{aligned} \mathcal{Z}_{L,N,\lambda}^{(2)}(\boldsymbol{h}) &:= -\sum_{\{x,y\}\in\mathbb{Z}_{L}} (h_{y} - h_{x})^{2} \frac{N\lambda}{2} Z_{L,N,\lambda}^{\ell} + \\ &+ \frac{N\lambda^{2}}{2} \sum_{x,y\in\mathbb{T}_{L}} Z_{L,N,\lambda}(x,y) \ (\bigtriangleup h)_{x} \ (\bigtriangleup h)_{y} \end{aligned}$$

We have,

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

in the limit as $\varphi \rightarrow 0$, where

$$\begin{split} \mathcal{Z}_{L,N,\lambda}^{(2)}(\boldsymbol{h}) &:= -\sum_{\{x,y\} \in \mathbb{E}_{L}} (h_{y} - h_{x})^{2} \frac{N\lambda}{2} Z_{L,N,\lambda}^{\ell} + \\ &+ \frac{N\lambda^{2}}{2} \sum_{x,y \in \mathbb{T}_{L}} Z_{L,N,\lambda}(x,y) \ (\bigtriangleup h)_{x} \ (\bigtriangleup h)_{y} \end{split}$$

We have,

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

in the limit as $\varphi \rightarrow 0$, where

$$\begin{split} \mathcal{Z}_{L,N,\lambda}^{(2)}(\boldsymbol{h}) &:= -\sum_{\{x,y\}\in\mathbb{Z}_{L}} (h_{y} - h_{x})^{2} \, \frac{N\lambda}{2} \, Z_{L,N,\lambda}^{\ell} \, + \\ &+ \frac{N\lambda^{2}}{2} \sum_{x,y\in\mathbb{T}_{L}} Z_{L,N,\lambda}(x,y) \, (\triangle h)_{x} \, (\triangle h)_{y} \end{split}$$

Chessboard estimate

Theorem (Chessboard estimate)

For any $\mathbf{h} = (h_z)_{z \in \mathbb{T}_L}$, define $\mathbf{h}^x = (h_z^x)_{z \in \mathbb{T}_L}$ as the vector which is obtained from \mathbf{h} as follows:

$$h_z^x := h_x$$
 for every $z \in \mathbb{T}_L$.

Then,

$$\mathcal{Z}(\boldsymbol{h}) \leq \Big(\prod_{x \in \mathbb{T}_L} \mathcal{Z}(\boldsymbol{h}^x)\Big)^{\frac{1}{|\mathbb{T}_L|}}$$

Chessboard estimate

Theorem (Chessboard estimate)

For any $\mathbf{h} = (h_z)_{z \in \mathbb{T}_L}$, define $\mathbf{h}^x = (h_z^x)_{z \in \mathbb{T}_L}$ as the vector which is obtained from \mathbf{h} as follows:

$$h_z^{\times} := h_x$$
 for every $z \in \mathbb{T}_L$.

Then,

$$\mathcal{Z}(\boldsymbol{h}) \leq \Big(\prod_{x \in \mathbb{T}_L} \mathcal{Z}(\boldsymbol{h}^x)\Big)^{\frac{1}{|\mathbb{T}_L|}}$$

Derivation Key Inequality from Chessboard estimate and Polynomial expansion

Let $\boldsymbol{h} = (h_z)_{z \in \mathbb{T}_L}$ be arbitrary, we have:

$$\forall x \in \mathbb{T}_L \quad \mathcal{Z}_{L,N,\lambda,U}^{(2)}(\mathbf{h}^x) = 0$$

Thus,

$$\begin{split} \mathcal{Z}_{L,N,\lambda,U}(\varphi \boldsymbol{h}) &= Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda,U}^{(2)}(\boldsymbol{h}) + o(\varphi^2) \\ &\leq \Big(\prod_{x \in \mathbb{T}_L} \mathcal{Z}_{L,N,\lambda,U}((\varphi \boldsymbol{h}^x))\Big)^{\frac{1}{|\mathbb{T}_L|}} \\ &= \Big(\prod_{x \in \mathbb{T}_L} \left(Z_{L,N,\lambda}^{\ell} + o(\varphi^2)\right)\Big)^{\frac{1}{|\mathbb{T}_L|}} \\ &= Z_{L,N,\lambda}^{\ell} + o(\varphi^2), \end{split}$$

We conclude that,

$$\mathcal{Z}^{(2)}_{L,N,\lambda,U}(oldsymbol{h})\leq 0.$$

This gives the Key Inequality.

Definition (Reflections)

- *R* reflection plane through edges, orthogonal to e_i for some $i \in \{1, ..., d\}$,
- $\Theta: \mathcal{V}_L \mapsto \mathcal{V}_L$ reflection with respect to R,
- $\mathcal{V}_L^+, \mathcal{V}_L^- \subset \mathcal{V}_L$ subsets such that $\Theta(\mathcal{V}_L^\pm) = \mathcal{V}_L^\mp$,
- $\Theta : W_L \mapsto W_L$ reflects $w \in W_L$ with respect to R (see Figure)
- Given $f: \mathcal{W}_L \mapsto \mathbb{R}$, define the function Θf as

$$\Theta f(w) := f(\Theta(w)).$$

Definition (Reflections)

- *R* reflection plane through edges, orthogonal to e_i for some $i \in \{1, ..., d\}$,
- $\Theta: \mathcal{V}_L \mapsto \mathcal{V}_L$ reflection with respect to R,
- $\mathcal{V}_L^+, \mathcal{V}_L^- \subset \mathcal{V}_L$ subsets such that $\Theta(\mathcal{V}_L^\pm) = \mathcal{V}_L^\mp$,
- $\Theta : W_L \mapsto W_L$ reflects $w \in W_L$ with respect to R (see Figure)
- Given $f: \mathcal{W}_L \mapsto \mathbb{R}$, define the function Θf as

$$\Theta f(w) := f(\Theta(w)).$$

Definition (Reflections)

- *R* reflection plane through edges, orthogonal to e_i for some $i \in \{1, ..., d\}$,
- $\Theta: \mathcal{V}_L \mapsto \mathcal{V}_L$ reflection with respect to R,
- $\mathcal{V}_L^+, \mathcal{V}_L^- \subset \mathcal{V}_L$ subsets such that $\Theta(\mathcal{V}_L^\pm) = \mathcal{V}_L^\mp$,
- $\Theta : W_L \mapsto W_L$ reflects $w \in W_L$ with respect to R (see Figure)
- Given $f: \mathcal{W}_L \mapsto \mathbb{R}$, define the function Θf as

$$\Theta f(w) := f(\Theta(w)).$$

Definition (Reflections)

- *R* reflection plane through edges, orthogonal to e_i for some $i \in \{1, ..., d\}$,
- $\Theta: \mathcal{V}_L \mapsto \mathcal{V}_L$ reflection with respect to R,
- $\mathcal{V}_L^+, \mathcal{V}_L^- \subset \mathcal{V}_L$ subsets such that $\Theta(\mathcal{V}_L^\pm) = \mathcal{V}_L^\mp$,
- $\Theta : W_L \mapsto W_L$ reflects $w \in W_L$ with respect to R (see Figure)
- Given $f: \mathcal{W}_L \mapsto \mathbb{R}$, define the function Θf as

$$\Theta f(w) := f(\Theta(w)).$$

Theorem (Reflection positivity)

For any pair of functions $f, g \in A^+$, we have that,

 $\ \, \textcircled{0} \quad \mu_{L,N,\lambda,U}(f\Theta f) \geq 0,$

from which we deduce that $\mu_{L,N,\lambda,U}$ is reflection positive, namely:

$$\mu_{L,N,\lambda,U}(f \Theta g) \leq \mu_{L,N,\lambda,U}(f \Theta f)^{\frac{1}{2}} \mu_{L,N,\lambda,U}(g \Theta g)^{\frac{1}{2}}.$$

Proof of $\mu_{L,N,\lambda,U}(f\Theta f) \ge 0$ when N = 1:

- $\mu^{R}(w) := \prod_{e \in \mathcal{E}^{R}} \frac{\lambda^{m_{e}}}{m_{e}!}$
- $\mathcal{E}^{\pm} :=$ edges with **at least** one end-point in \mathcal{V}_{L}^{\pm} ,
- $\mu^{\pm}(w) := \left(\prod_{x \in \mathcal{V}^{\pm}} U_x(w)\right) \left(\prod_{e \in \mathcal{E}_L^{\pm} \setminus \mathcal{E}_L^R} \frac{\lambda^{m_e}}{m_e!}\right)$
- $\mathcal{W}^{R} :=$ configurations with **links only above** \mathcal{E}^{R} and all of them **unpaired**
- w^{\pm} is the **restriction** of w to \mathcal{V}_{L}^{\pm} (keep links incident to sites in \mathcal{V}_{L}^{\pm}),

$$\begin{split} \mu(f\Theta f) &= \sum_{w'\in\mathcal{W}^R} \sum_{\substack{w\in\mathcal{W}\\ P_R(w)=w'}} f(w)\Theta f(w)\mu(w) = \sum_{w'\in\mathcal{W}^R} \sum_{\substack{w\in\mathcal{W}\\ P_R(w)=w'}} f(w^+)\Theta f(w^-)\mu^R(w')\mu^+(w^+)\mu^-(w^-) \\ &= \sum_{w'\in\mathcal{W}^R} \mu^R(w') \Big(\sum_{\substack{w\in\mathcal{W}\\ P_R(w)=w'}} f(w^+)\mu^+(w)\Big) \Big(\sum_{\substack{w\in\mathcal{W}\\ P_R(w)=w'}} \Theta f(w^-)\mu^-(w)\Big) = \\ &= \sum_{w'\in\mathcal{W}^R} \mu^R(w') \Big(\sum_{\substack{w\in\mathcal{W}\\ P_R(w)=w'}} f(w^+)\mu^+(w)\Big)^2 \ge 0. \end{split}$$

For arbitrary **h**, define \mathbf{h}^{\pm} as follows:

$$\forall x \in \mathbb{T}_L \qquad h_x^{\pm} := \begin{cases} h_x & \text{if } x \in \mathbb{T}_L^+ \\ h_{\Theta(x)} & \text{if } x \in \mathbb{T}_L^-. \end{cases}$$

We have that,

$$\mathcal{Z}_{L,N,\lambda,U}(oldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L,N,\lambda,U}(oldsymbol{h}^+)} \,\, \mathcal{Z}_{L,N,\lambda,U}(oldsymbol{h}^-)$$

Proof. Note that

$$\mathcal{Z}_{L,N,\lambda,U}(\boldsymbol{h}) = \mu \Big(\prod_{x \in \mathbb{T}_L^+} \left(h_x^{u_x} (-2dh_x)^{u_{H(x)}} \right) \prod_{x \in \mathbb{T}_L^-} \left(h_x^{u_x} (-2dh_x)^{u_{H(x)}} \right) \Big)$$

and apply R.P.

For arbitrary \mathbf{h} , define \mathbf{h}^{\pm} as follows:

$$\forall x \in \mathbb{T}_L \qquad h_x^{\pm} := \begin{cases} h_x & \text{if } x \in \mathbb{T}_L^+ \\ h_{\Theta(x)} & \text{if } x \in \mathbb{T}_L^-. \end{cases}$$

$$\mathcal{Z}_{L,N,\lambda,U}(m{h}) \leq \sqrt{\mathcal{Z}_{L,N,\lambda,U}(m{h}^+) \ \mathcal{Z}_{L,N,\lambda,U}(m{h}^-)}$$

For arbitrary **h**, define \mathbf{h}^{\pm} as follows:

$$\forall x \in \mathbb{T}_L \qquad h_x^{\pm} := \begin{cases} h_x & \text{if } x \in \mathbb{T}_L^+ \\ h_{\Theta(x)} & \text{if } x \in \mathbb{T}_L^-. \end{cases}$$

$$\mathcal{Z}_{L,N,\lambda,U}(m{h}) \leq \sqrt{\mathcal{Z}_{L,N,\lambda,U}(m{h}^+) \ \mathcal{Z}_{L,N,\lambda,U}(m{h}^-)}$$

For arbitrary **h**, define \mathbf{h}^{\pm} as follows:

$$\forall x \in \mathbb{T}_L \qquad h_x^{\pm} := \begin{cases} h_x & \text{if } x \in \mathbb{T}_L^+ \\ h_{\Theta(x)} & \text{if } x \in \mathbb{T}_L^-. \end{cases}$$

$$\mathcal{Z}_{L,N,\lambda,U}(m{h}) \leq \sqrt{\mathcal{Z}_{L,N,\lambda,U}(m{h}^+) \ \mathcal{Z}_{L,N,\lambda,U}(m{h}^-)}$$

For arbitrary **h**, define \mathbf{h}^{\pm} as follows:

$$\forall x \in \mathbb{T}_L \qquad h_x^{\pm} := \begin{cases} h_x & \text{if } x \in \mathbb{T}_L^+ \\ h_{\Theta(x)} & \text{if } x \in \mathbb{T}_L^-. \end{cases}$$

$$\mathcal{Z}_{L,N,\lambda,U}(m{h}) \leq \sqrt{\mathcal{Z}_{L,N,\lambda,U}(m{h}^+) \ \mathcal{Z}_{L,N,\lambda,U}(m{h}^-)}$$

For arbitrary **h**, define \mathbf{h}^{\pm} as follows:

$$\forall x \in \mathbb{T}_L \qquad h_x^{\pm} := \begin{cases} h_x & \text{if } x \in \mathbb{T}_L^+ \\ h_{\Theta(x)} & \text{if } x \in \mathbb{T}_L^-. \end{cases}$$

$$\mathcal{Z}_{L,N,\lambda,U}(m{h}) \leq \sqrt{\mathcal{Z}_{L,N,\lambda,U}(m{h}^+) \ \mathcal{Z}_{L,N,\lambda,U}(m{h}^-)}$$

For arbitrary **h**, define \mathbf{h}^{\pm} as follows:

$$\forall x \in \mathbb{T}_L \qquad h_x^{\pm} := \begin{cases} h_x & \text{if } x \in \mathbb{T}_L^+ \\ h_{\Theta(x)} & \text{if } x \in \mathbb{T}_L^-. \end{cases}$$

$$\mathcal{Z}_{L,N,\lambda,U}(m{h}) \leq \sqrt{\mathcal{Z}_{L,N,\lambda,U}(m{h}^+)} \ \mathcal{Z}_{L,N,\lambda,U}(m{h}^-)$$

For arbitrary **h**, define \mathbf{h}^{\pm} as follows:

$$\forall x \in \mathbb{T}_L \qquad h_x^{\pm} := \begin{cases} h_x & \text{if } x \in \mathbb{T}_L^+ \\ h_{\Theta(x)} & \text{if } x \in \mathbb{T}_L^-. \end{cases}$$

$$\mathcal{Z}_{L,N,\lambda,U}(oldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L,N,\lambda,U}(oldsymbol{h}^+)} \,\, \mathcal{Z}_{L,N,\lambda,U}(oldsymbol{h}^-)$$

For arbitrary **h**, define \mathbf{h}^{\pm} as follows:

$$\forall x \in \mathbb{T}_L \qquad h_x^{\pm} := \begin{cases} h_x & \text{if } x \in \mathbb{T}_L^+ \\ h_{\Theta(x)} & \text{if } x \in \mathbb{T}_L^-. \end{cases}$$

$$\mathcal{Z}_{L,N,\lambda,U}(oldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L,N,\lambda,U}(oldsymbol{h}^+)} \,\, \mathcal{Z}_{L,N,\lambda,U}(oldsymbol{h}^-)$$

For arbitrary **h**, define \mathbf{h}^{\pm} as follows:

$$\forall x \in \mathbb{T}_L \qquad h_x^{\pm} := \begin{cases} h_x & \text{if } x \in \mathbb{T}_L^+ \\ h_{\Theta(x)} & \text{if } x \in \mathbb{T}_L^-. \end{cases}$$

$$\mathcal{Z}_{L,N,\lambda,U}(oldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L,N,\lambda,U}(oldsymbol{h}^+)} \,\, \mathcal{Z}_{L,N,\lambda,U}(oldsymbol{h}^-)$$

Justification of polynomial expansion:

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

 $Z_{L,N,\lambda}^{\ell}$ is the contribution from random path configurations with no unpaired links:

Justification of polynomial expansion:

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

Contribution from random path configurations with a link unpaired at its end-points x and y such that $\{x, y\} \in \mathbb{E}_L$:

$$N \lambda h_x h_y Z_{L,N,\lambda}^\ell$$

Justification of polynomial expansion:

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

Contribution from random path configurations with a link unpaired at its end-points x and y such that $\{x, y\} \in \mathbb{E}_L$:

$$N\lambda \sum_{\{x,y\}\in\mathbb{E}_L} h_x h_y Z_{L,N,\lambda}^{\ell}$$

Justification of polynomial expansion:

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

Contribution from random path configurations with a link unpaired at its end-points $x \in \mathbb{T}_L$ and y with y on the top of x:

$$-\frac{1}{2} N \lambda (2 d h_x^2) Z_{L,N,\lambda}^{\ell}$$

Justification of polynomial expansion:

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

Summing contributions with a link unpaired at both its end-points:

Justification of polynomial expansion:

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

Contribution from random path configurations with a walk having x and y as second-last points:

Justification of polynomial expansion:

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

Contribution from random path configurations with a walk having x and y as second-last points:

Justification of polynomial expansion:

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

Contribution from random path configurations with a walk having x and y as second-last points:

Justification of polynomial expansion:

$$\mathcal{Z}_{L,N,\lambda,U}(\varphi \mathbf{h}) = Z_{L,N,\lambda}^{\ell} + \varphi^2 \mathcal{Z}_{L,N,\lambda}^{(2)}(\mathbf{h}) + o(\varphi^2),$$

Contribution from random path configurations with a walk having x and y as second-last points:

• Other Applications of the **key inequality** (e.g. Merming-Wagner or polynomial decay of correlations in *d* = 2?)

$$\sum_{x,y\in\mathbb{T}_L} G_{L,N,\lambda}(x,y)(\triangle h)_x \,(\triangle h)_y \,\leq\, \sum_{\{x,y\}\in\mathbb{E}_L} \big(h_y-h_x\big)^2.$$

• Implementation of the method for the (loop representation of) Quantum bose gas or quantum Heisenberg model?