Non-decay of correlations in the dimer model and phase transition in lattice permutations in $\mathbb{Z}^{d}, d>2$, via reflection positivity

Lorenzo Taggi

Weierstrass Institute for Applied Analysis and Stochastics, Berlin
(1) The dimer model

- Overview
- Results
(2) Lattice permutations
- Overview
- Results
(3) Proof
- Proof Overview
- An Infrared bound
- Derivation of the key inequality
- Random path model
- Chessboard estimate
- Derivation Key Inequality
- Reflection Positivity

4. Final remarks

Definition (Dimer Cover)

A dimer cover of the graph $\mathcal{G}=(V, E)$ is a spanning sub-graph of \mathcal{G} such that every vertex has degree one.

- Exact enumeration on \mathbb{Z}^{2}
(Kasteleyn, Fisher and Temperley, 1961).
- Correlations on planar graphs (Fisher and J. Stephenson, 1963)
- Connections to critical planar Ising model (Kasteleyn 1961, Fisher 1966).
- No phase transition in monomer-dimer model (Heilmann, Lieb, 1972)
- Arctic circle phenomenon (H. Cohn, N. Elkies, J. Propp, 1996)
- Scaling limits, conformal invariance (Kenyon, 2000-2014).

What about $\mathbb{Z}^{d}, d>2$?

- Hammersley et al, 1969: 'Negative Finding for the Three-Dimensional Dimer Problem'.
- Jerrum, 1987: 'Monomer-dimer systems are computationally intractable'.

Definition (Monomer-monomer correlation)

Define $\mathbb{T}_{L}:=\mathbb{Z}^{d} / L \mathbb{Z}^{d}$ and, for any $M \subset \mathbb{T}_{L}$ (set of monomers), let $\mathcal{D}(M)$ be the set of dimer covers of $\mathbb{T}_{L} \backslash M$. We define the monomer-monomer correlation,

$$
\forall z \in \mathbb{T}_{L} \quad \Xi_{L}(z):=\frac{|\mathcal{D}(\{o, z\})|}{\mathcal{D}(\emptyset)} .
$$

- Conjecture (Fisher and Stephenson):

$$
\text { On } \mathbb{Z}^{2} \quad \lim _{L \rightarrow \infty} \Xi_{L}(z) \sim \frac{1}{|z|^{\frac{1}{2}}}
$$

- Proved for:
- z along the cartesian axis
(Fisher, Stephenson, 1963)
- z along diagonals
(Hartwig, 1966)

The dimer model

Let r_{d} be the expected number of returns of a simple random walk on \mathbb{Z}^{d}. Define the odd and even sub-lattices

$$
\mathbb{T}_{L}^{e}:=\left\{x \in \mathbb{T}_{L}: d(o, x) \in 2 \mathbb{N}\right\}, \quad \mathbb{T}_{L}^{o}:=\left\{x \in \mathbb{T}_{L}: d(o, x) \in 2 \mathbb{N}+1\right\}
$$

Theorem (Taggi, 2019+)

Suppose that $d>2$. For any $L \in 2 \mathbb{N}$, we have that,

$$
\begin{equation*}
\frac{1}{\left|\mathbb{T}_{L}^{O}\right|} \sum_{x \in \mathbb{T}_{L}^{o}} \equiv_{L}(x) \geq \frac{1}{2 d}\left(1-\frac{r_{d}}{2}\right) \tag{1}
\end{equation*}
$$

Moreover, there exists $c \in\left(0, \frac{1}{2}\right)$ such that for any $L \in 2 \mathbb{N}$ and any odd integer $n \in(0, c L)$,

$$
\begin{equation*}
\Xi_{L}\left(n \boldsymbol{e}_{1}\right) \geq \frac{1}{2 d}\left(1-r_{d}\right) . \tag{2}
\end{equation*}
$$

Remark

$r_{3} \simeq 0.52$ (exact computation Watson, 1939). Moreover, $r_{d+1} \leq r_{d}$.

Remark

$$
\Xi_{L}(x)=0 \text { if } x \in \mathbb{T}_{L}^{e} \text { and } L \in 2 \mathbb{N}
$$

The dimer model

Theorem (Lees, Taggi, 2019)

Suppose that $L \in 2 \mathbb{N}$, let $z \in \mathbb{T}_{L}$ be such that $n=z \cdot \boldsymbol{e}_{i}$ is odd for some $i \in\{1, \ldots, d\}$, suppose that $n \in\left(0, \frac{L}{2}\right)$. Then,

$$
\begin{equation*}
\Xi_{L}(z) \leq \bar{\Xi}_{L}\left(\boldsymbol{e}_{i} n\right) \leq \bar{\Xi}_{L}\left(\boldsymbol{e}_{i}(n-2)\right) \leq \bar{\Xi}_{L}\left(\boldsymbol{e}_{i}\right)=\frac{1}{2 d} . \tag{3}
\end{equation*}
$$

Remark

Since $r_{d} \rightarrow 0$ as $d \rightarrow \infty$, the lower and upper bound are sharp in the limit $d \rightarrow \infty$,

$$
\frac{1}{2 d}\left(1-\frac{r_{d}}{2}\right) \leq \frac{1}{\left|\mathbb{T}_{L}^{o}\right|} \sum_{x \in \mathbb{T}_{L}^{o}} \Xi_{L}(x) \leq \frac{1}{2 d}
$$

Remark

The site monotonicity properties (Lees, Taggi 2019) hold for other models, e.g, Spin $\mathrm{O}(\mathrm{N})$ model with arbitrary $N \in \mathbb{N}_{>0}$, Loop $\mathrm{O}(\mathrm{N})$ model, lattice permutations, and are not limited to the inequalities in (3).

Lattice permutations

Definition

Let $\Omega_{x, y}$ be the set of bijections $\pi: \mathbb{T}_{L} \backslash\{y\} \rightarrow \mathbb{T}_{L} \backslash\{x\}$ such that $\forall z \in \mathbb{T}_{L} \backslash\{y\}$, $|\pi(z)-z|_{1} \leq 1$. Define $\Omega=\cup_{x \in \mathbb{T}_{L}} \Omega_{0, x}$. Fix arbitrary $N, \lambda \geq 0$, define

$$
\forall \pi \in \Omega \quad \mathbb{P}_{L, N, \lambda}(\pi):=\frac{\lambda^{\mathcal{H}(\pi)}(N / 2)^{\mathcal{L}(\pi)}}{Z_{L, \lambda, N}}
$$

where $\mathcal{H}(\pi):=\left|\left\{z \in \mathbb{T}_{L}: \pi(z) \neq z\right\}\right|$ is the number of (directed) edges in the picture and $\mathcal{L}(\pi)$ is the number of loops and double dimers in π.

Terminology: Loops, double dimers, monomers, walk.

- Closely related to Loop $\mathrm{O}(\mathrm{N})$ model
- $\lambda=1, N=0$: uniform SAW in a box (Duminil-Copin, Kozma, Yadin, 2014)
- $N=2$ related to quantum Bose gas
(Feynmann, 1953)
(Ueltschi, Betz, 2010, 2011)
(Elboim, Peled, 2017)

Lattice permutations

Define the fully-packed lattice permutation model,

$$
\mathcal{P}_{L, N}(\pi):=\lim _{\lambda \rightarrow \infty} \mathbb{P}_{L, N, \lambda}(\pi)
$$

We say that π is fully-packed if it contains no monomer.
Let $X: \Omega \rightarrow \mathbb{T}_{L}$ be the last point of the walk (target point).

Theorem (Taggi, 2019+)

In any dimension $d>2$, for any integer N such that $0<N<\frac{4}{r_{d}}$, the following holds for any $L \in 2 \mathbb{N}$:

$$
\forall A \subset \mathbb{T}_{L}, \quad \mathcal{P}_{L, N}(X \in A) \leq \frac{1}{1-\frac{N r_{d}}{4}} \frac{|A|}{L^{d}}
$$

- For example plug in $A=\mathbb{T}_{\epsilon L}$ for small enough ϵ,
- When N is large, exponential decay for all λ :
- Intersecting loops on $\mathbb{Z}^{\boldsymbol{d}}$: Chayes, Pryadko, Shtengel, 1999.
- Loop $\mathbf{O}(\mathbf{N})$ on honeycomb: Duminil-Copin, Peled, Samotij, Spinka, 2014.

Lattice permutations

Definition (Two point function)

Let Ω^{ℓ} be the set of permutations $\pi: \mathbb{T}_{L} \rightarrow \mathbb{T}_{L}$ such that, for any $z \in \mathbb{T}_{L}$, $|\pi(z)-z|_{1} \leq 1$.

$$
Z_{L, N, \lambda}^{\ell}:=\sum_{\pi \in \Omega^{\ell}} \lambda^{\mathcal{H}(\pi)}(N / 2)^{\mathcal{L}(\pi)},
$$

and, for any $x, y \in \mathbb{T}_{L}$, we define

$$
Z_{L, N, \lambda}(x, y):=\sum_{\pi \in \Omega_{x, y}} \lambda^{\mathcal{H}(\pi)}(N / 2)^{\mathcal{L}(\pi)},
$$

Finally, we define the two point function,

$$
G_{L, N, \lambda}(x, y):=\frac{\lambda Z_{L, N, \lambda}(x, y)}{Z_{L, N, \lambda}^{\ell}},
$$

and note that, in the limit $\lambda \rightarrow \infty$, it collects only the contribution of fully packed configurations,

$$
G_{L, N, \infty}(x, y):=\lim _{\lambda \rightarrow \infty} G_{L, N, \lambda}(x, y)=\frac{\sum_{\substack{\pi \in \Omega_{x, y:} \\ \pi \text { is f.p. }}}\left(\frac{N}{2}\right)^{\mathcal{L}(\pi)}}{\sum_{\substack{\pi \in \Omega^{\ell}: \\ \pi \text { is f.p. }}}\left(\frac{N}{2}\right)^{\mathcal{L}(\pi)}} .
$$

Lattice permutations

Theorem (Taggi, 2019+)

Suppose that $d>2$. For any integer N such that $0<N<\frac{4}{r_{d}}$, and $L \in 2 \mathbb{N}$, we have that,

$$
\frac{1}{\left|\mathbb{T}_{L}^{o}\right|} \sum_{x \in \mathbb{T}_{L}^{o}} G_{L, N, \infty}(o, x) \geq \frac{1}{2 d}\left(\frac{2}{N}-\frac{r_{d}}{2}\right)
$$

Moreover, there exists $c \in\left(0, \frac{1}{2}\right)$ such that for any $L \in 2 \mathbb{N}$ and any odd integer $n \in(0, c L)$,

$$
G_{L, N, \infty}\left(o, n \boldsymbol{e}_{1}\right) \geq \frac{1}{2 d}\left(\frac{2}{N}-r_{d}\right) .
$$

Remark

From the monotonicity properties (Lees, Taggi 2019) and the fact that $r_{d} \rightarrow 0$ as $d \rightarrow \infty$, we deduce that the lower and upper bound are sharp in the limit $d \rightarrow \infty$,

$$
\frac{1}{2 d}\left(\frac{2}{N}-\frac{r_{d}}{2}\right) \leq \frac{1}{\left|\mathbb{T}_{L}^{O}\right|} \sum_{x \in \mathbb{T}_{L}^{\circ}} G_{L, N, \infty}(x) \leq \frac{1}{2 d} \frac{2}{N}
$$

Relation between lattice permutations and dimers

Lemma

$$
G_{L, 2, \infty}(x, y)=\Xi_{L}(x, y) .
$$

Proof.

There exist two bijections Π^{1}, Π^{2},

$$
\begin{array}{lll}
\Pi^{1}: \mathcal{D}(\emptyset) \times \mathcal{D}(\{x, y\}) & \mapsto & \tilde{\Omega}_{x, y}:=\left\{\pi \in \Omega_{x, y}: \pi \text { is f.p. }\right\} \\
\Pi^{2}: \mathcal{D}(\emptyset) \times \mathcal{D}(\emptyset) & \mapsto & \tilde{\Omega}^{\ell}:=\left\{\pi \in \Omega^{\ell}: \pi \text { is f.p. }\right\}
\end{array}
$$

Hence,

$$
G_{L, 2, \infty}(x, y)=\frac{\left|\tilde{\Omega}_{x, y}\right|}{\left|\tilde{\Omega}^{\ell}\right|}=\frac{|\mathcal{D}(\emptyset)||\mathcal{D}(\{x, y\})|}{|\mathcal{D}(\emptyset)|^{2}}=\frac{|\mathcal{D}(\{x, y\})|}{|\mathcal{D}(\emptyset)|}=\Xi_{L}(x, y) .
$$

Proof overview

Comment: Inspired by the famous proof of Fröhlich, Simon, Spencer 1976 for the spin $\mathrm{O}(\mathrm{N})$ model
Method overviews: Biskup, Friedli and Velenik, Spinka and Peled, Ueltschi.

Positivity Cesaro sum given Key Inequality

Dual torus, $\mathbb{T}_{L}^{*}:=\left\{\frac{2 \pi}{L}\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{R}^{d}: k_{i} \in\left(-\frac{L}{2}, \frac{L}{2}\right] \cap \mathbb{Z}\right\}$. For $f \in \ell^{2}\left(\mathbb{T}_{L}\right)$,

$$
\begin{gathered}
\forall k \in \mathbb{T}_{L}^{*}, \quad \hat{f}(k):=\sum_{x \in \mathbb{T}_{L}} e^{-i k \cdot x} f(x) . \\
\forall x \in \mathbb{T}_{L}, \quad f(x)=\frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{T}_{L}^{*}} e^{i k \cdot x} \hat{f}(k) .
\end{gathered}
$$

Put $G_{L, N, \infty}(x):=G_{L, N, \infty}(o, x)$.

Lemma

Define the Fourier modes $p:=(\pi, \ldots, \pi), \circ:=(0, \ldots, 0) \in \mathbb{T}_{L}^{*}$. We have that,

$$
\frac{2}{\left|\mathbb{T}_{L}\right|} \sum_{x \in \mathbb{T}_{L}} G_{L, N, \infty}(x)=G_{L, N, \infty}\left(\boldsymbol{e}_{1}\right)-\frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{T}_{L}^{*} \backslash\{o, p\}} e^{i k \cdot e_{1}} \hat{G}_{L, N, \infty}(k)
$$

Proof: From the inverse Fourier transform formula:
$G_{L, N, \infty}\left(\boldsymbol{e}_{1}\right)=\frac{1}{\left|\mathbb{T}_{L}\right|} \hat{G}_{L, N, \infty}(o)+\frac{e^{i p \cdot \boldsymbol{e}_{1}}}{\left|\mathbb{T}_{L}\right|} \hat{G}_{L, N, \infty}(p)+\frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{T}_{L}^{*} \backslash\{o, p\}} e^{i k \cdot \boldsymbol{e}_{1}} \hat{G}_{L, N, \infty}(k)$
the fact that $\hat{G}_{L, N, \infty}(p)=-\hat{G}_{L, N, \infty}(o)$ since we are in the fully packed regime $(\lambda=\infty)$ and from the Fourier transform formula: $\hat{G}_{L, N, \infty}(0)=\sum_{x \in \mathbb{T}_{L}} G_{L, N, \infty}(x)$.

Positivity Cesaro sum given Key Inequality

Dual torus, $\mathbb{T}_{L}^{*}:=\left\{\frac{2 \pi}{L}\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{R}^{d}: k_{i} \in\left(-\frac{L}{2}, \frac{L}{2}\right] \cap \mathbb{Z}\right\}$. For $f \in \ell^{2}\left(\mathbb{T}_{L}\right)$,

$$
\begin{gathered}
\forall k \in \mathbb{T}_{L}^{*}, \quad \hat{f}(k):=\sum_{x \in \mathbb{T}_{L}} e^{-i k \cdot x} f(x) . \\
\forall x \in \mathbb{T}_{L}, \quad f(x)=\frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{T}_{L}^{*}} e^{i k \cdot x} \hat{f}(k) .
\end{gathered}
$$

Put $G_{L, N, \infty}(x):=G_{L, N, \infty}(o, x)$.

Lemma

Define the Fourier modes $p:=(\pi, \ldots, \pi), \circ:=(0, \ldots, 0) \in \mathbb{T}_{L}^{*}$. We have that,

$$
\frac{2}{\left|\mathbb{T}_{L}\right|} \sum_{x \in \mathbb{T}_{L}} G_{L, N, \infty}(x)=G_{L, N, \infty}\left(\boldsymbol{e}_{1}\right)-\frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{T}_{L}^{*} \backslash\{o, p\}} e^{i k \cdot \boldsymbol{e}_{1}} \hat{G}_{L, N, \infty}(k)
$$

$$
\text { Note: } \quad G_{L, N, \infty}\left(\boldsymbol{e}_{1}\right)=\frac{1}{2 d} \frac{2}{N}
$$

Goal: bound $\frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{T}_{L}^{*} \backslash\{o, p\}} e^{i k \cdot e_{1}} \hat{G}_{L, N, \infty}(k) \quad$ away from $\quad \frac{1}{2 d} \frac{2}{N} \quad$ uniformly!!

Part 2 of the proof

Uniform positivity Cesaro sum given the Key Inequality

Theorem (Key inequality)

For any $N \in \mathbb{N}_{>0}, \lambda \in \mathbb{R}_{>0} \cup\{\infty\}, L \in 2 \mathbb{N}_{>0}$, any real vector $\boldsymbol{h}=\left(h_{x}\right)_{x \in \mathbb{T}_{L}}$,

$$
\sum_{x, y \in \mathbb{T}_{L}} G_{L, N, \lambda}(x, y)(\triangle h)_{x}(\triangle h)_{y} \leq \sum_{\{x, y\} \in \mathbb{E}_{L}}\left(h_{y}-h_{x}\right)^{2}
$$

where $(\triangle h)_{x}:=\sum_{y \sim x}\left(h_{y}-h_{x}\right)$.

- Case of Fröhlich, Simon and Spencer: $\left\langle S_{x} \cdot S_{y}\right\rangle$ in place of $G(x, y)$ and factor $\frac{1}{\beta}$ in the RHS

Application of Key Inequality with $h_{x}:=\cos (k \cdot x)$ (Fröhlich, Simon, Spencer 1976)

For any $k=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{T}_{L}^{*}$, define $\varepsilon(k):=\frac{1}{2 \sum_{i=1}^{d}\left(1-\cos \left(k_{i}\right)\right)}$,

$$
k \in \mathbb{T}_{L}^{*} \backslash\{o\}, \quad \hat{G}(k) \leq \frac{1}{\varepsilon(k)}
$$

Note: $\hat{G}(k)$ is real.

Positivity Cesaro sum given Key Inequality

$$
\frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{T}_{L}^{*} \backslash\{o, p\}} e^{i k \cdot e_{1}} \hat{G}_{\infty}(k)=\frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{T}_{L}^{*} \backslash\{o, p\}} \operatorname{Re}\left(e^{i k \cdot e_{1}} \hat{G}_{\infty}(k)\right)=\frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{T}_{L}^{*} \backslash\{o, p\}} \cos \left(k \cdot \boldsymbol{e}_{1}\right) \hat{G}_{\infty}(k)
$$

- Goal: bound red expression away from $\frac{1}{2 d} \frac{2}{N}$ (uniformly in L) to conclude.
- Apply: $\hat{G}_{\infty}(k) \leq \frac{1}{\epsilon(k)}$ (derived from Key Inequality)
- Define: $\mathbb{H}:=\left\{k \in \mathbb{T}_{L}^{*}: k_{1} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]\right\}$,
- Define bijection $\Psi: \mathbb{H} \backslash\{o\} \mapsto \mathbb{H}^{c} \backslash\{p\}$ such that $\Psi(k)=k+(\pm \pi, \ldots, \pm \pi)$.
- Note: $\hat{G}_{\infty}(k+(\pm \pi, \ldots, \pm \pi))=-\hat{G}_{\infty}(k)$ since $G_{\infty}(x)=0$ at even sites (f.p. regime!)

Positivity Cesaro sum given Key Inequality

$$
\frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{T}_{L}^{*} \backslash\{o, p\}} e^{i k \cdot e_{1}} \hat{G}_{\infty}(k)=\frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{T}_{L}^{*} \backslash\{o, p\}} \operatorname{Re}\left(e^{i k \cdot e_{1}} \hat{G}_{\infty}(k)\right)=\frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{T}_{L}^{*} \backslash\{o, p\}} \cos \left(k \cdot e_{1}\right) \hat{G}_{\infty}(k)
$$

- Goal: bound red expression away from $\frac{1}{2 d} \frac{2}{N}$ (uniformly in L) to conclude.
- Apply: $\hat{G}_{\infty}(k) \leq \frac{1}{\epsilon(k)}$ (derived from Key Inequality)
- Define: $\mathbb{H}:=\left\{k \in \mathbb{T}_{L}^{*}: k_{1} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]\right\}$,
- Define bijection $\Psi: \mathbb{H} \backslash\{o\} \mapsto \mathbb{H}^{c} \backslash\{p\}$ such that $\Psi(k)=k+(\pm \pi, \ldots, \pm \pi)$.
- Note: $\hat{G}_{\infty}(k+(\pm \pi, \ldots, \pm \pi))=-\hat{G}_{\infty}(k)$ since $G_{\infty}(x)=0$ at even sites (f.p. regime!)

$$
\begin{aligned}
& \frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{T}_{L}^{*} \backslash\{o, p\}} \cos \left(k \cdot \boldsymbol{e}_{1}\right) \hat{G}(k)=\frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{H} \backslash\{0\}}\left(\cos \left(k \cdot \boldsymbol{e}_{1}\right) \hat{G}(k)+\cos \left(\Psi(k) \cdot \boldsymbol{e}_{1}\right) \hat{G}(\Psi(k))\right. \\
= & \frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{H} \backslash\{o\}} 2 \cos \left(k \cdot \boldsymbol{e}_{1}\right) \hat{G}(k) \leq \frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{H} \backslash\{0\}} \frac{2 \cos \left(k \cdot \boldsymbol{e}_{1}\right)}{\epsilon(k)} \\
= & \frac{1}{2 d} \frac{1}{\left|\mathbb{T}_{L}\right|} \sum_{k \in \mathbb{H} \backslash\{o\}} \frac{2 \cos \left(k \cdot \boldsymbol{e}_{1}\right)}{1-\frac{1}{d} \sum_{i=1}^{d} \cos \left(k \cdot \boldsymbol{e}_{1}\right)} \longrightarrow \frac{1}{2 d} \frac{1}{2} \frac{1}{(2 \pi)^{d}} \int_{H} d k \frac{2 \cos \left(k \cdot \boldsymbol{e}_{1}\right)}{1-\frac{1}{d} \sum_{i=1}^{d} \cos \left(k \cdot \boldsymbol{e}_{1}\right)} \\
= & \frac{1}{4 d} r_{d}, \quad \text { where } H:=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times[-\pi, \pi] \ldots \times[-\pi, \pi] .
\end{aligned}
$$

Proof overview

(1) arbitrary number of undirected loops, double dimers and walks,
(1) such objects are allowed to 'use' the same edge multiple times,
(i) it can be used to represent different models by choosing the weight function appropriately: e.g. spin $\mathrm{O}(\mathrm{N})$ model, loop $\mathrm{O}(\mathrm{N})$ model, random permutations, dimer model.
(0) it will be possible for the walks to enter 'from the top'

The random path model

Definition (Set of configurations)

- Undirected finite graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$
- Link cardinalities $m \in \mathcal{M}_{\mathcal{G}}:=\mathbb{N}^{\mathcal{E}}$. More specifically

$$
m=\left(m_{e}\right)_{e \in \mathcal{E}}
$$

where $m_{e} \in \mathbb{N}$ represents the number of links on the edge e.

- A pairing $\pi=\left(\pi_{x}\right)_{x \in \mathcal{V}}$ for $\boldsymbol{m} \in \mathcal{M}_{\mathcal{G}}$ is such that π_{x} pairs links incident to x so that
(1) any link incident to x is paired at x to at most an other link incident to x
(1) any link incident to x might be unpaired at x
- $\mathcal{W}_{\mathcal{G}}$ set of configurations $w=(m, \pi)$ such that $m \in \mathcal{M}_{\mathcal{G}}$ and π is a pairing for m.
$0 \quad 0 \quad 0$
$0 \quad 0 \quad 0$
$0 \quad 0 \quad 0$

The random path model

Definition (Set of configurations)

- Undirected finite graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$
- Link cardinalities $m \in \mathcal{M}_{\mathcal{G}}:=\mathbb{N}^{\mathcal{E}}$. More specifically

$$
m=\left(m_{e}\right)_{e \in \mathcal{E}}
$$

where $m_{e} \in \mathbb{N}$ represents the number of links on the edge e.

- A pairing $\pi=\left(\pi_{x}\right)_{x \in \mathcal{V}}$ for $\boldsymbol{m} \in \mathcal{M}_{\mathcal{G}}$ is such that π_{x} pairs links incident to x so that
(1) any link incident to x is paired at x to at most an other link incident to x
(1) any link incident to x might be unpaired at x
- $\mathcal{W}_{\mathcal{G}}$ set of configurations $w=(m, \pi)$ such that $m \in \mathcal{M}_{\mathcal{G}}$ and π is a pairing for m.

The random path model

Definition (Set of configurations)

- Undirected finite graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$
- Link cardinalities $m \in \mathcal{M}_{\mathcal{G}}:=\mathbb{N}^{\mathcal{E}}$. More specifically

$$
m=\left(m_{e}\right)_{e \in \mathcal{E}}
$$

where $m_{e} \in \mathbb{N}$ represents the number of links on the edge e.

- A pairing $\pi=\left(\pi_{x}\right)_{x \in \mathcal{V}}$ for $\boldsymbol{m} \in \mathcal{M}_{\mathcal{G}}$ is such that π_{x} pairs links incident to x so that
(1) any link incident to x is paired at x to at most an other link incident to x
(1) any link incident to x might be unpaired at x
- $\mathcal{W}_{\mathcal{G}}$ set of configurations $w=(m, \pi)$ such that $m \in \mathcal{M}_{\mathcal{G}}$ and π is a pairing for m.

The random path model

Definition (Measure)

For any $w \in \mathcal{W}_{\mathcal{G}}$, define the (not normalised, possibly signed) measure,

$$
\forall w=(m, \pi) \quad \mu_{\mathcal{G}, N, \lambda}(w)=\left(\prod_{e \in \mathcal{E}} \frac{\lambda^{m_{e}}}{m_{e}!}\right)\left(\prod_{x \in \mathcal{V}} U_{x}(w)\right) N^{\mathcal{L}(w)}
$$

where $U=\left(U_{x}\right)_{x \in \mathcal{V}}$ are the weight functions, U_{x} has domain $\{x\}$ and $\mathcal{L}(w)$ is the number of link-connected components of w.

Random path model

T $\begin{aligned} & \text { Torus } \\ & (\mathrm{d}=1)\end{aligned}$

Random path model

Random path model

Definition

Let $\boldsymbol{h}=\left(h_{x}\right)_{x \in \mathbb{T}_{L}}$ be a real vector, define

$$
\mathcal{Z}_{L, N, U}(\boldsymbol{h}):=\mu_{N, \lambda, U}\left(\prod_{x \in \mathbb{T}_{L}} h_{x}^{u_{x}}\left(-2 d h_{x}\right)^{u_{H}(x)}\right),
$$

where u_{y} is the number of links unpaired at $y \in \mathcal{V}_{L}$ and for any $x \in \mathbb{T}_{L}$ (original torus), $H(x)$ is the vertex on top of x.

Definition

Let n_{x} be the number of pairings at at x. We define $U=\left(U_{x}\right)_{x \in \mathcal{V}_{L}}$:
$\forall x \in \mathbb{T}_{L} \quad U_{x}:= \begin{cases}1 & \text { if } n_{x} \leq 1 \text { and no link on }\{x, H(x)\} \text { is unpaired at } x, \\ \frac{1}{2} & \text { if } n_{x} \leq 1 \text { and } \geq 1 \text { links on }\{x, H(x)\} \text { are unpaired at } x, \\ 0 & \text { if } n_{x}>1 .\end{cases}$
$\forall x \in \mathbb{T}_{L}^{(2)} \quad U_{x}:=\mathbb{1}_{\left\{n_{x}=0\right\}}$
$H(x)$ is the vertex "placed on top" of $x \in \mathbb{T}_{L}$, i.e, $H(x) \in \mathbb{T}_{L}^{(2)}$
Loops and double dimers are vertex-self-avoiding and cannot touch virtual vertices, walks are 'not entirely' vertex-self-avoiding and can end on virtual vertices.

Definition

Let n_{x} be the number of pairings at at x. We define $U=\left(U_{x}\right)_{x \in \mathcal{V}_{L}}$:

$$
\forall x \in \mathbb{T}_{L} \quad U_{x}:= \begin{cases}1 & \text { if } n_{x} \leq 1 \text { and no link on }\{x, H(x)\} \text { is unpaired at } x, \\ \frac{1}{2} & \text { if } n_{x} \leq 1 \text { and } \geq 1 \text { links on }\{x, H(x)\} \text { are unpaired at } x, \\ 0 & \text { if } n_{x}>1 .\end{cases}
$$

$$
\forall x \in \mathbb{T}_{L}^{(2)} \quad U_{x}:=\mathbb{1}_{\left\{n_{x}=0\right\}}
$$

$H(x)$ is the vertex "placed on top" of $x \in \mathbb{T}_{L}$, i.e, $H(x) \in \mathbb{T}_{L}^{(2)}$
Loops and double dimers are vertex-self-avoiding and cannot touch virtual vertices, walks are 'not entirely' vertex-self-avoiding and can end on virtual vertices.

Figure: A configuration w such that $\mu(w)=0$.

Polynomial expansion

Theorem (Polynomial expansion)

We have,

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right),
$$

in the limit as $\varphi \rightarrow 0$, where

$$
\begin{aligned}
\mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h}):=-\sum_{\{x, y\} \in \mathbb{E}_{L}}\left(h_{y}-h_{x}\right)^{2} \frac{N \lambda}{2} Z_{L, N, \lambda}^{\ell} & + \\
& +\frac{N \lambda^{2}}{2} \sum_{x, y \in \mathbb{T}_{L}} z_{L, N, \lambda}(x, y)(\Delta h)_{x}(\triangle h)_{y}
\end{aligned}
$$

Note: the Key Inequality is: $\mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h}) \leq 0!$!!

Polynomial expansion

Theorem (Polynomial expansion)

We have,

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right)
$$

in the limit as $\varphi \rightarrow 0$, where

$$
\left.\begin{array}{rl}
\mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h}):=-\sum_{\{x, y\} \in \mathbb{E}_{L}}\left(h_{y}-h_{x}\right)^{2} \frac{N \lambda}{2} & z_{L, N, \lambda}^{\ell}
\end{array}\right)
$$

Note: the Key Inequality is: $\mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h}) \leq 0!$!!
$0 \quad 0 \quad 0$

Polynomial expansion

Theorem (Polynomial expansion)

We have,

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right)
$$

in the limit as $\varphi \rightarrow 0$, where

$$
\left.\begin{array}{rl}
\mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h}):=-\sum_{\{x, y\} \in \mathbb{E}_{L}}\left(h_{y}-h_{x}\right)^{2} \frac{N \lambda}{2} & z_{L, N, \lambda}^{\ell}
\end{array}\right)
$$

Note: the Key Inequality is: $\mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h}) \leq 0!!!$

Polynomial expansion

Theorem (Polynomial expansion)

We have,

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right)
$$

in the limit as $\varphi \rightarrow 0$, where

$$
\left.\begin{array}{rl}
\mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h}):=-\sum_{\{x, y\} \in \mathbb{E}_{L}}\left(h_{y}-h_{x}\right)^{2} \frac{N \lambda}{2} & z_{L, N, \lambda}^{\ell}
\end{array}\right)
$$

Note: the Key Inequality is: $\mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h}) \leq 0!!!$

Polynomial expansion

Theorem (Polynomial expansion)

We have,

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right)
$$

in the limit as $\varphi \rightarrow 0$, where

$$
\left.\begin{array}{rl}
\mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h}):=-\sum_{\{x, y\} \in \mathbb{E}_{L}}\left(h_{y}-h_{x}\right)^{2} \frac{N \lambda}{2} & z_{L, N, \lambda}^{\ell}
\end{array}\right)
$$

Note: the Key Inequality is: $\mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h}) \leq 0!$!!

Chessboard estimate

Theorem (Chessboard estimate)

For any $\boldsymbol{h}=\left(h_{z}\right)_{z \in \mathbb{T}_{L}}$, define $\boldsymbol{h}^{\times}=\left(h_{z}^{x}\right)_{z \in \mathbb{T}_{L}}$ as the vector which is obtained from \boldsymbol{h} as follows:

$$
h_{z}^{x}:=h_{x} \text { for every } z \in \mathbb{T}_{L} .
$$

Then,

$$
\mathcal{Z}(\boldsymbol{h}) \leq\left(\prod_{x \in \mathbb{T}_{L}} \mathcal{Z}\left(\boldsymbol{h}^{\times}\right)\right)^{\frac{1}{\mathbb{T}_{L}}}
$$

$-2 \mathrm{dh}_{-4}-2 \mathrm{dh}_{-3}-2 \mathrm{dh}_{-2}-2 \mathrm{dh}_{-1}-2 \mathrm{dh}_{0}-2 \mathrm{dh}_{1}-2 \mathrm{dh}_{2}-2 \mathrm{dh}_{3}-2 \mathrm{dh}_{4}-2 \mathrm{dh}_{5}$

Chessboard estimate

Theorem (Chessboard estimate)

For any $\boldsymbol{h}=\left(h_{z}\right)_{z \in \mathbb{T}_{L}}$, define $\boldsymbol{h}^{\times}=\left(h_{z}^{x}\right)_{z \in \mathbb{T}_{L}}$ as the vector which is obtained from \boldsymbol{h} as follows:

$$
h_{z}^{x}:=h_{x} \text { for every } z \in \mathbb{T}_{L} .
$$

Then,

$$
\mathcal{Z}(\boldsymbol{h}) \leq\left(\prod_{x \in \mathbb{T}_{L}} \mathcal{Z}\left(\boldsymbol{h}^{x}\right)\right)^{\frac{1}{\mathbb{T}_{L} \mid}}
$$

$-2 \mathrm{dh}_{2}-2 \mathrm{dh}_{2}-2 \mathrm{dh}_{2}-2 \mathrm{dh}_{2}-2 \mathrm{dh}_{2}-2 \mathrm{dh}_{2}-2 \mathrm{dh}_{2}-2 \mathrm{dh}_{2}-2 \mathrm{dh}_{2}-2 \mathrm{dh}_{2}$

Derivation Key Inequality from Chessboard estimate and Polynomial

 expansionLet $\boldsymbol{h}=\left(h_{z}\right)_{z \in \mathbb{T}_{L}}$ be arbitrary, we have:

$$
\forall x \in \mathbb{T}_{L} \quad \mathcal{Z}_{L, N, \lambda, U}^{(2)}\left(\boldsymbol{h}^{x}\right)=0
$$

Thus,

$$
\begin{aligned}
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h}) & =Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda, U}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right) \\
& \leq\left(\prod_{x \in \mathbb{T}_{L}} \mathcal{Z}_{L, N, \lambda, U}\left(\left(\varphi \boldsymbol{h}^{x}\right)\right)\right)^{\frac{1}{\mathbb{T}_{L} \mid}} \\
& =\left(\prod_{x \in \mathbb{T}_{L}}\left(Z_{L, N, \lambda}^{\ell}+o\left(\varphi^{2}\right)\right)\right)^{\frac{1}{\left|\mathbb{T}_{L}\right|}} \\
& =Z_{L, N, \lambda}^{\ell}+o\left(\varphi^{2}\right),
\end{aligned}
$$

We conclude that,

$$
\mathcal{Z}_{L, N, \lambda, U}^{(2)}(\boldsymbol{h}) \leq 0
$$

This gives the Key Inequality.

Reflection positivity

Definition (Reflections)

- R reflection plane through edges, orthogonal to \boldsymbol{e}_{i} for some $i \in\{1, \ldots, d\}$,
- $\Theta: \mathcal{V}_{L} \mapsto \mathcal{V}_{L}$ reflection with respect to R,
- $\mathcal{V}_{L}^{+}, \mathcal{V}_{L}^{-} \subset \mathcal{V}_{L}$ subsets such that $\Theta\left(\mathcal{V}_{L}^{ \pm}\right)=\mathcal{V}_{L}^{\mp}$,
- $\Theta: \mathcal{W}_{L} \mapsto \mathcal{W}_{L}$ reflects $w \in \mathcal{W}_{L}$ with respect to R (see Figure)
- Given $f: \mathcal{W}_{L} \mapsto \mathbb{R}$, define the function Θf as

$$
\Theta f(w):=f(\Theta(w))
$$

- Let $\mathcal{A}^{ \pm}$be the class of functions with domain in $\mathcal{V}_{L}^{ \pm}$.

Reflection positivity

Definition (Reflections)

- R reflection plane through edges, orthogonal to \boldsymbol{e}_{i} for some $i \in\{1, \ldots, d\}$,
- $\Theta: \mathcal{V}_{L} \mapsto \mathcal{V}_{L}$ reflection with respect to R,
- $\mathcal{V}_{L}^{+}, \mathcal{V}_{L}^{-} \subset \mathcal{V}_{L}$ subsets such that $\Theta\left(\mathcal{V}_{L}^{ \pm}\right)=\mathcal{V}_{L}^{\mp}$,
- $\Theta: \mathcal{W}_{L} \mapsto \mathcal{W}_{L}$ reflects $w \in \mathcal{W}_{L}$ with respect to R (see Figure)
- Given $f: \mathcal{W}_{L} \mapsto \mathbb{R}$, define the function Θf as

$$
\Theta f(w):=f(\Theta(w))
$$

- Let $\mathcal{A}^{ \pm}$be the class of functions with domain in $\mathcal{V}_{L}^{ \pm}$.

Reflection positivity

Definition (Reflections)

- R reflection plane through edges, orthogonal to \boldsymbol{e}_{i} for some $i \in\{1, \ldots, d\}$,
- $\Theta: \mathcal{V}_{L} \mapsto \mathcal{V}_{L}$ reflection with respect to R,
- $\mathcal{V}_{L}^{+}, \mathcal{V}_{L}^{-} \subset \mathcal{V}_{L}$ subsets such that $\Theta\left(\mathcal{V}_{L}^{ \pm}\right)=\mathcal{V}_{L}^{\mp}$,
- $\Theta: \mathcal{W}_{L} \mapsto \mathcal{W}_{L}$ reflects $w \in \mathcal{W}_{L}$ with respect to R (see Figure)
- Given $f: \mathcal{W}_{L} \mapsto \mathbb{R}$, define the function Θf as

$$
\Theta f(w):=f(\Theta(w))
$$

- Let $\mathcal{A}^{ \pm}$be the class of functions with domain in $\mathcal{V}_{L}^{ \pm}$.

Reflection positivity

Definition (Reflections)

- R reflection plane through edges, orthogonal to \boldsymbol{e}_{i} for some $i \in\{1, \ldots, d\}$,
- $\Theta: \mathcal{V}_{L} \mapsto \mathcal{V}_{L}$ reflection with respect to R,
- $\mathcal{V}_{L}^{+}, \mathcal{V}_{L}^{-} \subset \mathcal{V}_{L}$ subsets such that $\Theta\left(\mathcal{V}_{L}^{ \pm}\right)=\mathcal{V}_{L}^{\mp}$,
- $\Theta: \mathcal{W}_{L} \mapsto \mathcal{W}_{L}$ reflects $w \in \mathcal{W}_{L}$ with respect to R (see Figure)
- Given $f: \mathcal{W}_{L} \mapsto \mathbb{R}$, define the function Θf as

$$
\Theta f(w):=f(\Theta(w))
$$

- Let $\mathcal{A}^{ \pm}$be the class of functions with domain in $\mathcal{V}_{L}^{ \pm}$.

Theorem (Reflection positivity)

For any pair of functions $f, g \in \mathcal{A}^{+}$, we have that,
(1) $\mu_{L, N, \lambda, U}(f \Theta g)=\mu_{L, N, \lambda, U}(g \Theta f)$,
(1) $\mu_{L, N, \lambda, U}(f \Theta f) \geq 0$,
from which we deduce that $\mu_{L, N, \lambda, U}$ is reflection positive, namely:

$$
\mu_{L, N, \lambda, U}(f \Theta g) \leq \mu_{L, N, \lambda, U}(f \Theta f)^{\frac{1}{2}} \mu_{L, N, \lambda, U}(g \Theta g)^{\frac{1}{2}}
$$

Proof of $\mu_{L, N, \lambda, U}(f \Theta f) \geq 0$ when $N=1$:

- $\mathcal{E}^{R}:=$ edges with one end-point in \mathcal{V}_{L}^{+}and in \mathcal{V}_{L}^{-},
- $\mu^{R}(w):=\prod_{e \in \mathcal{E}^{R}} \frac{\lambda^{m_{e}}}{m_{e}!}$
- $\mathcal{E}^{ \pm}:=$edges with at least one end-point in $\mathcal{V}_{L}^{ \pm}$,
- $\mu^{ \pm}(w):=\left(\prod_{x \in \mathcal{V}^{ \pm}} U_{x}(w)\right)\left(\prod_{e \in \mathcal{E}_{L}^{ \pm} \backslash \mathcal{E}_{L}^{R}} \frac{\lambda^{m_{e}}}{m_{e}!}\right)$
- $\mathcal{W}^{R}:=$ configurations with links only above \mathcal{E}^{R} and all of them unpaired
- $w^{ \pm}$is the restriction of w to $\mathcal{V}_{L}^{ \pm}$(keep links incident to sites in $\mathcal{V}_{L}^{ \pm}$),

$$
\begin{aligned}
\mu(f \Theta f) & =\sum_{w^{\prime} \in \mathcal{W}^{R}} \sum_{\substack{w \in \mathcal{W} \\
P_{R}(w)=w^{\prime}}} f(w) \Theta f(w) \mu(w)=\sum_{w^{\prime} \in \mathcal{W}^{R}} \sum_{\substack{w \in \mathcal{W} \\
P_{R}(w)=w^{\prime}}} f\left(w^{+}\right) \Theta f\left(w^{-}\right) \mu^{R}\left(w^{\prime}\right) \mu^{+}\left(w^{+}\right) \mu^{-}\left(w^{-}\right) \\
& =\sum_{w^{\prime} \in \mathcal{W}^{R}} \mu^{R}\left(w^{\prime}\right)\left(\sum_{\substack{w \in \mathcal{W}, P_{R}(w)=w^{\prime}}} f\left(w^{+}\right) \mu^{+}(w)\right)\left(\sum_{\substack{w \in \mathcal{W} \\
P_{R}(w)=w^{\prime}}} \Theta f\left(w^{-}\right) \mu^{-}(w)\right)= \\
& =\sum_{w^{\prime} \in \mathcal{W}^{R}} \mu^{R}\left(w^{\prime}\right)\left(\sum_{\substack{w \in \mathcal{W}, P_{R}(w)=w^{\prime}}} f\left(w^{+}\right) \mu^{+}(w)\right)^{2} \geq 0 .
\end{aligned}
$$

Lemma

For arbitrary \boldsymbol{h}, define $\boldsymbol{h}^{ \pm}$as follows:

$$
\forall x \in \mathbb{T}_{L} \quad h_{x}^{ \pm}:= \begin{cases}h_{x} & \text { if } x \in \mathbb{T}_{L}^{+} \\ h_{\Theta(x)} & \text { if } x \in \mathbb{T}_{L}^{-}\end{cases}
$$

We have that,

$$
\mathcal{Z}_{L, N, \lambda, U}(\boldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{+}\right) \mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{-}\right)}
$$

Proof. Note that

$$
\mathcal{Z}_{L, N, \lambda, U}(\boldsymbol{h})=\mu\left(\prod_{x \in \mathbb{T}_{L}^{+}}\left(h_{x}^{u_{x}}\left(-2 d h_{x}\right)^{u_{H(x)}}\right) \prod_{x \in \mathbb{T}_{L}^{-}}\left(h_{x}^{u_{x}}\left(-2 d h_{x}\right)^{\left.u_{H(x)}\right)}\right)\right)
$$

and apply R.P.

Lemma

For arbitrary \boldsymbol{h}, define $\boldsymbol{h}^{ \pm}$as follows:

$$
\forall x \in \mathbb{T}_{L} \quad h_{x}^{ \pm}:= \begin{cases}h_{x} & \text { if } x \in \mathbb{T}_{L}^{+} \\ h_{\Theta(x)} & \text { if } x \in \mathbb{T}_{L}^{-}\end{cases}
$$

We have that,

$$
\mathcal{Z}_{L, N, \lambda, U}(\boldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{+}\right) \mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{-}\right)}
$$

Lemma

For arbitrary \boldsymbol{h}, define $\boldsymbol{h}^{ \pm}$as follows:

$$
\forall x \in \mathbb{T}_{L} \quad h_{x}^{ \pm}:= \begin{cases}h_{x} & \text { if } x \in \mathbb{T}_{L}^{+} \\ h_{\Theta(x)} & \text { if } x \in \mathbb{T}_{L}^{-}\end{cases}
$$

We have that,

$$
\mathcal{Z}_{L, N, \lambda, U}(\boldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{+}\right) \mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{-}\right)}
$$

Lemma

For arbitrary \boldsymbol{h}, define $\boldsymbol{h}^{ \pm}$as follows:

$$
\forall x \in \mathbb{T}_{L} \quad h_{x}^{ \pm}:= \begin{cases}h_{x} & \text { if } x \in \mathbb{T}_{L}^{+} \\ h_{\Theta(x)} & \text { if } x \in \mathbb{T}_{L}^{-}\end{cases}
$$

We have that,

$$
\mathcal{Z}_{L, N, \lambda, U}(\boldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{+}\right) \mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{-}\right)}
$$

Lemma

For arbitrary \boldsymbol{h}, define $\boldsymbol{h}^{ \pm}$as follows:

$$
\forall x \in \mathbb{T}_{L} \quad h_{x}^{ \pm}:= \begin{cases}h_{x} & \text { if } x \in \mathbb{T}_{L}^{+} \\ h_{\Theta(x)} & \text { if } x \in \mathbb{T}_{L}^{-}\end{cases}
$$

We have that,

$$
\mathcal{Z}_{L, N, \lambda, U}(\boldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{+}\right) \mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{-}\right)}
$$

Lemma

For arbitrary \boldsymbol{h}, define $\boldsymbol{h}^{ \pm}$as follows:

$$
\forall x \in \mathbb{T}_{L} \quad h_{x}^{ \pm}:= \begin{cases}h_{x} & \text { if } x \in \mathbb{T}_{L}^{+} \\ h_{\Theta(x)} & \text { if } x \in \mathbb{T}_{L}^{-}\end{cases}
$$

We have that,

$$
\mathcal{Z}_{L, N, \lambda, U}(\boldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{+}\right) \mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{-}\right)}
$$

Lemma

For arbitrary \boldsymbol{h}, define $\boldsymbol{h}^{ \pm}$as follows:

$$
\forall x \in \mathbb{T}_{L} \quad h_{x}^{ \pm}:= \begin{cases}h_{x} & \text { if } x \in \mathbb{T}_{L}^{+} \\ h_{\Theta(x)} & \text { if } x \in \mathbb{T}_{L}^{-}\end{cases}
$$

We have that,

$$
\mathcal{Z}_{L, N, \lambda, U}(\boldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{+}\right) \mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{-}\right)}
$$

Lemma

For arbitrary \boldsymbol{h}, define $\boldsymbol{h}^{ \pm}$as follows:

$$
\forall x \in \mathbb{T}_{L} \quad h_{x}^{ \pm}:= \begin{cases}h_{x} & \text { if } x \in \mathbb{T}_{L}^{+} \\ h_{\Theta(x)} & \text { if } x \in \mathbb{T}_{L}^{-} .\end{cases}
$$

We have that,

$$
\mathcal{Z}_{L, N, \lambda, U}(\boldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{+}\right) \mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{-}\right)}
$$

Lemma

For arbitrary \boldsymbol{h}, define $\boldsymbol{h}^{ \pm}$as follows:

$$
\forall x \in \mathbb{T}_{L} \quad h_{x}^{ \pm}:= \begin{cases}h_{x} & \text { if } x \in \mathbb{T}_{L}^{+} \\ h_{\Theta(x)} & \text { if } x \in \mathbb{T}_{L}^{-} .\end{cases}
$$

We have that,

$$
\mathcal{Z}_{L, N, \lambda, U}(\boldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{+}\right) \mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{-}\right)}
$$

Lemma

For arbitrary \boldsymbol{h}, define $\boldsymbol{h}^{ \pm}$as follows:

$$
\forall x \in \mathbb{T}_{L} \quad h_{x}^{ \pm}:= \begin{cases}h_{x} & \text { if } x \in \mathbb{T}_{L}^{+} \\ h_{\Theta(x)} & \text { if } x \in \mathbb{T}_{L}^{-}\end{cases}
$$

We have that,

$$
\mathcal{Z}_{L, N, \lambda, U}(\boldsymbol{h}) \leq \sqrt{\mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{+}\right) \mathcal{Z}_{L, N, \lambda, U}\left(\boldsymbol{h}^{-}\right)}
$$

Justification of polynomial expansion

Justification of polynomial expansion:

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right)
$$

$Z_{L, N, \lambda}^{\ell}$ is the contribution from random path configurations with no unpaired links:
$0 \quad 0 \quad 0$

Justification of polynomial expansion

Justification of polynomial expansion:

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right)
$$

Contribution from random path configurations with a link unpaired at its end-points x and y such that $\{x, y\} \in \mathbb{E}_{L}$:

$$
N \lambda h_{x} h_{y} Z_{L, N, \lambda}^{\ell}
$$

Justification of polynomial expansion

Justification of polynomial expansion:

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right)
$$

Contribution from random path configurations with a link unpaired at its end-points x and y such that $\{x, y\} \in \mathbb{E}_{L}$:

$$
N \lambda \sum_{\{x, y\} \in \mathbb{E}_{L}} h_{x} h_{y} Z_{L, N, \lambda}^{\ell}
$$

Justification of polynomial expansion

Justification of polynomial expansion:

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right)
$$

Contribution from random path configurations with a link unpaired at its end-points $x \in \mathbb{T}_{L}$ and y with y on the top of x :

$$
-\frac{1}{2} N \lambda\left(2 d h_{x}^{2}\right) Z_{L, N, \lambda}^{\ell}
$$

Justification of polynomial expansion

Justification of polynomial expansion:

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right)
$$

Summing contributions with a link unpaired at both its end-points:

$$
\begin{equation*}
N \lambda\left(\sum_{\{x, y\} \in \mathbb{E}_{L}} h_{x} h_{y}-\sum_{x \in \mathbb{T}_{L}} d h_{x}^{2}\right) Z_{L, N, \lambda}^{\ell}=-\sum_{\{x, y\} \in \mathbb{E}_{L}}\left(h_{y}-h_{x}\right)^{2} \frac{N \lambda}{2} z_{L, N, \lambda}^{\ell} \tag{4}
\end{equation*}
$$

Justification of polynomial expansion

Justification of polynomial expansion:

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right)
$$

Contribution from random path configurations with a walk having x and y as second-last points:

$$
N \lambda^{2}(\triangle h)_{x}(\triangle h)_{y} Z_{L, N, \lambda}(x, y)
$$

Justification of polynomial expansion

Justification of polynomial expansion:

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right)
$$

Contribution from random path configurations with a walk having x and y as second-last points:

$$
N \lambda^{2}(\triangle h)_{x}(\triangle h)_{y} Z_{L, N, \lambda}(x, y)
$$

Justification of polynomial expansion

Justification of polynomial expansion:

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right)
$$

Contribution from random path configurations with a walk having x and y as second-last points:

$$
N \lambda^{2}(\triangle h)_{x}(\triangle h)_{y} Z_{L, N, \lambda}(x, y)
$$

Justification of polynomial expansion

Justification of polynomial expansion:

$$
\mathcal{Z}_{L, N, \lambda, U}(\varphi \boldsymbol{h})=Z_{L, N, \lambda}^{\ell}+\varphi^{2} \mathcal{Z}_{L, N, \lambda}^{(2)}(\boldsymbol{h})+o\left(\varphi^{2}\right)
$$

Contribution from random path configurations with a walk having x and y as second-last points:

$$
N \lambda^{2}(\triangle h)_{x}(\triangle h)_{y} Z_{L, N, \lambda}(x, y)
$$

Questions

- Other Applications of the key inequality (e.g. Merming-Wagner or polynomial decay of correlations in $d=2$?)

$$
\sum_{x, y \in \mathbb{T}_{L}} G_{L, N, \lambda}(x, y)(\Delta h)_{x}(\triangle h)_{y} \leq \sum_{\{x, y\} \in \mathbb{E}_{L}}\left(h_{y}-h_{x}\right)^{2}
$$

- Implementation of the method for the (loop representation of) Quantum bose gas or quantum Heisenberg model?

