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The dimer model
Overview

Definition (Dimer Cover)

A dimer cover of the graph G = (V, E) is a spanning sub-graph of G such that every
vertex has degree one.

1
@ Exact enumeration on Z? o—e o—e¢ 1 o—e o o
(Kasteleyn, Fisher and Temperley, 1961). S e—e o—o o—o ! l o=
@ Correlations on planar graphs e o o e—o o—o o—o o
(Fisher and J. Stephenson, 1963) e l l e—e o—e o o ot
@ Connections to critical planar Ising model de o o—e o—o o ! ! ot
(Kasteleyn 1961, Fisher 1966). o b eme e by
@ No phase transition in monomer-dimer model l o—o o—o o o ! o—s
(Heilmann, Lieb, 1972) —_ o o o V1 s
@ Arctic circle phenomenon ° o l l l e o o o l
(H. Cohn, N. Elkies, J. Propp, 1996) | 111

@ Scaling limits, conformal invariance (Kenyon, 2000 - 2014).

What about Z9, d > 27

@ Hammersley et al, 1969: 'Negative Finding for the Three-Dimensional Dimer
Problem’.

@ Jerrum, 1987: 'Monomer-dimer systems are computationally intractable’. 1/25



The dimer model

Definition (Monomer-monomer correlation)

Define T, := Z%/LZ9 and, for any M C T, (set of monomers), let D(M) be the set of
dimer covers of T; \ M. We define the monomer-monomer correlation,
[D({o, 2})

VzeT, Z.(z):= W

@ Conjecture (Fisher and Stephenson):

1
On 72 Llngo Zi(z) ~ —

1 e @ =0 oe=—e¢ ¢ & oo
2|2 11 1|
e o o=—0 o=—0 ¢ o o—o
® =m0 O =m0 o o om0
| | 11
® =0 © o=—0 ¢ o o—o

@ Proved for:

o z along the cartesian axis Lo

(Fisher, Stephenson, 1963) R B
e z along diagonals o e o ! o e e—e !
(Hartwig, 1966) [ B A .
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The dimer model

Let ry be the expected number of returns of a simple random walk on Z9.
Define the odd and even sub-lattices

{={xeT, : d(o,x) €2N}, T;:={xeT, : d(o,x) € 2N+1},

Theorem (Taggi, 2019+)

Suppose that d > 2. For any L € 2N, we have that,

D2 *(1—*) 1)

| Ll x€T°

Moreover, there exists ¢ € (0, %) such that for any L € 2N and any odd integer
ne(0,clL),

EL(n e1) Z %(1 — I’d). (2)

r3 ~ 0.52 (exact computation Watson, 1939). Moreover, ryi1 < rq4.

Z(x)=0if x € TS and L € 2N.
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The dimer model
Theorem (Lees, Taggi, 2019)

Suppose that L € 2N, let z € T be such that n = z - e; is odd for some
i €{1,...,d}, suppose that n € (0, é) Then,

EL(Z) S EL(e,-n) S EL(e;(n — 2)) S EL(e,-) = % (3)

.

Since ry — 0 as d — oo, the lower and upper bound are sharp in the limit d — oo,

_ 1
Z :L(X) S ﬂ

xET}

1
- <
2d 27 = |19

w

The site monotonicity properties (Lees, Taggi 2019) hold for other models, e.g, Spin
O(N) model with arbitrary N € Nxq, Loop O(N) model, lattice permutations, and are
not limited to the inequalities in (3).

v
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Lattice permutations

Definition

Let Qy,, be the set of bijections 7 : T; \ {y} — Ty \ {x} such that Vz € T; \ {y},

|m(z) — z|1 < 1. Define Q = Uxer, Qo,x. Fix arbitrary N, A > 0, define

AH(m) (N/Q)C(ﬂ)
Zi AN

where H(w) := |{z € T, : w(z) # z}| is the number of (directed) edges in the
picture and L(w) is the number of loops and double dimers in .

V€ Q PL,N,)\ (7‘(‘) =

)

Terminology: Loops, double dimers, monomers, walk. I::I l . :-l . L r
>0 L]
@ Closely related to Loop O(N) model e . -
@ A =1, N = 0: uniform SAW in a box haadi e
(Duminil-Copin, Kozma, Yadin, 2014) ot } N
20 0 0 0 0 r
@ N = 2 related to quantum Bose gas S S —~—
(Feynmann, 1953) OO0 ] >
(Ueltschi, Betz, 2010, 2011) R D s 3 o
(Elboim, Peled, 2017) L -+ I

"'F"'"I}HT'T s



Lattice permutations

Define the fully-packed lattice permutation model,

LS A A
Pin(m) == lim Py x(m) T
Ao < —>0—>0—>0—>0—>0 <—0q—
1 ]
We say that 7 is fully-packed if it contains no monomer. H 5 S I E'
Let X : Q — T, be the last point of the walk (target point). Tcr—-= >

Theorem (Taggi, 2019+)

In any dimension d > 2, for any integer N such that 0 < N < % the following holds

rq’
for any L € 2N:
1A
Nry d°
1-E L

VA C Ty, 'PL’N(XEA)S

@ For example plug in A =T, for small enough ¢,
@ When N is large, exponential decay for all \:
o Intersecting loops on Z9: Chayes, Pryadko, Shtengel, 1999.
e Loop O(N) on honeycomb: Duminil-Copin, Peled, Samotij, Spinka, 2014.
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Lattice permutations

Definition (Two point function)

Let QF be the set of permutations 7 : T — T; such that, for any z € Ty,

|m(z) — z|1 < 1.
Z{ yy= D AHE(Ny2)A ),
et
and, for any x,y € T, we define

Zina(oy) = D AHE(Ny2)E),
TEQy y

Finally, we define the two point function,

XZ (X, y)
GL,N,/\(XJ’) = 2277’
L,N,A
and note that, in the limit A — oo, it collects only the contribution of fully packed
configurations,

> (™
TEQ,y: 2
7 is f.p.

> (W
2

reQf:

T is f.p.

GL N0 (X, y) i= A'Lmoo GLua(x,y) =
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Lattice permutations

Theorem (Taggi, 2019+)

Suppose that d > 2. For any integer N such that 0 < N < %, and L € 2N, we have

that,
rq
0,X) > —(———=)
‘Tol Za LNoo( ) 2d(N 2
x€T}
Moreover, there exists ¢ € (0, %) such that for any L € 2N and any odd integer
ne (0,cl),

GLN,0(0,ne1) > ﬂ(ﬁ — rq).

From the monotonicity properties (Lees, Taggi 2019) and the fact that ry — 0 as
d — oo, we deduce that the lower and upper bound are sharp in the limit d — oo,
1 2
— (= - = G, )< — —.
2d(N —mro Xgo Lo () S 20
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Relation between lattice permutations and dimers

GL,Z,OO(ny) = EL(Xzy)'

There exist two bijections M1, M2,
nt: D) x D({x,y}) — Qxy :={r €, :mis fp.}
N2 : D(0) x D(0) = @ ={ref :risfp}

Hence,

Syl _ [POLPEx DI _ DU _ 2 1y
1$2¢] BOE Do) o

GL,Z,OO(X7 y) =

3 =ty 9/25




Proof overview

Pointwise
itivit:

Pa rtg 2 Site Monotonicit
Infrared bound
Key inequality!

Chessboard
Estimate
Polynomial
Partil exgansion ﬁ

gefle_ction
ositivity

Comment: Inspired by the famous proof of Fréhlich, Simon, Spencer 1976 for the spin
O(N) model

Method overviews: Biskup, Friedli and Velenik, Spinka and Peled, Ueltschi.
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Positivity Cesaro sum given Key Inequality

Dual torus, Tf := { 2% (ki,...,kg) ER? : ki € (=5,51nZ}. For f € (2(T,),
VkeT;, f(k)= > e **f(x).

XETL
Vx € TL, f(X) ‘T | Z elk Xf(k
keT}

Put Gi n,00(X) := GL,n,00(0, X).

Define the Fourier modes p := (r,...,n),0:= (0,...,0) € T;. We have that,

Z LN,o0(X) = GLn,co(€1) —

XETL | Ll

Z e Gy oo (k).

KET}\{o,p}

Proof: From the inverse Fourier transform formula:

1 . lp e A 1 o ~

G n,co(€1) = WGL,N,oo( )+ T GL,N,00(P) + T > €GN (K)
t H ket\{o.p}

the fact that GAL,NYOO(p) = f(A;L,N,Oo(o) since we are in the fully packed regime

(A = 00) and from the Fourier transform formula: (A;LyN’oo(o) =2 xer, GLN,00(X).
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Positivity Cesaro sum given Key Inequality

Dual torus, Tf := { 2% (ki,...,kg) ER? : ki € (=5,51nZ}. For f € (2(T,),
VkeT], f(k)= > e **f(x).

XGTL

Vx €Ty, f(x) = mr | > e F (k).
kGT*

Put G N 0o (X) = G N,00 (0, X).

Define the Fourier modes p := (=, ..., m),0:=(0,...,0) € T;. We have that,

1 o
|’H‘ | D GL,oo(x) = GL,00(€1) — il > €GN oK)
x€T, L ke \{o.p}
12
Note: G n,o(e1) = g N
Goal: bound . Z e* € &)y oo(k) away from 12 uniformly!!
T e 2d N

keT} \{o,p}
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Part 2 of the proof
Uniform positivity Cesaro sum given the Key Inequality

Theorem (Key inequality)

For any N € N5o, A € R5o U {oo}, L € 2N, any real vector h = (hx)xeT,,

S GLuabon) B (ah)y, < S (hy — A2,

x,y€T {x.y}€EL

where (Ah)x =37, (hy — hy).

@ Case of Fréhlich, Simon and Spencer: < Sx - S, > in place of G(x, y) and factor

% in the RHS

Application of Key Inequality with hy := cos(k - x) (Fréhlich, Simon, Spencer 1976)

— * R - 1
For any k = (ki,..., kq) € T}, define e(k) := TS (i—cos(k)’

keTi\{o}, Gk < %

Note: G(k) is real.
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Positivity Cesaro sum given Key Inequality
1

Sy = X Re(FUem) = X coslho en)6u(h)

1
T T T
ITe| KETF\{o,p} ITe KETF\{o,p} ITel KETF\{0.p}

@ Goal: bound red expression away from uniformly in L) to conclude.

12 (
2d N
@ Apply: Goo(k) < ﬁ (derived from Key Inequality)

o Define: H:={k e T} : ki €(-%,31},

@ Define bijection W : H\ {o} — H€ \ {p} such that V(k) = k + (£m, ..., £7).

@ Note: Goo(k + (£, ...,+7)) = —Goo (k) since Goo(x) = 0 at even sites (F.p.
regime!)

Py

e o o o
e o o o
@ e o o
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Positivity Cesaro sum given Key Inequality

'[ri S b (k) = TL ) Re(e"k""l @m(k)) == S cos(k - €1)Guo(K)
Tl eriNion Tl eriom ITel i oy
@ Goal: bound red expression away from %% (uniformly in L) to conclude.
o Apply: Goo(k) < ﬁ (derived from Key Inequality)
o Define: H:={k €T} : k € (-%,5l},
@ Define bijection W : H \ {o} — HC \ {p} such that W(k) = k + (£m,..., ).
@ Note: Goo(k + (£, ..., +7)) = —Goo (k) since Goo(x) = 0 at even sites (F.p.
regime!)
1 A 1 A A
T > cos(kenNG(k)= = > (cos(k -e1) G(k) + cos(W(k) - el)G(\U(k)>
ITel yerio.ny ITel ety
1 A 1 2 k-
== > 2cos(k-e)é() < = > M
ITel ) cinioy ITel eingoy €K
11 2cos(k - e 11 1 2cos(k - e
=24 T 1 > 1 d( 1 5422 d/dk 1 d( 2
T keH\{o} 1— 5 >y cos(k - e1) @m)d Ju 1- 2 izycos(k - e1)

" where H := [~ 5, 3] x [-m,@]... X [-7, 7].
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Proof overview
Pointwise
Positivity

[
Positivity
Cesaro sum

(Lees, Taggi 2019)

Chessboard
Estimate
Polynomial
Partil expyansion ﬁ
Reflection
Positivity
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The random path model

H

e

arbitrary number of undirected loops, double dimers and walks,
such objects are allowed to 'use’ the same edge multiple times,

eee

it can be used to represent different models by choosing the weight function
appropriately: e.g. spin O(N) model, loop O(N) model, random permutations,

dimer model.

@ it will be possible for the walks to enter 'from the top’
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The random path model
Definition (Set of configurations)

@ Undirected finite graph G = (V, )
@ Link cardinalities m € Mg := N€. More specifically
() =5 (me)eeg’

where me € N represents the number of links on the edge e.

@ A pairing ™ = (7x)xev for m € Mg is such that 7x pairs links incident to x so
that

@ any link incident to x is paired at x to at most an other link incident to x
@ any link incident to x might be unpaired at x

® Wy set of configurations w = (m, ) such that m € Mg and 7 is a pairing for
m.

@) @) @)
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The random path model
Definition (Set of configurations)

@ Undirected finite graph G = (V, )
@ Link cardinalities m € Mg := N€. More specifically
() =5 (me)eeg’

where me € N represents the number of links on the edge e.

@ A pairing ™ = (7x)xev for m € Mg is such that 7x pairs links incident to x so
that

@ any link incident to x is paired at x to at most an other link incident to x
@ any link incident to x might be unpaired at x

® Wy set of configurations w = (m, ) such that m € Mg and 7 is a pairing for

m. 4
O—+ 0 —+0
S
0 O—+20
b
oioﬁo
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The random path model
Definition (Set of configurations)

@ Undirected finite graph G = (V, )
@ Link cardinalities m € Mg := N€. More specifically
() =5 (me)eeg’

where me € N represents the number of links on the edge e.

@ A pairing ™ = (7x)xev for m € Mg is such that 7x pairs links incident to x so
that

@ any link incident to x is paired at x to at most an other link incident to x
@ any link incident to x might be unpaired at x

® Wy set of configurations w = (m, ) such that m € Mg and 7 is a pairing for
m.

O—l—-‘

Z

=
o s
Hman
——
—_—

E

s e ¢
=

)

i
|
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The random path model

Definition (Measure)

For any w € Wg, define the (not normalised, possibly signed) measure,

Yw = (m,7)  pgn(w) = ( 11

ec&

i) (I o) e
xeV

where U = (Ux)xey are the weight functions, Ux has domain {x} and £(w) is the
number of link-connected components of w.

O+O —+0

FOoW b
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Random path model

Torus
—0—0—0—0—0—0—0——0——0—0— =L @9
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Random path model

Extended Torus ‘/L
(d=1)

<_'IL(2) Virtual

vertices

Torus

<_TL (d=1)
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Random path model

Definition

Let h = (hx)xer, be a real vector, define
Zin,u(h) = mv,x,u( IT m (—2dhx)”H(x))7
xeT,

where uy is the number of links unpaired at y € V; and for any x € T (original
torus), H(x) is the vertex on top of x.

-2dh_4-2dh.5-2dh., -2dh;-2dh, -2dh; -2dh, -2dh; -2dh, -2dhs

[ LLL LTl

he hs h, hy hy h, h, hs hy hs
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Let ny be the number of pairings at at x. We define U = (Ux)xey,:
if nx <1 and no link on {x, H(x)} is unpaired at x,

if nx <1 and > 1 links on {x, H(x)} are unpaired at x,
if ny > 1.

Vx € T, Uy =

O Nim

el U=l

H(x) is the vertex “placed on top” of x € Ty, i.e, H(x) € Ts_z)

Loops and double dimers are vertex-self-avoiding and cannot touch virtual vertices,
walks are 'not entirely’ vertex-self-avoiding and can end on virtual vertices.

Extended Torus ‘/L

(d=1)
(2) virtual
< -rL vertices
Torus
<«<T (d=1)
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Definition

Let ny be the number of pairings at at x. We define U = (Ux)xey,:

if nx <1 and no link on {x, H(x)} is unpaired at x,
if ne <1 and > 1 links on {x, H(x)} are unpaired at x,
if ny > 1.

Vx € T, Uy :=

O Nl

2
Vx € T(L) Uy = ]l{nxzo}

H(x) is the vertex “placed on top” of x € T, i.e, H(x) € ’I[‘(L2)

Loops and double dimers are vertex-self-avoiding and cannot touch virtual vertices,
walks are 'not entirely’ vertex-self-avoiding and can end on virtual vertices.

—3— !
0=-0 02030 O O0=+0 O O O

Figure: A configuration w such that u(w) = 0.
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Polynomial expansion

Theorem (Polynomial expansion)

We have,

Zinauleh) = ZEy s + GPZC) A (h) + o(0?),

in the limit as ¢ — 0, where

2 NA

ZOA0) == 3 (b —h)? S5 Ziy s+
{x,y}€EL
N2
+ = D> Zina(xy) (Ah)x (L),
x,y€TL

Note: the Key Inequality is: Z°), , (h) < O!!!
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Polynomial expansion

Theorem (Polynomial expansion)

We have,

Zinauleh) = ZEy s + GPZC) A (h) + o(0?),

in the limit as ¢ — 0, where
2
ZL,)V’)\(h) =— Z (hy — hx > Zf s +
{x,y}€EL

2
+ — D Zinaloy) (Ah)x(Ah),
X,y €T

Note: the Key Inequality is: Z°), , (h) < O!!!
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Polynomial expansion

Theorem (Polynomial expansion)

We have,

Zinauleh) = ZEy s + GPZC) A (h) + o(0?),

in the limit as ¢ — 0, where
2
ZL,)V’)\(h) =— Z (hy — hx > Zf s +
{x,y}€EL

2
+ — D Zinaloy) (Ah)x(Ah),
X,y €T

Note: the Key Inequality is: Z°), , (h) < O!!!

0] o O O ©) ©) O o O O
|t

e} i O O O——0—34—0—3—0—3—0—3-0 o
X y
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Polynomial expansion

Theorem (Polynomial expansion)

We have,

Zinauleh) = ZEy s + GPZC) A (h) + o(0?),

in the limit as ¢ — 0, where
2
ZL,)V’)\(h) =— Z (hy — hx > Zf s +
{x,y}€EL

2
+ — D Zinaloy) (Ah)x(Ah),
X,y €T

Note: the Key Inequality is: Z°), , (h) < O!!!

o o o o o o o o o o

|l 1
030 O O0+0+03+03+0 0O O
X y
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Polynomial expansion

Theorem (Polynomial expansion)

We have,

Zinauleh) = ZEy s + GPZC) A (h) + o(0?),

in the limit as ¢ — 0, where
2
ZL,)V’)\(h) =— Z (hy — hx > Zf s +
{x,y}€EL

2
+ — D Zinaloy) (Ah)x(Ah),
X,y €T

Note: the Key Inequality is: Z°), , (h) < O!!!

O O 0O O O O O O o O
|1

030 O O0+0+0+03%0 O O
X y
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Chessboard estimate

Theorem (Chessboard estimate)

For any h = (h;),et,, define h* =

(h3)zeT, as the vector which is obtained from h as
follows:

h% := hx for every z € T;.
Then,

zb) < (] 20m) ™0

x€Ty

-2dh4-2dh 5-2dh., -2dh;-2dh, -2dh, -2dh, -2dh; -2dh, -2dhs

LTI

hse hs h, hy hy h, h, hs hy hs
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Chessboard estimate

Theorem (Chessboard estimate)

For any h = (h;),et,, define h* =

(h3)zeT, as the vector which is obtained from h as
follows:

h% := hx for every z € T;.
Then,

zb) < (] 20m) ™0

x€Ty

-2dh, -2dh, -2dh, -2dh, -2dh, -2dh, -2dh, -2dh, -2dh, -2dh,

LTI

ho hy hy h, h, hy hy h h h
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Derivation Key Inequality from Chessboard estimate and Polynomial

expansion

Let h = (hz),cr, be arbitrary, we have:
YxeT Z04 (W) =0

Thus,

2
Zinau(eh) = ZE gy + 92200 5 y(h) + o(¢?)

1

< ( H ZL,N,A,U((L,th))) L1
x€T,

= ( H (Zf,/v,x +°(<P2)))‘TL|

x€T,
Y 2
=2y t+o(¢),

We conclude that,

2
2P, u(h) <o

This gives the Key Inequality.
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Reflection positivity

@ R reflection plane through edges, orthogonal to e; for some i € {1,...,d},
@ ©:V; — V) reflection with respect to R,
® V", V[ C V subsets such that @(VLi) =V,
® O : W, — W, reflects w € W, with respect to R (see Figure)
@ Given f : W, — R, define the function ©f as
Of (w) := f(O(w)).

Let AT be the class of functions with domain in Vf.

X
Qo
z

24/25



Reflection positivity

@ R reflection plane through edges, orthogonal to e; for some i € {1,...,d},
@ ©:V; — V) reflection with respect to R,
® V", V[ C V subsets such that @(VLi) =V,
® O : W, — W, reflects w € W, with respect to R (see Figure)
@ Given f : W, — R, define the function ©f as
Of (w) := f(O(w)).

@ Let AT be the class of functions with domain in Vf.

O 0i0O O O O O0OiOo O O
: |t :
03 0:0 O0+0+0+03F0 O O
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O 0Oi0 O O O oOio O o

—o0 oioZo o o oFo+o+ro+
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X
Qo
z
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Theorem (Reflection positivity)

For any pair of functions f,g € A%, we have that,
@ penau(fOg) = prn,a,u(gOf),

@ pinau(fOr) >0,

from which we deduce that pi n x y is reflection positive, namely:

1 1
prnau(FOg) < piwau(fOFf)2 oy u(eOg)?.

|

v
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Proof of py n A, u(FOF) > 0 when N =1:

|

@ &R := edges with one end-point in V;" and in V",
m
0 pf(w) = Tlcer et
0 £F = edges with at least one end-point in V,_i,
+ . m
o 120 = (TLevs 6:00) (Mg 32)

@ WR .= configurations with links only above £ and all of them unpaired

@ w¥ is the restriction of w to VLi (keep links incident to sites in V,_i)

pron) = S° S0 fwerwuw) = S S0 Fwher(w )R (w )t (whu T (w)

w/cwR wew w/ewR wew
PR(w)=w’ PR(w)=w’
= > A X ) (X efw T (w) =
w/ ewWR wEW wew
PR(w)=w' PR(w)=w'
_ Ry 1 4 2
= > A X fwhHetw) >o.
w/ ewR PMEG)W ,
o
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For arbitrary h, define h¥T as follows:

hx if x e Tf

3=,
VxeTL  hoi= {he(x) ifx €T,

We have that,

Zina,u(h) < \/ZL,N,A,U(h+) Zinau(h™)

Proof. Note that

Zunuh) =TT (hx(-2dn) ) T (h(~2dhy) "))

+
XETL XGTL

and apply R.P.
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For arbitrary h, define h¥T as follows:

; 4
Vx €T, hf(t — {hx ifx €Ty

h@(x) if x € TL_'

We have that,

Zina,u(h) < \/ZL,N,A,U(h+) Zinau(h™)

-2dh,
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For arbitrary h, define h¥T as follows:

hx if x e Tf

3=,
VxeTL  hoi= {he(x) ifx e, .

We have that,

Zinau(h) < \/ZL,N,)\,U(th) Zinau(hT)

-2dh,i2dh, -2dh;-2dh, -2dh; -2dh; -2dh,-2dh, -2dh, -2dh,

(LTI L]

hyihy h  h h  h h h, h; h
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Justification of polynomial expansion

Justification of polynomial expansion:

Zinaulph) = ZL N T ‘P2ZL N, )\(h) +o(p )

Zf N IS the contribution from random path configurations with no unpaired links:

o o o o o0 o o o o o

O O 020 O0Z0 0FZO0 O O
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Justification of polynomial expansion:

Zinaulph) = ZL N T ‘P2ZL N, )\(h) +o(p )

Contribution from random path configurations with a link unpaired at its end-points x
and y such that {x,y} € E;:

NXhyhy Zf 5
(0] o O @) O 0] @) O O @)

O 0+02X0 00 030 O O
X oy
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Justification of polynomial expansion

Justification of polynomial expansion:

Zinaulph) = ZL N T ‘P2ZL N, )\(h) +o(p )

Contribution from random path configurations with a link unpaired at its end-points
x € T; and y with y on the top of x:

1
-3 NXQ2dh2)Zf s
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Justification of polynomial expansion

Justification of polynomial expansion:

Zinaulph) = ZL N T ‘P2ZL N, )\(h) +o(p )

Summing contributions with a link unpaired at both its end-points:

NA
N,\( ST hehy - > dhﬁ)Zf,N,)\ = - X (v -m Tz @
{x,y}€EL €Ty {x,y}€EL
H(x)

o o o o o o o O o o
1

O O 020 O0FO0 0F0 O O
X
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Justification of polynomial expansion

Justification of polynomial expansion:

Zinaulph) = ZL N T ‘P2ZL N, )\(h) +o(p )

Contribution from random path configurations with a walk having x and y as
second-last points:
NN (Ah)x(Ah)y Ziwa(x, y)

©) o O O ®) ©) @) o O O
|t

e} i O O O——O0—34—0—3—0—3—0—3-0 o
X y
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Justification of polynomial expansion:

Zinaulph) = ZL N T ‘P2ZL N, )\(h) +o(p )

Contribution from random path configurations with a walk having x and y as
second-last points:
NN (Ah)x(Ah)y Ziwa(x,y)
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[ h
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@ Other Applications of the key inequality (e.g. Merming-Wagner or polynomial
decay of correlations in d = 27?)

> GLaCuy)(Bhx(Bh)y < DT (hy —ho)’.

xy €T, {x.y}€EL

@ Implementation of the method for the (loop representation of) Quantum bose
gas or quantum Heisenberg model?

25 /25
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