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ROOTED PLANAR MAPS
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A CHRONOLOGY OF PLANAR MAPS

1960 1978 1981 1995 2000

Random maps

Recursive approach (enumeration)

Matrix integrals (enumeration)

Bijections (enumeration)

• Recursive approach: Tutte, Brown, Bender, Canfield, Richmond,
Goulden, Jackson, Wormald, Walsh, Lehman, Gao, Wanless...

•Matrix integrals: Brézin, Itzykson, Parisi, Zuber, Bessis, Ginsparg,
Kostov, Zinn-Justin, Boulatov, Kazakov, Mehta, Bouttier, Di Francesco,
Guitter, Eynard...

• Bijections: Cori & Vauquelin, Schaeffer, Bouttier, Di Francesco &
Guitter (BDG), Bernardi, Fusy, Poulalhon, Bousquet-Mélou, Chapuy...

• Geometric properties of random maps: Chassaing & Schaeffer,
BDG, Marckert & Mokkadem, Jean-François Le Gall, Miermont, Curien,
Albenque, Bettinelli, Ménard, Angel, Sheffield, Miller, Gwynne...
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MAPS EQUIPPED WITH AN ADDITIONAL STRUCTURE

• How many maps equipped with...
a spanning tree [Mullin 67, Bernardi]
a spanning forest? [Bouttier et al., Sportiello et al., Bousquet-Mélou
& Courtiel]
a self-avoiding walk? [Duplantier & Kostov; Gwynne & Miller]
a proper q-colouring? [Tutte 74-83, Bouttier et al.]
a bipolar orientation? [Kenyon, Miller, Sheffield, Wilson, Fusy,
Bousquet-Mélou...]

•What is the expected partition function of...
the Ising model? [Boulatov, Kazakov, Bousquet-Mélou, Schaeffer,
Chen, Turunen, Bouttier et al., Albenque, Ménard...]
the hard-particle model? [Bousquet-Mélou, Schaeffer, Jehanne,
Bouttier et al.]
the Potts model? [Eynard-Bonnet, Baxter, Bousquet-Mélou &
Bernardi, Guionnet et al., Borot et al., ...]
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OUR ADDITIONAL STRUCTURES

We will consider the following objects:

Weakly height-labelled maps (maps decorated by a weak
height function)

Height-labelled quadrangulations (quadrangulations decorated
by a height function)

4-valent Eulerian orientations (the six vertex model)

These are all in bijection with each other.
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HEIGHT-LABELLED QUADRANGULATIONS

Each face has degree 4

Adjacent labels differ by 1

Root edge labelled from 0 to 1
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HEIGHT-LABELLED QUADRANGULATIONS

Each face has degree 4

Adjacent labels differ by 1

Root edge labelled from 0 to 1

Aim: determine the generating function Q(t) = 4t + 35t2 + . . . that
counts height-labelled quadrangulations by faces.

1 0 1 0

1 0

1 01 0
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WEAKLY HEIGHT-LABELLED MAPS

Adjacent labels differ by at most 1

Root edge points to vertex labelled 1

We will see that Q(t) = 4t + 35t2 + . . . counts weakly height-labelled
maps by edges.
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HEIGHT-LABELLED QUADRANGULATIONS BACKGROUND

In 2017, EP and Guttmann:

Computed the number qn of height-labelled quadrangulations for
n < 100.

Predicted that

qn ∼ κq
(4
√

3π)n

n2(log n)2 .

This led us to conjecture the exact solution
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PREVIEW: EXACT SOLUTION

Let R(t) be the unique series satisfying

t =
∞∑

n=0

1
n + 1

(
2n
n

)(
3n
n

)
R(t)n+1.

Theorem: The generating function of height-labelled
quadrangulations is given by

Q(t) =
1

3t2 (t − 3t2 − R(t)).

Asymptotically,

qn ∼ κ
µn+2

n2(log n)2 ,

where κ = 1/18 and µ = 4
√

3π.
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TALK OUTLINE

Part 1: Bijection between height-labelled quadrangulations and
weakly height-labelled maps (Miermont/Ambjørn and Budd)

Part 2: Enumeration of height-labelled quadrangulations.
(Bousquet-Mélou and EP)

Part 3: Bijection to the ice model (EP and Guttmann)

Part 4: Six vertex model solution (Kostov/EP and Zinn-Justin)

Part 5: Height distribution (Bousquet-Mélou and EP)
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Part 1: Bijection between height-labelled
quadrangulations and weakly

height-labelled maps

(Miermont (2009)/Ambjørn and Budd (2013)).
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QUADRANGULATIONS TO MAPS

Start with a height-labelled quadrangulation.

The new map is now a
D-patch
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QUADRANGULATIONS TO MAPS

Draw a red edge in each face according to the rule.

The new map is
now a D-patch
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QUADRANGULATIONS TO MAPS

Remove all of the original edges.

This invisible bit needs to be long
enough to get to the next line.
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QUADRANGULATIONS TO MAPS

Remove any isolated vertices.

This invisible bit needs to be long
enough to get to the next line.
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QUADRANGULATIONS TO MAPS

The new map is a weakly height-labelled map (adjacent labels differ
by at most 1).
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Part 2: Exact solution for
height-labelled quadrangulations

(Bousquet-Mélou and EP (2018)).
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COUNTING HEIGHT-LABELLED QUADRANGULATIONS

By generalising the problem, we deduce a system of functional
equations which defines Q(t):

Q(t) = [y]P(t, y)

P(t, y) =
1
y
[x1]C(t, x, y)

D(t, x, y) =
1

1− C
(

t, 1
1−x , y

)
D(t, x, y) = 1 + yD(t, x, y)[y1]D(t, x, y) + y[x≥0]

1
x

P
(

t,
1
x

)
D(t, x, y)

[y1]D(t, x, y) =
1

1− x
(1 + 2t[y2]D(t, x, y)− t([y1]D(t, x, y))2).

I will show one element of the proof.
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D-PATCHES

D-patch: Digons are allowed next to the root vertex and the outer face
may have any degree.
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D

Restrictions:
- outer labels must be 0 or 1.
- vertices adjacent to the root
must be labelled 1.

In D(t, x, y):
- t counts quadrangles.
- x counts digons.
- y counts the degree of the outer
face (halved).
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DECOMPOSITION OF D-PATCHES

Colour the vertex two places clockwise from the root vertex around
the outer face.
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Restrictions:
- outer labels must be 0 or 1.
- vertices adjacent to the root
must be labelled 1.

In D(t, x, y):
- t counts quadrangles.
- x counts digons.
- y counts the degree of the outer
face (halved).
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DECOMPOSITION OF D-PATCHES

Highlight the maximal connected subgraph of nonpositive labels,
containing the coloured vertex.
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Restrictions:
- outer labels must be 0 or 1.
- vertices adjacent to the root
must be labelled 1.

In D(t, x, y):
- t counts quadrangles.
- x counts digons.
- y counts the degree of the outer
face (halved).
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DECOMPOSITION OF D-PATCHES

Add to the subgraph all vertices and edges contained in its inner
face(s).
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Restrictions:
- outer labels must be 0 or 1.
- vertices adjacent to the root
must be labelled 1.

In D(t, x, y):
- t counts quadrangles.
- x counts digons.
- y counts the degree of the outer
face (halved).
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DECOMPOSITION OF D-PATCHES

Record the subgraph with inverted labels.

This extracted map is a
patch!
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DECOMPOSITION OF D-PATCHES

Contract the highlighted map to a single vertex (labelled 0).

The new
vertex may be adjacent to digons.
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DECOMPOSITION OF D-PATCHES
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DECOMPOSITION OF D-PATCHES
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DECOMPOSITION OF D-PATCHES

Merge the new vertex with the root vertex.

The new map is now a
D-patch
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DECOMPOSITION OF D-PATCHES
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DECOMPOSITION OF D-PATCHES

Merge the new vertex with the root vertex. This new map is a
D-patch!
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EQUATIONS FOR LABELLED QUADRANGULATIONS

Q(t) = [y]P(t, y)

P(t, y) =
1
y
[x1]C(t, x, y)

D(t, x, y) =
1

1− C
(

t, 1
1−x , y

)
D(t, x, y) = 1 + yD(t, x, y)[y1]D(t, x, y) + y[x≥0]

1
x

P
(

t,
1
x

)
D(t, x, y)

[y1]D(t, x, y) =
1

1− x
(1 + 2t[y2]D(t, x, y)− t([y1]D(t, x, y))2).
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SOLVING THE EQUATIONS

At this point we just needed to guess the values of the series P, C
and D and verify that the guesses satisfy the equations.

Bref, we did.

hello

whatever

whatever

whatever
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SOLUTION FOR LABELLED QUADRANGULATIONS

Let R(t) be the unique series satisfying

t =
∞∑

n=0

1
n + 1

(
2n
n

)(
3n
n

)
R(t)n+1.

Then the series P(t, y), C(t, x, y) and D(t, x, y) are given by:

tP(t, ty) =
∑
n≥0

n∑
j=0

1
n + 1

(
2n− j

n

)(
3n− j

n

)
yjRn+1,

C(t, x, ty) = 1−exp

−∑
n≥0

n∑
j=0

2n−j∑
i=0

1
n + 1

(
2n− j

n

)(
3n− i− j

n

)
xi+1yj+1Rn+1

 ,

D(t, x, ty) = exp

∑
n≥0

n∑
j=0

∑
i≥0

1
n + 1

(
2n− j

n

)(
3n + i− j + 1

2n− j

)
xiyj+1Rn+1

 .

Counting planar maps with a height function Andrew Elvey Price



SOLUTION FOR LABELLED QUADRANGULATIONS

Let R(t) be the unique series satisfying

t =
∞∑

n=0

1
n + 1

(
2n
n

)(
3n
n

)
R(t)n+1.

Theorem: The generating function of labelled quadrangulations is
given by

Q(t) =
1

3t2 (t − 3t2 − R(t)).

Asymptotically,

qn ∼ κ
µn+2

n2(log n)2 ,

where κ = 1/18 and µ = 4
√

3π.
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Part 3: Bijection to the Ice model
(EP and Gutmann (2017)).
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ICE MODEL

Ice model: each vertex has two incoming and two outgoing edges.
Counted by vertices
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BIJECTION TO THE ICE MODEL

Start with a height-labelled quadrangulation.
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BIJECTION TO THE ICE MODEL

Draw the dual with edges oriented according to the rule.
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BIJECTION TO THE ICE MODEL

Each red vertex has two incoming and two outgoing edges.
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BIJECTION TO THE ICE MODEL

Each red vertex has two incoming and two outgoing edges.
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BIJECTION TO THE ICE MODEL

Each vertex has two incoming and two outgoing edges.

Counting planar maps with a height function Andrew Elvey Price



Part 4: Six vertex model
(Kostov (2000)/EP and Zinn-Justin (2019)).
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SIX VERTEX MODEL

Six vertex model: weight γ per alternating vertex.
Generating function: Q(t, γ).

Non-alternating
(weight t)

Alternating
(weight tγ)

`+ 1 `

`+ 1`+ 2

`

`+ 1 `

The weight γ counts:

Alternating faces in height-labelled quadrangulations

Edges joining equal labels in weakly height-labelled maps

Note: Q(t, 0) counts height-labelled maps.
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SOLUTION FOR HEIGHT-LABELLED MAPS

Let R0(t) be the unique power series with constant term 0 satisfying

t =
∞∑

n=0

1
n + 1

(
2n
n

)2

R0(t)n+1,

Then the generating function of height labelled maps counted by
edges is

G(t) = Q(t, 0) =
1

2t2 (t − 2t2 − R0(t)).

Asymptotically, the coefficients behave as

gn ∼ κ
µn+2

n2(log n)2 ,

where κ = 1/8 and µ = 4π.
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SIX VERTEX MODEL BACKGROUND (FROM PHYSICS)

Solved at criticality by Zinn-Justin in 2000.

Exactly “solved” by Kostov later in 2000

(to the satisfaction of
physicists).

Solution was not completely rigorous... and we didn’t
understand it

Last year we discussed it with Paul Zinn-Justin:

He corrected a mistake and simplified the solution.

Together, we proved the result.
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RECALL: SOLUTIONS AT γ = 0, 1

The generating function Q(t, 0) is given by

t =
∞∑

n=0

1
n + 1

(
2n
n

)2

R0(t)n+1,

Q(t, 0) =
1

2t2 (t − 2t2 − R0(t)).

The generating function Q(t, 1) is given by

t =
∞∑

n=0

1
n + 1

(
2n
n

)(
3n
n

)
R1(t)n+1,

Q(t, 1) =
1

3t2 (t − 3t2 − R1(t)).
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SOLUTION FOR Q(t, γ)

Define

ϑ(z, q) =
∞∑

n=0

(−1)n(e(2n+1)iz − e−(2n+1)iz)q(2n+1)2/8.

Let q = q(t, α) be the unique series satisfying

t =
cosα

64 sin3 α

(
−ϑ(α, q)ϑ

′′′(α, q)
ϑ′(α, q)2 +

ϑ′′(α, q)
ϑ′(α, q)

)
.

Define R(t, γ) by

R(t,−2 cos(2α)) =
cos2 α

96 sin4 α

ϑ(α, q)2

ϑ′(α, q)2

(
−ϑ
′′′(α, q)
ϑ′(α, q)

+
ϑ′′′(0, q)
ϑ′(0, q)

)
.

Then
Q(t, γ) =

1
(γ + 2)t2

(
t − (γ + 2)t2 − R(t, γ)

)
.
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Part 5: Height distribution
(Bousquet-Mélou and EP (2019+)).

Disclaimer: This is work in progress; these “results” are not
completely proven yet.
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HEIGHT DISTRIBUTION

We now count height-labelled quadrangulations with a highlighted
vertex v which gets weight δheight of v.
New generating function: Q̂(t, γ, δ).

1

0

1

0

−1

0

−1

−1

−2

This example contributes t7γ2δ−2 to Q̂(t, γ, δ)

We have now found the exact form of Q̂(t, γ, δ), using theta functions.
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HEIGHT DISTRIBUTION

From Q̂(t, 1, δ) we get the exact distribution of vertex heights in
height-labelled quadrangulations with n faces.

The mean is always 1/2.

The variance Vn grows like

Vn ∼
3

2π2 log(n)2.

After rescaling by dividing each height by 3 log(n)/π, the
limiting distribution has kth moment

mk = |(k − 1)Bk|,

where Bk is the kth Bernoulli number.
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FURTHER QUESTIONS

Can we count height-labelled maps and/or weakly
height-labelled maps by edges and vertices?

Yes!

Can we determine the height distribution in height-labelled
maps?

Are there any phase transitions?

Do these have limiting objects? What are they?

Random generation?
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SOMETHING TO TAKE HOME

Recall: The GF Q(t) of height-labelled quadrangulations is given by

t =
∞∑

n=0

1
n + 1

(
2n
n

)(
3n
n

)
R(t)n+1,

Q(t) =
1

3t2 (t − 3t2 − R(t)).

Another interpretation (Bousquet-Mélou and Courtiel 15):
Consider ternary trees with black and white leaves. Define the charge
at a node to be the number of white leaves minus the number of black
leaves in the associated subtree. Then (t − R)/t = 3t(1 + Q) counts
(by nodes) trees in which the root is the only vertex of charge 1.

Bijection?
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Thank you!
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BONUS SLIDE: BIJECTION TO A LOOP MODEL

Let C(t, ω) be the generating function for partially oriented cubic
maps in which each vertex is one of the following types.

Right turn
(weight ω−1

√
t)

Left turn
(weight ω

√
t)

Theorem: Q(t, ω2 + ω−2) = C(t, ω).
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(weight t)

(weight ω2t) (weight ω−2t)

OR

(weight t)

(weight γt)

OR
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