
Logarithmic Variance for the Height Function of
Square Ice

Matan Harel

Joint work with: H. Duminil-Copin (IHES, UniGe), B. Laslier (Diderot),

A. Rauofi (ETH), G. Ray (Victoria)

Tel Aviv University

September 4th, 2019



Uniform Homomorphisms

We have already seen the uniform homomorphism model in the
previous talk by Martin:

Let Λ be a finite subgraph of Z2. Consider h : V (Λ)→ Z such that, for
any neighboring vertices u and v , |hu − hv | = 1.

As in the previous talk, we will take Λn to be an (even) square of side
length 2n, with h ≡ 0 on the boundary; we call this measure φ0

Λn
.

The typical behavior of h under this setup is shockingly unamenable to
analysis by general techniques of random surfaces, due to hardcore
constraints.
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Random Surfaces

The uniform homomorphism model is conjectured to be one of the
(many!) random-surface models that can have one of two behaviors:

φ0
Λn

[h0 > r ] < e−kr , for some k > 0, or

k log n ≤ φ0
Λn

[h2
0] ≤ K log n for some k ,K > 0.

In the latter case, proving this is a step towards convergence to the
Gaussian Free Field.

Such dichotomy theorems have been shown by (DCST ’17) for
FK-percolation on Z2, and in greater generality by (DCT ’19).
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Percolation Picture

We will consider the percolation processes induced by h ∈ S.

There are two distinct types of connectivity we will need to think about:
the usual connectivity of Z2, and

×-connectivity, which connects vertices of the same sublattice
which are diagonal to one another.
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Dichotomy Theorem

We will state our dichotomy theorem for uniform homomorphism model
in terms of horizontal ×-crossing of rectangles of aspect ratio ρ, which
we denote H×(Λρn,n):

Theorem (DCHLRR, 19+)

For the uniform homomorphism, either:

φ0
Λn

[h0 > r ] < e−krα , for some k , α > 0, or

there exists c(k , r , ρ) such that, for any r , k > (2 + ρ), and n
large enough,

c < φ0
Λkn

[H×h=r (Λρn,n)] < 1− c.
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Dichotomy Theorem

There are two distinct elements required for the dichotomy argument:

A relation between horizontal and vertical crossings,

φ0
Sn

[H×h≥2(Λρn,n)] ≥ c
(
φ0
Sn

[V×h≥2(Λρn,n)]
)ρ/c

,

where Sn is the infinite strip of height 2n.

A renormalization argument, which will use the generalized RSW
estimate above to prove that

φ0
Λ20n

[∃ × -circuit of h ≥ 2 in Λ20n \ Λ10n]

≤ C · φ0
Λ2n

[∃ × -circuit of h ≥ 2 in Λ2n \ Λn]2 .
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Tools for the proof

The uniform homomorphism has a few good properties:

h satisfies the FKG inequality — that is,

φ0
R[A ∩ B] ≥ φ0

R[A] · φ0
R[B], for any A and B increasing in h.

h has the ×-Domain Markov Property.

Under ‘good’ boundary conditions, there are several equivalent
ways to express crossing events:
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The ‘free lunch’ equalities

The planar duality of the crossings implies that

H×h<m(R)c = Vh≥m(R)

= Vh∈{m,m+1}(R) = V∗h=m+1(R)

=
h ≥ m pathh < m ×−path

C

where ∗-paths connect vertices at `1-distance 2.
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The ‘free lunch’ equalities

Suppose the boundary conditions on the horizontal sides of R are
below m. Then

H×h<m(R)c = Vh≥m(R) = Vh∈{m,m+1}(R)

= V∗h=m+1(R)

h ≥ m path
κ ≤ m

=
κ ≤ m h ∈ {m,m+ 1} path

=

where ∗-paths connect vertices at `1-distance 2.
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The less-than-advantageous properties

There are also some major difficulties in the analysis:

The crossing events H× and V× are not self-dual.

The spin space of h is unbounded in both directions.

This makes it tricky to ‘push’ boundary conditions to manipulate the
geometry of domains, as there are no optimal boundary conditions for
increasing events.
To get around this difficulty, we will work with the absolute value of h —
which, it turns out, is FKG!

(for good boundary conditions)
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Russo-Seymour-Welsh Theory

Consider the strip Sn, the rectangle Λρn,n, and the segments {Ik}.

Let Hk be the event that Ik and Ik+2 are connected by a ×-path of
h ≥ 2.

The intersection of (at most) (25ρ+ 1) Hi ’s implies the existence of a
horizontal crossing of Λρn,n.

Λρn,n
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Russo-Seymour-Welsh Theory

By a union bound, the probability of connecting any particular Ik to the
top is comparable to φ0

Sn
[V×h≥2(Λρn,n)].

We define Tk to be the event in the picture, which restricts the
geometry of the crossing path.

When Tk and Tk+2 occur simultaneously, we have three squares that
are doubly crossed by ×-paths of h ≥ 2.

(n/2)× (21n/50)

centered rectangles
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By a union bound, the probability of connecting any particular Ik to the
top is comparable to φ0

Sn
[V×h≥2(Λρn,n)].

We define Tk to be the event in the picture, which restricts the
geometry of the crossing path.

When Tk and Tk+2 occur simultaneously, we have three squares that
are doubly crossed by ×-paths of h ≥ 2.

Tk

Tk+2

Dark blue areas are
squares of size n/2

M. Harel (TAU) Dichotomy for Square Ice September 4th, 2019 11 / 16



Russo-Seymour-Welsh Theory

We now make a (rather major) assumption:

φ0
Sn

[Tk ] > c(ρ) · φ0
Sn

[V×h≥2(Λρn,n)].
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Russo-Seymour-Welsh Theory

We now make a (rather major) assumption:

φ0
Sn

[Tk ] > c(ρ) · φ0
Sn

[V×h≥2(Λρn,n)].

Condition on the value of h to the left of the leftmost path satisfying
Tk , and to the right of the rightmost path satisfying Tk+2.
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Russo-Seymour-Welsh Theory

We now make a (rather major) assumption:

φ0
Sn

[Tk ] > c(ρ) · φ0
Sn

[V×h≥2(Λρn,n)].

It will be sufficient to prove that probability of crossing the white
region horizontally is bounded below by a constant.

h ≥ 2
×−path
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RSW Proof: Step 1

We zoom in on the bottom square S−, and consider the event H̄,
where the right boundary is connected to the left by h ≥ 1 path. .

h ≥ 2
h ≥ 2

h ≥ 1

h = 0
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RSW Proof: Step 1

Thus, we deduce that the probability of H̄ is bounded below by

φ
0/2
S− [Hh≥1(S−)]

= 1− φ0/2
S− [V×h≤0(S−)]

≥ 1− φ0/2
S− [Vh≤1(S−)]

.

h = 0h = 0

h = 2
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h = 0
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RSW Proof: Step 1

Thus, we deduce that the probability of H̄ is bounded below by

φ
0/2
S− [Hh≥1(S−)] ≥ 1/2

h = 0h = 0

h = 2
h = 2

h ≥ 1

h = 0
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RSW Proof: Step 2

We zoom in on the middle square S, and look for a h ≥ 2 ×-crossing.

Unlike before, we cannot push boundary conditions of h = 0 in,

because h ≥ 1 is not the same as |h| ≥ 1!

h ≥ 2h ≥ 2

h ≥ 2

h ≥ 1

h ≥ 1
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RSW Proof: Step 2

We look for a symmetric domain in other ways:

h ≥ 0

h ≥ 0

h ≥ 1h ≥ 1

h ≥ 1
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RSW Proof: Step 2

We look for a symmetric domain in other ways:
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Thank you!
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