CHARACTERISATION OF THE 2D GFF

Joint work with Nathanaël Berestycki and Gourab Ray

University of Fribourg, 02.09.2019 Ellen Powell (Durham University)

Kenyon '01, ...

Le Gall '13, Miermont '13, Miller-Sheffield '15+, ...

GFF AS A SCALING LIMIT

Ginzburg-Landau model

Giacomin-Olla-Spohn '01, Miller '11 ...

Random matrices Log characteristic polynomial

> Fyodorov-Khoruzhenko-Simm '01, Rider-Virag '07, Hughes-Keating-O'Connell '01

2D GFF: DEFINITION

Random Gaussian "function" on $D \subset \mathbb{C}$ Mean 0, Variance = Green's function $G_D(x, y) \sim \log(|x - y|^{-1})$ as $|x - y| \to 0$

- Gaussian function with this covariance does not exist!
- GFF lives in the space of generalised functions
- Not defined point-wise but can test against smooth functions

PROPERTIES

CONFORMAL INVARIANCE

Image of a GFF under a conformal map has the law of a GFF

PROPERTIES

MARKOV PROPERTY (BROWNIAN MOTION)

Brownian motion from a given time onwards is equal to: the position at that time plus an independent Brownian motion

PROPERTIES

$U \in D$ **DOMAIN MARKOV PROPERTY (GFF)**

 $\left.h^D\right|_U = h^U_D + \varphi^U_D$

 h^D

GFF restricted to a subdomain is equal to: a harmonic function plus an independent GFF in the subdomain

"Brownian motion is the only random continuous process with stationary, centred, and independent increments"

- $(B_t)_{t\geq 0}$ is almost surely continuous
- $B_t B_s$ is equal in law to B_{t-s} for any $0 \le s \le t$
- $(B_{t_2} B_{t_1}), (B_{t_3} B_{t_2}), \dots, (B_{t_n} B_{t_{n-1}})$ are independent for any $0 \le t_1 \le t_2 \dots \le t_n$

CHARACTERISATION OF THE GFF

Theorem (Berestycki-P-Ray '18)

"The GFF is the only^{*} random field indexed by twodimensional domains that satisfies conformal invariance and the domain Markov property."

- *We also have a moment assumption on the field
- This could allow us to characterise scaling limits

Assume that for each $D \subset \mathbb{C}$ simply connected we are given the law of

 $(h^D, f)_{f \in C^\infty_c(D)}$

a linear stochastic process indexed by $f \in C^\infty_c(D)$

Assume that for each $D \subset \mathbb{C}$ simply connected we are given the law of

 $(h^D, f)_{f \in C^\infty_c(D)}$

a linear stochastic process indexed by $f \in C^\infty_c(D)$

ASSUMPTIONS:

Conformal invariance:

if $f: D \rightarrow D'$ is conformal, then we have

 $h^{D'} = h^D \circ f^{-1}$

in law as stochastic processes

Assume that for each $D \subset \mathbb{C}$ simply connected we are given the law of

 $(h^D, f)_{f \in C^\infty_c(D)}$

a linear stochastic process indexed by $f \in C^\infty_c(D)$

ASSUMPTIONS:

Domain Markov property:

if $U \subset D$ is simply connected, we can write $h^D = h_D^U + \varphi_D^U$, where:

- the two summands are independent;
- h_D^U has the law of h^U when restricted to U and is zero outside of U;
- φ_D^U is harmonic when restricted to U

Assume that for each $D \subset \mathbb{C}$ simply connected we are given the law of

 $(h^D, f)_{f \in C^\infty_c(D)}$

a linear stochastic process indexed by $f\in C^\infty_c(D)$

ASSUMPTIONS:

Dirichlet boundary condition:

 $\mathbb{E}[(h^D, f)] = 0 \quad \forall f \in C^{\infty}_c(D)$

Moreover, for any sequence $(f_n)_n \in C_c^{\infty}(D)$ radially symmetric with bounded mass, and with support eventually contained outside any $M \subseteq D$

 $var(h^D, f_n) \to 0 \text{ as } n \to \infty$

Assume that for each $D \subset \mathbb{C}$ simply connected we are given the law of

 $(h^D, f)_{f \in C^\infty_c(D)}$

a linear stochastic process indexed by $f\in C^\infty_c(D)$

ASSUMPTIONS:

Moments/stochastic continuity: $\mathbb{E}[(h^D, f)^4] < \infty \text{ for every } f \in C_c^{\infty}(D)$ and $(f, g) \mapsto K^D(f, g) := \mathbb{E}[(h^D, f)(h^D, g)]$ is a continuous bilinear form on $C_c^{\infty}(D)$

Theorem (Berestycki-P-Ray '18)

If these assumptions hold, then for some a > 0, h^D is equal to a times a GFF in D for every D

REMARKS

- Also works in 1d, giving a new characterisation of the Brownian bridge
- CI, DMP and Dirichlet BCs seems indispensable, but moments... (more later!)

QUESTIONS

• Can we relax the moment assumption?

Yes! We can obtain the result assuming moments of order $1 + \varepsilon$ for $\varepsilon > 0$ (forthcoming work...)

- Do we have a similar characterisation in higher dimensions?
- What about different boundary conditions?
- Can we characterise the Gaussian free field on different 2d surfaces?
- Does there exist a "stable" version of the free field?

THANKS!