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ANV A
20 GFF: DEFINITION

Random Gaussian “function” on D c C

Mean O, Variance = Green’s function

Gp(x,y) ~log(|x—y|™) as [x—y| = 0

® Gaussian function with this
covariance does not exist!

® GFF lives in the space of
generalised functions A

® Not defined point-wise but can
test against smooth functions
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CONFORMAL INVARIANCE

AL

Image of a GFF under a conformal map has the law of a GFF o~
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MARKOV PROPERTY (BROWNIAN MOTION)

l

|1

Brownian motion from a given time onwards is equal to: the position
at that time plus an independent Brownian motion
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DOMAIN MARKQGV PROPERTY (GFF)

GFF restricted to a subdomain is equal to: a harmonic function plus
an independent GFF in the subdomain




CHARACTERISATION OF BROWNIAN |

“Brownian motion is the only random continuous process
with stationary, centred, and independent increments”

e (B),> is almost surely continuous

eB,— B, isequalinlaw to B,_, forany 0 <s <t
«(B,~B,),(B. —B,),...,(B, = B, )
are independent forany 0 <t < t,--- <t,




CHARACTERISATION OF THE GFF

Theorem (Berestycki-P-Ray ‘18)

® *We also have a moment assumption
on the field

This could allow us to characterise
scaling limits
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Assume that for each D C C simply connected we are given the law of

(h°, Pjecsm)

a linear stochastic process indexed by f € C.°(D)
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Assume that for each D C C simply connected we are given the law of

(h°, ey

a linear stochastic process indexed by f € C.°(D)

ASSUMPTIONS:

Conformal invariance:

if f : D — D’is conformal, then we have
hD’ — hD of—l

in law as stochastic processes




Assume that for each D C C simply connected we are given the law of

(h°, seceny

a linear stochastic process indexed by f € C.°(D)

ASSUMPTIONS:

Domain Markov property:

if U C D is simply connected, we can write h® = hj + @, where:

= ® the two summands are independent;

/ ° hg has the law of h"when restricted to U and is zero outside of U;

o gog 1s harmonic when restricted to U




Assume that for each D C C simply connected we are given the law of

(h°, seceny

a linear stochastic process indexed by f € C.°(D)

ASSUMPTIONS:

Dirichlet boundary condition:

E[(hP,f)] = 0 Vf e CX(D)

Moreover, for any sequence (f,), € C°(D) radially symmetric with
bounded mass, and with support eventually contained outside any M € D

var(h?,f) = Oasn — oo
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Assume that for each D C C simply connected we are given the law of

(h°, ey

a linear stochastic process indexed by f € C.°(D)

ASSUMPTIONS:

Moments/stochastic continuity:
E[(hP, £)*] < oo for every f € C°(D)
and (f, g) = KP(f, g) := E[(hP, f)(hP, 9)]

1s a continuous bilinear form on C°(D)
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If these assumptions hold, then for some a > 0, 7
IN hP is equal to a times a GFF in D for every D

7\ REMARKS Wi

\\\\ ® Also works in 1d, giving a new characterisation of the Brownian /
m’ll bridge

® CI, DMP and Dirichlet BCs seems indispensable, but moments...
(more later!)




QUESTIONS

® Can we relax the moment assumption?

Yes! We can obtain the result assuming moments of order 1 + € for

¢ > 0 (forthcoming work...)
® Do we have a similar characterisation in higher dimensions?
® What about different boundary conditions?

® Can we characterise the Gaussian free field on different 2d
surfaces?

Does there exist a “stable” version of the free field?
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