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Chapter I

Basic combinatorics

1 How to count

All sets in this chapter are finite.

For a finite set X, by |X| we denote the number of elements in X, also
called the cardinality of X.

1.1 Sum rule

If X ∩ Y = ∅, then |X ∪ Y | = |X|+ |Y |.

More generally,

If the sets X1, . . . , Xn are pairwise disjoint (that is Xi ∩Xj = ∅ for
all i 6= j), then |X1 ∪X2 ∪ · · · ∪Xn| = |X1|+ |X2|+ · · ·+ |Xn|.

Formally, this follows by induction on n from the sum rule for two sets.

Later we will learn how to proceed if the sets are not disjoint.

1.2 Product rule

First, let us state a special product rule:

|X × Y | = |X| · |Y |.

Here X × Y , the Cartesian product of X and Y , denotes the set of ordered
pairs (x, y) with x ∈ X, y ∈ Y .

The elements of X ×Y can be written in a table whose rows correspond
to the elements of X, and the columns correspond to the elements of Y .
This justifies the product rule.

Again, there is an extension to several sets:

|X1 × · · · ×Xn| = |X1| · · · |Xn|.

1
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Example 1.1. A restaurant offers a choice of 3 first courses, 4 main courses,
and 5 desserts. How many different full course dinners are there?

A full course dinner is an element of the Cartesian product

{first courses} × {main courses} × {desserts}.

Multiplying the cardinalities of these sets we obtain the answer: 3 ·4 ·5 = 60
different full course dinners are possible.

Up to now we have considered independent choices, when the result of
one choice does not influence the sets of subsequent choices. However, it
is not the set of choices what matters, but rather the number of choices.
This leads us to the general product rule:

If two consecutive choices are made, with m possibilities for the first
choice and n possibilities for the second choice, then the number of
all possible outcomes is equal to mn.

Of course, this can be generalized to several consecutive choices if the number
of possibilities for each choice is independent of the results of all previous
choices.

Example 1.2. A person wants to go to a swimming pool once a week, and
play tennis once a week, but not both on the same day. How many different
schedules are there?

Choose a swimming day. There are 7 possibilities for this. When the
choice is made, there remain 6 possible tennis days. So, there are 7 · 6 = 42
different schedules.

1.3 Difference rule

The set difference: X \ Y = {x ∈ X | x /∈ Y }.

If X ⊃ Y, then |X \ Y | = |X| − |Y |.

Instead of counting the number of “good” outcomes, one can count the
number of “bad” ones and subtract it from the total number of outcomes.

Example 1.3. Two dice are thrown. What is the probability that at least
one of them shows six?

We give two solutions. The first one uses the sum and the product rules.
Consider three cases:

• Both dice show six. This is one outcome.

• The first dice shows six, the second does not. Five outcomes.

• The first dice does not show six, the second does. Five outcomes as
well.
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Thus in total we have 1+5+5 = 11 possibilities. To compute the probability,
we have to divide by the total number of possibilities, which is 6 · 6 = 36.

The second solution uses the difference rule. A “bad” outcome is one
where neither of the dice shows six. For each of the dice there are 5 possi-
bilities, so that this number is 5 · 5 = 25. To count the “good” outcomes,
we subtract 25 from the number of all possible outcomes: 36− 25 = 11.

1.4 Quotient rule

The number of sheep in a herd is equal to the number of legs divided
by four.

This is a highly inefficient way of counting sheep. But if we see only the legs
and cannot see the heads, then this is the only available way.

Example 1.4. Draw a convex n-gon and all of its diagonals. How many
segments (sides and diagonals) do we get?

Every point belongs to n−1 segments. If we multiply this by the number
of points, we get n(n − 1). But every segment was counted twice, because
it has two endpoints (two “legs”). Thus the total number of segments is
n(n−1)

2 .

2 Counting maps and subsets

2.1 Maps

A map f : X → Y is a rule that associates to every element x ∈ X a unique
element of Y . The element associated to x is denoted by f(x).

A map can be pictured as a collection of arrows going from elements of
X to elements of Y . At every element of X one and only one arrow must
start. By contrast, at an element of Y several arrows or none at all may
end.

A map f : X → Y is called

• injective, if no two different elements of X are sent to the same element
of Y : for every x1 6= x2 we have f(x1) 6= f(x2);

• surjective, if to every element of Y some element of X is sent: for every
y ∈ Y there is x ∈ X such that f(x) = y;

• bijective, if it is injective and surjective.

Example 2.1. Let X be the set of all countries in the world, and Y be the
set of all cities in the world. Define a map f : X → Y by letting f(x) be
the capital of the country x. Then f is injective (no city can be the capital
of two countries), but not surjective (some cities are not capitals). Define a
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X Y

f

Figure 1: A map f : X → Y .

map g : Y → X by letting g(y) be the country in which the city y lies. Then
g is surjective (in every country there is at least one city), but not injective
(some countries have more than one city).

It is also interesting to look at the compositions f ◦ g and g ◦ f ...

A map is bijective iff at every element of Y ends exactly one arrow. By
inverting the arrows we obtain the inverse map f−1 : Y → X, which has the
properties f−1(f(x)) = x for all x ∈ X and f(f−1(y)) = y for all y ∈ Y .

If f is not bijective, then there is no inverse map f−1. However, by abuse
of notation one uses f−1(y) to denote the preimage of y:

f−1(y) = {x ∈ X | f(x) = y}.

Similarly one can define the preimage f−1(B) of any subset B ⊂ Y .
Observe that

• f injective ⇔ |f−1(y)| ≤ 1 for all y;

• f surjective ⇔ f−1(y) 6= ∅ for all y.

We can now formulate the quotient rule in the mathematical language.

If a map f : X → Y satisfies |f−1(y)| = k for all y ∈ Y ,

then |Y | = |X|
k .

A special case of this is the bijection principle:

If a map f : X → Y is a bijection, then |X| = |Y |.

2.2 Counting all maps

Theorem 2.2. If |X| = m and |Y | = n, then there are nm different maps
X → Y .
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Proof. Without loss of generality, let X = {1, 2, . . . ,m}. In order to define
a map f : X → Y we need to make m choices, each time from n possibilities:
f(1) can take n different values, so can f(2), and so on up to f(m). Thus
there are

n · · ·n︸ ︷︷ ︸
m

= nm

different maps X → Y .

Theorem 2.3. The number of different subsets of an n-element set is 2n.

Proof. Let |X| = n. With every subset A ⊂ X we associate a map 1A : X →
{0, 1} (the indicator function of A) defined as

1A(x) =

{
1, if x ∈ A,
0, if x /∈ A.

One can show that A 7→ 1A is a bijection between the set of all subsets and
the set of all maps X → {0, 1}: different subsets define different maps and
every map f is the indicator function of the subset f−1(1) ⊂ X.

The number of all maps X → {0, 1} is 2|X| by Theorem 2.2. By the
bijection principle, the number of all subsets of X is the same.

Remark 2.4. The set of all maps X → Y is sometimes denoted by Y X ,
so that Theorem 2.2 can be formulated as

∣∣Y X
∣∣ = |Y ||X|. This is not the

only reason for the notation Y X . One can show that ZX∪Y = ZX ×ZY for
disjoint X and Y , and ZX×Y = (ZX)Y .

Also, the Cartesian power

Xn = X × · · · ×X︸ ︷︷ ︸
n

= {(x1, . . . , xn) | xi ∈ X for all i}

can be viewed as the set X{1,...,n}: a sequence (x1, . . . , xn) corresponds to a
map f : {1, . . . , n} → X, f(i) = xi.

Theorem 2.5. Tossing a coin n times can lead to 2n different outcomes.

Proof. Apply the product rule. The coin is making n choices, each time
from two possibilities. Thus the number of outcomes is 2 · · · 2︸ ︷︷ ︸

n

= 2n.

Theorem 2.6. The number of binary sequences of lenght n is 2n.

Proof. One can argue by the product rule again. Or, one can establish a
bijection between the set of binary sequences and the set of outcomes when
tossing a coin: one encodes an outcome by putting 1 for “heads” and 0 for
“tails”. It is easy to see that this is a bijection, thus by the previous theorem
the number of binary sequences is 2n.
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Remark 2.7. One might argue that the number of binary sequences of
length n is 2n because they represent all numbers from 0 to 2n − 1 in the
binary system. But this result itself requires a proof, which is not easier
than our combinatorial argument.

To summarize, we have found that the number of elements in each of
the following sets is 2n:

• Maps from an n-element set to {0, 1}.

• Subsets of an n-element set.

• Outcomes in tossing a coin n times.

• Binary sequences of length n.

Between any two of these sets there is a natural bijection. Some of these
bijections were described above.

2.3 Counting injective maps and ordered choices

Theorem 2.8. If |X| = k and |Y | = n, then the number of injective maps
from X to Y is n(n− 1) · · · (n− k + 1).

Proof. Without loss of generality, X = {1, . . . , k}. We have n possibilities to
choose f(1). After this, for f(2) there remain n− 1 possibilities, then n− 2
possibilities for f(3), and so on up to f(k), for which n− (k−1) = n−k+ 1
possibilities remain.

The above argument works for k ≤ n, but the formula is true for k > n
as well: there are no injective maps in this case, and the product n(n −
1) · · · (n− k + 1) vanishes because it contains a zero factor.

Corollary 2.9. The number of bijective maps between two n-element sets
is equal n! = 1 · 2 · · ·n. The number of permutations of n elements is equal
to n!.

Indeed, a permutation of an n-element set X can be thought of as a
bijection {1, 2, . . . , n} → X.

The same number appears as the answer to a different problem. Imagine
that we have a bag with n balls. We take out k balls consecutively and lay
them in a line in the order in which they were taken. How many different
outcomes are there?

Theorem 2.10. The number of ordered choices of k balls out of n is

n(n− 1) · . . . · (n− k + 1).

Proof. One can argue by the product rule, or one can interpret an ordered
choice of k balls out of n as an injective map f : {1, . . . , k} → {1, . . . , n}.
Here f(i) tells us which of the balls was taken on the i-th step.
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2.4 Unordered choices

Take the same bag with n balls. We take out k balls simultaneously. Equiv-
alently, we take out k balls consecutively, but then forget the order in which
they were taken. How many possibilities are there?

Theorem 2.11. The number of unordered choices of k balls out of n is

n(n− 1) · . . . · (n− k + 1)

k!
.

Proof. Let X be the set of all possible ordered choices of k balls out of n, and
Y be the set of all unordered choices of k balls. There is a map f : X → Y
(the “forgetful map”) that associates to an ordered collection of k balls the
same set of balls, but unordered. (The balls lying in a line are put into
another bag.)

For y ∈ Y , what is the cardinality of its preimage f−1(y)? This is the
number of ways to order an unordered set of k balls. An ordering is a
bijection to the set {1, 2, . . . , k}, and from Corollary 2.9 we know that there
are k! of them. Therefore by the quotient rule we have

|Y | = |X|
k!

=
n(n− 1) · . . . · (n− k + 1)

k!
.

As we already said, an unordered choice of k balls out of n is also called
a k-combination. Yet another name of this is a k-element subset of a given
n-element set. (By definition, a set is an unordered collection of elements.)

Notation. The number of k-element subsets of an n-element set is denoted
by
(
n
k

)
(pronounced “n choose k”).

2.5 Birthday problem

Given k people, what is the probability that some two of them have the
same birthday? How big should k be for this probability to exceed 1

2?

3 Many faces of
(
n
k

)
The number

(
n
k

)
that we have introduced in the previous lecture has several

interpretations.

3.1 Subsets or unordered choices

This is our original definition:
(
n
k

)
is the number of unordered choices of

k elements out of n. In a more abstract language, this is the number of
k-element subsets of an n-element set.
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We have proved that(
n

k

)
=
n(n− 1) · . . . · (n− k + 1)

k!
=

n!

k!(n− k)!
. (1)

Theorem 3.1. (
n

k

)
=

(
n

n− k

)
First proof. This is immediate from (1): if we replace k by n− k, then the
factors in the denominator simply interchange.

Second proof. The theorem can be proved even without knowing a formula
for
(
n
k

)
, by a bijective argument. Associate to every subset of an n-element

set its complement: A 7→ X \A. This is a bijection, and it sends k-element
subsets to (n−k)-element subsets. Thus there are as many k-element subsets
as there are (n− k)-element subsets.

Theorem 3.2. For every n we have

n∑
k=1

(
n

k

)
=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
= 2n. (2)

Proof. By Theorem 2.3, an n-element set has 2n subsets. By definition,
(
n
k

)
is the number of k-element subsets. (One may say that we are using the
sum rule here: the set of all subsets is a disjoint union of sets of k-element
subsets over all k from 0 to n.)

Theorem 3.3. The number
(
n
k

)
is equal to the number of binary words of

length n containing exactly k digits 1.

Proof. A subset of {1, 2, . . . , n} can be encoded with a binary word: the i-th
digit of this word is 1 if and only if the number i belongs to the subset. The
words with k digits 1 correspond to the k-element subsets, hence there are(
n
k

)
such words.

3.2 Monotone paths

Take the square lattice in the plane. The nodes of the lattice can be identified
with pairs of integers (k, l) (Cartesian coordinates). Take two non-negative
integers k, l and mark the points (0, 0) and (k, l). A lattice path from (0, 0)
to (k, l) is a sequence of segments of the square lattice that leads from (0, 0)
to (k, l). A lattice path is called monotone if it runs only upwards and to
the right. See an example on Figure 2.

Theorem 3.4. The number of monotone paths from (0, 0) to (k, l) is
(
k+l
k

)
.
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(0, 0)

(4, 3)

Figure 2: A monotone path.

Proof. A monotone path can be encoded by a binary word, where 1 stands
for “a step to the right” and 0 stands for “a step upwards”. In order to
attain the point (k, l), we need to make k steps to the right and l steps
upwards. Therefore the monotone paths from (0, 0) to (k, l) correspond to
words of length k + l containing exactly k digits 1. From Theorem 3.3 we
know that the number of such words is

(
k+l
k

)
.

3.3 Pascal’s triangle

Write two rows of 1 starting at the same place and going one downwards to
the left and the other downwards to the right. Then fill in this frame row
after row according to the rule that every number is equal to the sum of its
top-left and top-right neighbors.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

One adopts the convention that the rows of the Pascal triangle as well
as the numbers in each row are numbered starting from 0. Thus the row
number n contains n+ 1 entries numbered with 0 up to n.

Theorem 3.5. The k-th number in the n-th row of the Pascal triangle is
equal to

(
n
k

)
.

We will need a lemma.
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Lemma 3.6. For every 0 ≤ k ≤ n the following identity holds:(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
. (3)

Proof. We know that
(
n
k

)
is the number of binary words of length n with

exactly k digits 1. There are two kinds of words like that: those that start
with 1 and those that start with 0. How many words of each kind are there?

When we delete the first digit, we are left with a word of length n − 1.
For the words of the first kind, this word of length n− 1 must contain k− 1
digits 1. Thus there are

(
n−1
k−1

)
words of the first kind.

Similarly, for a word of second kind we are left with a word of length
n − 1 that contains k digits 1. Thus there are

(
n−1
k

)
words of the second

kind.

Since every word is either of the first kind or of the second kind but not
both, identity (3) holds.

Proof of Theorem 3.5. Let us write the numbers
(
n
k

)
in a triangle similar to

the Pascal triangle: (
0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
The top-left neighbor of the number

(
n
k

)
is
(
n−1
k−1

)
, the top-right neighbor

is
(
n−1
k

)
. By Lemma 3.6, the numbers in the

(
n
k

)
-triangle satisfy the same

rule that the numbers in the Pascal triangle: each number is the sum of its
top-left and top-right neighbors. The outermost numbers

(
n
0

)
and

(
n
n

)
are

also the same as in the Pascal triangle:(
n

0

)
=

(
n

n

)
= 1.

It follows that the
(
n
k

)
-triangle coincides with the Pascal triangle. (The

formal argument here is proof by induction: if the n-th line of the
(
n
k

)
-

triangle coincides with the n-th line of the Pascal triangle, then their (n+1)-
st lines also coincide.)
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3.4 Binomial theorem

The binomial theorem is the generalization of the well-known formulas

(a+ b)2 = a2 + 2ab+ b2, (a+ b)3 = a3 + 3a2b+ 3ab2 + b3.

Theorem 3.7. For any n ∈ N we have

(a+ b)n =
n∑
k=0

(
n

k

)
an−kbk

=

(
n

0

)
an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + · · ·+

(
n

n

)
bn

The coefficients in the above formula come from the n-th row of the
Pascal triangle. For example, by looking at the Pascal triangle we can
conclude

(a+ b)5 = a5 + 5a4b+ 10a3b2 + 10a2b3 + 5ab4 + b5.

Proof. How do we prove (a + b)2 = a2 + 2ab + b2? For this, we write
(a+ b)2 = (a+ b)(a+ b), multiply every term inside the first pair of brackets
with every term inside the second pair of brackets, and finally collect the
like terms:

(a+ b)2 = (a+ b)(a+ b) = a2 + ab+ ba+ b2 = a2 + 2ab+ b2.

What happens when we multiply out n pairs of brackets (a+ b)?

(a+ b)n = (a+ b)(a+ b) · · · (a+ b)︸ ︷︷ ︸
n pairs of brackets

Before collecting the like terms, we obtain a sum of products of n factors,
every factor being a or b. That is to say, we are writing down all words of
length n consisting of letters a and b. When collecting the like terms, we
ignore the order of letters in each word, counting only the number of a’s and
b’s. That is to say, the term an−kbk occurs in our sum as often as there are
(a, b)-words of length n with n − k letters a and k letters b. But we know
that there are

(
n
k

)
such words, and the theorem follows.

Instead of a and b we can substitute any numbers or expressions. For
example, we have

(1 + x)n =

n∑
k=0

(
n

k

)
xk.

Note that by substituting x = 1 we obtain a new (but a quite intricate)
proof of Theorem 3.2.
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Theorem 3.8. For any n we have(
n

0

)
−
(
n

1

)
+ · · ·+ (−1)n

(
n

n

)
= 0

This is obvious for odd n: because of
(
n
k

)
=
(
n

n−k
)

the summands can be
split into pairs that cancel each other. For n even there is no cancellation.

Proof. Substitute a = 1 and b = −1 in the binomial theorem.

3.5 Compositions

Definition 3.9. A composition of a positive integer n is a representation
of n as the sum of positive integers. The order of summands plays the role,
for example 5 = 3 + 1 + 1 and 5 = 1 + 3 + 1 are different compositions of 5.

Theorem 3.10. The number of compositions of n from k parts is
(
n−1
k−1

)
.

Proof. Lay n stones in a row. To form a composition of the number n we
must separate these stones by k − 1 sticks. The numbers of stones between
consecutive sticks sum up to n, thus form a composition of n. For example,

• | • • • | • ←→ 5 = 1 + 3 + 1

In how many ways can we put k − 1 sticks between n stones? There are
n− 1 gaps, and we must choose k − 1 of them. There are

(
n−1
k−1

)
ways to do

this. The theorem is proved.

Corollary 3.11. For every positive integers k ≤ n the equation

x1 + x2 + · · ·+ xk = n

has
(
n−1
k−1

)
solutions in positive integers.

Proof. This is nothing else but a formal description of a composition of the
number n.

Definition 3.12. A weak composition of a positive integer n is a represen-
tation of n as the sum of non-negative integers.

Theorem 3.13. The number of weak compositions of n from k parts is(
n+k−1
k−1

)
.

First proof. Let us establish a bijection between the weak compositions of n
from k parts and the compositions of n+ k from k parts. Indeed, adding 1
to every summand in a weak composition of n transforms it into a (strong)
composition of n + k. In the opposite direction, subtracting 1 from every
summand of a composition of n + k transforms it into a weak composition
of n. This is a one-to-one correspondence (a bijection). By Theorem 3.10,
the number of (strong) compositions of n + k from k parts is

(
n+k−1
k−1

)
, and

we are done.
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Second proof. You have n stones and k − 1 sticks. Mark n+ k − 1 spots on
the ground. You have to choose k−1 among them where you lay sticks, then
you will lay your stones on the remaining spots. There are

(
n+k−1
k−1

)
different

arrangements, and they correspond to weak compositions of n from k parts.
For example, if the stones are on the first k − 1 spots, then the first k − 1
summands are equal to zero, and the k-th summand equals n.

3.6 Multisets

Imagine a bag with k balls numbered by 1, 2, . . . , k. We are taking out a
ball, writing down its number, and then putting the ball back into the bag.
This is done n times. From the product rule we know that kn different
sequences of numbers are possible. (One can see such a sequence as a map
f : {1, . . . , n} → {1, . . . , k}: here f(i) is the number at the i-th place.) But
what if we don’t care for the order of the results, but only count how often
each ball was taken? For example, the sequences (2, 1, 4, 4) and (4, 1, 4, 2)
are considered as the same. How many different combinations of balls are
possible?

One cannot proceed by the quotient rule, because the number of different
orderings of a sequence with repetitions depends on how often the repetitions
occur.

Definition 3.14. A multiset is an unordered collection of elements with
possible repetitions.

Our question can be formulated as “how many n-multisets, with elements
taken from {1, 2, . . . , k} are there?”

Theorem 3.15. The number of different n-multisets with elements taken
from {1, 2, . . . , k} is

(
n+k−1
k−1

)
.

Proof. There is a bijection between n-multisets and weak compositions of
n from k parts. Namely, to a weak composition n = x1 + · · · + xk of n we
associate the multiset where 1 occurs x1 times, 2 occurs x2 times etc. The
number of weak compositions was computed in Theorem 3.13.

4 Multinomial coefficients

4.1 Words with repeating letters

Consider the following problem:

How many different words of length n = k+ l+m can be written
with k letters a, l letters b, and m letters c?
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We have n places for the letters. First choose k places where to put the
letters a. This can be done in

(
n
k

)
different ways. Then from n−k remaining

places choose l places where to put the letters b. This can be done in
(
n−k
l

)
different ways. Thus by the (general) product rule the number of different
words is (

n

k

)(
n− k
l

)
=

n!

k!(n− k)!

(n− k)!

l!(n− k − l)!
=

n!

k!l!m!
.

We might have started by choosing l places for the letters b, and then,
say, choose m places for the letters c. Then we would compute the product(

n

l

)(
n− l
m

)
which is the same.

The following notation is used:

n!

k!l!m!
=:

(
n

k, l,m

)
.

Let us now consider a more general problem and solve it in a different
way.

Theorem 4.1. Let n balls of m different colors be given, with ki balls of
i-th color for all i (so that k1 + · · ·+km = n). Considering balls of the same
color undistinguishable, the whole set of n balls can be arranged in a row in(

n

k1, . . . , km

)
=

n!

k1! · · · km!

different ways.

Proof. Make the balls of the same color distinguishable (by writing on them
numbers, for example). Then all n balls can be arranged in n! different
ways. Now apply the quotient rule. There is a forgetful map from the set
X of arrangements with balls of the same color distinguishable to the set Y
of arrangements where balls of the same color are undistinguishable. What
is the multiplicity of this map, that is the cardinalities of the preimages
|f−1(y)|? The balls of the i-th color can be permuted amongst themselves
in ki! different ways. Permutations within every color can be performed in-
dependently, which gives us k1! · · · km! elements in Y all of which correspond
to the same element in X. Thus we have |f−1(y)| = k1! · · · km!, and hence

|Y | = |X|
k1! · · · km!

=
n!

k1! · · · km!
.
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4.2 Multinomial theorem

The numbers (
n

k1, . . . , kr

)
are called multinomial coefficients. (It would be just logical to call

(
n

k,l,m

)
a trinomial coefficient. Unfortunately, this term is sometimes used for the
entries in an analog of Pascal triangle, where every number is equal to the
sum of three numbers from the previous line, so a confusion may arise...)
Similarly to the binomial coefficients, the multinomial coefficients appear in
the expansion of the n-th power of a sum. Now the sum has not two, but
m terms.

Theorem 4.2 (Multinomial theorem).

(a1 + · · ·+ am)n =
∑

k1+···+km=n
k1,...,km≥0

(
n

k1, . . . , km

)
ak11 · · · a

km
m

Proof. Multiply the brackets respecting the order of the factors. We obtain
the sum of all words of length n from the letters a1, . . . , am. When collecting
the like terms, we disregard the order of the letters, looking only at the
number of occurences of every letter. The words with ki letters ai (for all
i from 1 to m) become the terms ak11 · · · akmm . The coefficient at this term
is the number of the words made of k1 letters a1,... km letters am, that is(

n
k1,...,km

)
.

4.3 Monotone paths in higher dimensions

Consider the cubical grid in Rm. It is possible to visualize for m = 3; for
larger m one uses an abstract description. Mark the points (0, . . . , 0) and
(k1, . . . , km) in this grid. A monotone path is one that moves along the grid
lines and in the positive directions only.

Theorem 4.3. The number of monotone paths from (0, . . . , 0) to (k1, . . . , km)
is
(

n
k1,...,km

)
.

Proof. Monotone paths can be encoded by words: write the letter ai for a
step along the i-th axis. Then a monotone path from (0, . . . , 0) to (k1, . . . , km)
corresponds to a word consisting of ki letters ai for all i from 1 to m.

5 Inclusion-exclusion formula

5.1 The formula

If A ∩B 6= ∅, then

|A ∪B| = |A|+ |B| − |A ∩B|.
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Indeed, in |A|+ |B| we have counted all elements that belong to both A and
B twice, see Figure 3, left. Subtracting |A∩B| makes our count correct, see
Figure 3, right.

1 1 12 1 1

A B A B

Figure 3: Counting the elements in the union of two sets.

Let us now count the elements in the union of three sets A ∪B ∪ C. In
the sum

|A|+ |B|+ |C|

every element is counted as many times as to how many sets it belongs, see
Figure 4, left. Let us subtract the numbers of the elements in the pairwise
intersections:

|A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |A ∩ C|.

Now every element that belongs to one or two sets is counted exactly once,
but the elements in A∩B∩C are not counted at all, see Figure 4, middle. So
it remains to add the number of these elements to obtain the final formula:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |A ∩ C|+ |A ∩B ∩ C|.

A B

C

A B

C

1 2

3

1

1

2 2

A B

C

1 1 1

1 1

1

1

1

1 1

1

1

1
0

Figure 4: Counting the elements in the union of three sets.

What will the formula for the number of elements in the union of n sets
look like? The formulas for n = 2 and n = 3 suggest that this will be
the sum of the cardinalities of all sets minus the sum of the cardinalities of
pairwise intersections plus all the triple intersections minus all the quadruple
intersections, and so on. This conjecture is true, and we will prove it now.
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Theorem 5.1 (Inclusion-exclusion formula).

|A1∪· · ·∪An| =
n∑
i=1

|Ai|−
∑

1≤i<j≤n
|Ai∩Aj |+

∑
1≤i<j<k≤n

|Ai∩Aj∩Ak|−· · ·

· · ·+ (−1)n−1|A1 ∩ · · · ∩An|

Proof. We will show that every element of the union is counted exactly once
on the right hand side of the formula.

(Can make a warm-up for the elements in the intersection of all sets.)
Take an element that belongs to exactly k of the sets A1, . . . , An. In the
first sum on the right hand side it is counted k times, in the second sum

(
k
2

)
times, and so on. In total, this element is counted with the multiplicity(

k

1

)
−
(
k

2

)
+ · · ·+ (−1)k−1

(
k

k

)
.

Due to Theorem 3.8, this sum is equal to
(
k
0

)
= 1.

Remark 5.2. One can give an exact meaning to the words “how many times
was an element counted”. Instead of the intersections Ai ∩Aj etc. consider
their indicator functions 1Ai∩Aj . Instead of summing the cardinalities, sum
these functions. The diagrams on Figures 3 and 4 show the values of certain
sums of indicator functions. The argument in the proof of Theorem 5.1
shows that

1A1∪···∪An =
n∑
i=1

1Ai −
∑

1≤i<j≤n
1Ai∩Aj +

∑
1≤i<j<k≤n

1Ai∩Aj∩Ak − · · ·

· · ·+ (−1)n−11A1∩···∩An

by comparing the values of the functions on the left and on the right at every
point. The formula for the number of elements is obtained by taking the
“integrals” of both sides, that is replacing each function f by the number∑

x∈A1∪···∪An f(x).

5.2 De Montmort problem, or counting the derangements

The problem was originally posed by Pierre Rémond de Montmort in 1708,
and was solved by him and, independently, Nicholas Bernoulli.

De Montmort stated it in terms of a game of cards, later it became
popular in the following formulation:

The guests leaving a party are taking their hats in the garderobe.
In the darkness they cannot tell the hats one from the other, so
everybody takes a hat by chance. What is the probability that
nobody will get his own hat?
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Here is a formal description of the problem. Consider a bijection

f : {1, 2, . . . , n} → {1, 2, . . . , n}.

Such a bijection is called a permutation. An element x ∈ {1, 2, . . . , n} is
called a fixed point of f if f(x) = x. A permutation without fixed points is
sometimes called a derangement. The probability to be computed is equal
to

#derangements

#permutations
.

The number of permutations is known: it is n!. Thus we have to count the
number of derangements.

Theorem 5.3. The number of all derangements of n elements is equal to

n∑
k=0

(−1)k
(
n

k

)
(n− k)! =

n∑
k=0

(−1)k
n!

k!
.

Proof. Let Ai be the set of permutations f such that f(i) = i. Then A1 ∪
· · · ∪ An is the set of all non-derangements, permutations with at least one
fixed points. Calculate its cardinality by the inclusion-exclusion formula.
The intersection |Ai1 ∩ · · · ∩ Aik | consists of all permutations satisfying the
conditions

f(i1) = i1, . . . , f(ik) = ik.

The number of such permutations is (n− k)! (to determine f , it remains to
map bijectively an (n− k)-element set to an (n− k)-element set). Thus we
have

|Ai1 ∩ · · · ∩Aik | = (n− k)!

for any choice of k sets out of A1, . . . , An. Since the number of such choices
is
(
n
k

)
, we have

|A1 ∪ · · · ∪An| = n(n− 1)!−
(
n

2

)
(n− 2)! + · · ·+ (−1)n−1

(
n

n

)
0!.

To count the derangements, we subtract the number of non-derangements
from the number of all permutations, which leads to the formula in the
theorem.

Now we can compute the probability that no guest gets his hat:

#derangements

#permutations
=

∑n
k=0(−1)k n!

k!

n!
=

n∑
k=0

(−1)k

k!
.

Recall that
∞∑
k=0

xk

k!
= ex.

It follows that the above probability converges to 1
e ≈ 0.37.
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5.3 Euler’s totient function

Two positive integers whose greatest common divisor equals 1 are called
relatively prime. Denote by ϕ(n) the number of positive integers ≤ n which
are relatively prime to n:

ϕ(n) = #{k ∈ {1, 2, . . . , n} | gcd(k, n) = 1}.

For example, for n = 6 only the numbers 1 and 5 among 1, 2, 3, 4, 5, 6 are
relatively prime to 6, so that we have ϕ(6) = 2. In n = p is prime, then all
numbers 1, . . . , p− 1 are relatively prime to p, so that ϕ(p) = p− 1.

Theorem 5.4. Let n = pα1
1 · · · pαmm be a prime factorization of n, that is

p1, . . . , pm are distinct prime numbers, and α1, . . . , αm are positive integers.
Then

ϕ(n) = n

(
1− 1

p1

)
· · ·
(

1− 1

pm

)
= pα1−1

1 (p1 − 1) · · · pαm−1
m (pm − 1).

Proof. Let Ai be the set of numbers among 1, 2, . . . , n divisible by pi. Then
A1 ∪ · · · ∪Am = {k ∈ {1, 2, . . . , n} | gcd(k, n) > 1} and we have

ϕ(n) = n− |A1 ∪ · · · ∪Am|.

To compute |A1 ∪ · · · ∪Am|, use the inclusion-exclusion formula. We have

Ai = {pi, 2pi, . . . ,
n

pi
pi},

thus |Ai| = n
pi

. Similarly, we have

|Ai1 ∩ · · · ∩Aik | =
n

pi1 · · · pik
.

By the inclusion-exclusion formula,

|A1 ∪ · · · ∪Am| =
m∑
i=1

n

pi
−
∑
i<j

n

pipj
+ · · ·+ (−1)m−1 n

p1 · · · pm
.

Thus we have

ϕ(n) = n− |A1 ∪ · · · ∪Am|

= n

(
1−

m∑
i=1

1

pi
+ · · ·+ (−1)m

1

p1 · · · pm

)

= n

(
1− 1

p1

)
· · ·
(

1− 1

pm

)
.
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Chapter II

Graph theory

1 Basic notions

1.1 Types of graphs

Intuitively, a graph is a set of points, some of which are joined by lines.
The points are called vertices of the graph, the lines are called edges of
the graph. Quite often, we represent a graph by drawing it in the plane.
For some graphs, one can draw the edges in such a way that they do not
intersect. But for other graphs self-intersections are inavoidable. In order
not to confuse the intersection points with the “true” vertices, we draw the
vertices as small disks. See Figure 1 for two drawings of the same graph:
one with, the other without self-intersections.

Figure 1: Two drawings of the same graph.

Let us give a formal definition.

Definition 1.1. A graph G is a pair (V,E), where V is some set and E is
a collection of two-element subsets (unordered pairs of elements) of V . The
set V is called the vertex set of G, the set E is called the edge set of G.

21
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Examples of graphs: transport networks, neural networks, “friendship”
graphs (social networks). Usually the set V of vertices is assumed to be
finite. However it can be quite large (and it is in some of the above exam-
ples).

In some situations one is lead to consider graphs with loops (lines joining
a vertex to itself) and multiple edges (several lines between the same pair
of vertices), see Figure 2, left. In some other situations one wants to draw
arrows instead of lines, see Figure 2, right. Graphs with oriented edges are
called directed graphs. Another type of graphs are weighted graphs: here to
every edge a number is assigned. When we say “a graph”, we mean it in
the sense of definition 1.1: an undirected graph without loops and multiple
edges and without assignment of weights.

Figure 2: A graph with loops and multiple edges; a directed graph.

1.2 Some graphs known by names

Below are some important families of graphs.

• The complete graph Kn is a graph with n vertices, with each pair of
vertices joined by an edge.

• The cycle graph Cn is a graph with n vertices v1, · · · , vn and the edges
{vi, vi+1} for i = 1, . . . , n− 1 and {v1, vn}.

• The path graph Pn is a graph with n vertices v1, · · · , vn and the edges
{vi, vi+1} for i = 1, . . . , n− 1.

Definition 1.2. A graph G = (V,E) is called bipartite if its vertex set can
be partitioned in two sets V1 and V2 such that no two vertices from V1 are
joined by an edge and no two vertices from V2 are joined by an edge.

• The complete bipartite graph Km,n is a bipartite graph with the vertex
set V1∪V2, where |V1| = m, |V2| = n, and every vertex from V1 is joined
with every vertex from V2. The graph K3,3 is shown in Figure 3, left.
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1.3 Isomorphic graphs and subgraphs

Definition 1.3. Two graphs (V,E) and (V ′, E′) are called isomorphic if
there is a bijection f : V → V ′ between their vertex sets such that

{x, y} ∈ E if and only if {f(x), f(y)} ∈ E′.

Example 1.4. The graphs in Figure 3 are isomorphic (check this!). Thus
the graph on the right is also K3,3.

Figure 3: The complete bipartite graph K3,3.

Remark 1.5. Isomorphic graphs obviously have the same number of ver-
tices and the same number of edges. The converse is not true: one can find
two graphs with the same number of vertices and the same number of edges
which are not isomorphic.

Exercise 1.1. The graph shown in Figure 4 is called Petersen graph. Show
that it is isomorphic to the following graph:

V = {all two-element subsets of {1, 2, 3, 4, 5}},
E = {{A,B} | A ∩B = ∅}

Definition 1.6. A graph G′ = (V ′, E′) is called a subgraph of graph G =
(V,E) if V ′ ⊂ V and E′ ⊂ E.

Note that we cannot take any pair of subsets V ′ ⊂ V,E′ ⊂ E: if {v, w} ∈
E′, then we must have v, w ∈ V ′.

An n-cycle in a graph is a subgraph isomorphic to Cn. Bipartite graphs
contain no 3-cycles, and more generally no cycles of odd length.

Exercise 1.2. Prove the converse: if a graph contains no cycles of odd
length, then it is bipartite.

A Hamiltonian cycle in a graph is a cycle that contains all of its vertices.
It provides a closed path visiting all of its vertices exactly once. A graph
is called Hamiltonian if it has a Hamiltonian cycle. The graph K3,3 is
Hamiltonian, the Petersen graph is not.
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Figure 4: The Petersen graph.

1.4 Incidence and adjacency

An edge is said to be incident with a vertex if it contains this vertex. In
other words, the edge {v, w} is incident with the vertices v and w.

The degree of a vertex v, denoted deg v, is the number of edges incident
with v. A vertex of degree zero, that is without incident edges, is called an
isolated vertex.

In the complete graph Kn all vertices have degree n − 1. In the cycle
Cn, all vertices have degree 2.

Definition 1.7. A graph is called k-regular if all of its vertices have de-
gree k.

Theorem 1.8 (Handshake lemma). In every graph, the sum of all vertex
degrees is twice the number of edges:∑

v∈V
deg v = 2|E|.

Proof. Count the vertex-edge incidences in two ways. From the vertices
viewpoint, every vertex v is incident to deg v many edges. Thus the number
of incidences is the sum of the degrees of all vertices. From the edges view-
point, every edge is incident to two vertices. Thus the number of incidences
is twice the number of edges. The theorem follows.

The name “handshake lemma” suggests a reformulation of the above
argument. In a group of people, several handshakes take place. How to
count the number of handshakes? One way to do it is to ask every person
how many handshakes it made and to add all these numbers. Since every
handshake is counted twice, we have to divide the result by two.

Corollary 1.9. In every graph, the number of vertices of odd degree is even.
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Indeed, the sum of all vertex degrees must be even by Theorem 1.8.
Two vertices joined by an edge are called adjacent.

Definition 1.10. Let G = (V,E) be a graph on n vertices. Denote the
vertices by v1, . . . , vn (in an arbitrary order). The adjacency matrix of G
(with respect to a given ordering of vertices) is an n× n matrix A with the
following entries

aij =

{
1 if {vi, vj} ∈ E
0 if {vi, vj} /∈ E.

Recall the matrix multiplication: for n× n matrices A and B we define
their product C = AB as

cij =
n∑
l=1

ailblj .

Theorem 1.11. Let G be a graph with vertex set V = {v1, v2, . . . , vn} and

let A be its adjacency matrix. Let a
(k)
ij denote the element of the matrix Ak

at the position (i, j). Then a
(k)
ij is the number of walks of length exactly k

from the vertex vi to the vertex vj in the graph G.

Proof. Exercise.

The reader is invited to define analogs of the adjacency matrix for di-
rected and weighted graphs.

1.5 Connectivity and components

Definition 1.12. A walk in a graph G = (V,E) is a sequence

(v0, e1, v1, e2, . . . , ek, vk),

where vi ∈ V , and for each i = 1, . . . , k we have ei = {vi−1, vi} ∈ E.

Remark 1.13. A walk can revisit vertices and go along an edge several
times. That is, one can have vi = vj or ei = ej for i 6= j.

Definition 1.14. A path in a graph is a walk with distinct vertices: vi 6= vj
for i 6= j.

In other words, a path in a graph G is a subgraph of G isomorphic to Pn
for some n.

Definition 1.15. A graph G is called connected if for any two vertices
x, y ∈ V (G) there is a path between x and y.

This is the same as to say that there is a walk between x and y: every
path is a walk, and from every walk one can remove cycles so that it becomes
a path.

Definition 1.16. A component of a graph G is a maximal connected sub-
graph of G.
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1.6 Eulerian graphs

Euler’s “Seven bridges of Königsberg” problem.
Informally speaking, we are asking what graphs can be drawn without

lifting the pencil from paper (and drawing every edge only once). You can
try to draw the graph on Figure 1 in this way.

Definition 1.17. A Euler walk on a graph G is a walk that takes each edge
of G exactly once. A Eulerian circuit is a closed walk that takes each edge
exactly once.

In other words, a Eulerian circuit or Eulerian walk is an ordering of the
edges of G such that two consecutive edges share a vertex.

A graph is called Eulerian if it has a Eulerian circuit and semi-Eulerian
if it has a Eulerian walk.

Theorem 1.18. A graph is Eulerian if and only if all of its vertex degrees
are even and all vertices of positive degree belong to the same connected
component. A graph is semi-Eulerian if and only if it has exactly two vertices
of odd degree and all vertices of positive degree belong to the same connected
component.

The somewhat awkward condition “all vertices of positive degree belong
to the same connected component” is equivalent to “the graph becomes
connected after deleting all isolated vertices”. Another way to deal with the
isolated vertices is to define the notion of a Eulerian circuit/walk differently:
it must visit all vertices. Then a graph is (semi-)Eulerian if and only if it is
connected and the degree evenness condition is satisfied.

Proof. The “only if” direction. Assume that the graph has a Eulerian walk
or a Eulerian circuit. Then there is a walk between any two vertices of
positive degree: one can use a piece of the walk or circuit to get from one
to the other. In order to prove that the degrees of all vertices (except two
in the semi-Eulerian case) are even, orient the edges in the direction of the
walk: orient ei from vi−1 to vi. We obtain a directed graph. In a directed
graph, every vertex v has the in-degree deg+ v and the out-degree deg− v:
the number of edges entering v and the number of edges leaving v. Clearly,
deg v = deg+ v + deg− v. On the other hand, a Eulerian circuit enters and
leaves every vertex equal number of times: deg+ v = deg− v. This implies
that deg v is even for every vertex of a Eulerian graph.

In a semi-Eulerian graph we have deg+ v = deg− v for every intermediate
vertex of the walk, but

deg+ v0 = deg− v0 − 1, deg+ vm = deg− vm + 1

for the initial and the final vertices of the walk, respectively. It follows that
the degrees of all vertices except v0 and vm are even.
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The “if” direction. First, consider the case when all vertex degrees are
even. Start to walk from any vertex without going along any edge twice.
At some point we must stop because all edges incident to the current vertex
are used. This can only happen at the initial vertex of our walk because
if you stop at a different vertex, then its in-degree will be one bigger than
the out-degree, which contradicts the assumption that all vertex degrees are
even. Thus we obtain a circuit (which does not necessarily cover all edges).
Remove this circuit from the graph. We obtain a possibly disconnected
graph where all vertex degrees are even. Repeat the procedure until the
edge set of our graph will be partitioned into circuits. Then start to merge
the circuits: if two circuits have a common vertex, then they can be replaced
by a single circuit. If some circuit has no common vertices with the other
circuits, then its vertices and edges form a connected component of the
graph, and we will have at least two non-trivial connected components.
Thus all circuits can be merged to a circuit covering all edges of the graph.

If the graph has two vertices of odd degree, then start our first walk
from one of these vertices. This walk will necessarily stop at the other odd
vertex (again, by consideration of the in- and out-degrees). Removing this
walk from the graph yields a graph with all vertices of even degree, and we
proceed as in the previous case.

Try this algorithm on the graph on Figure 5.

Figure 5: Find a Eulerian circuit in this graph.

Note that for graphs with two vertices of odd degree we have proved a
bit more: every Eulerian circuit starts in one of the odd vertices and ends
in the other one.
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2 Trees

2.1 Basics

Recall that a cycle in a graph is a subgraph isomorphic to Cn for some n.
A graph without cycles is called acyclic.

Definition 2.1. A tree is a connected acyclic graph.

Examples are shown in Figure 6.

Figure 6: Some trees.

A disconnected acyclic graph is called a forest. Every connected compo-
nent of a forest is a tree. Indeed, a component is connected by definition; it
has no cycles because, clearly, every subgraph of an acyclic graph is acyclic.

Theorem 2.2. In a tree, any two vertices are connected by exactly one path.

Proof. Take any two vertices of a tree. Since a tree is connected, there is at
least one path between these two vertices. If there is more than one path,
then this implies the existence of a cycle. Namely, take the first vertex where
the two paths diverge and the first vertex where they meet again; the union
of the segments of our paths between these vertices will be a cycle. (We
are not working out the details here.) This contradicts the assumption that
our graph is a tree, thus there cannot be more than one path between two
vertices.

A rooted tree is a tree T with a specified vertex x, called the root of T .
The edges of a tree can be equipped with orientation so that for every
vertex v the (unique) path from x to v always follows the directions of
edges. (Again, this looks intuitively clear, but requires a formal proof.) See
Figure 7 for an example.

2.2 Leaves

Definition 2.3. A vertex of degree 1 is called a leaf.

Find leaves of trees in Figure 6.
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Figure 7: A canonically oriented rooted tree.

Lemma 2.4. Every tree has at least two leaves.

Proof. Take a path P ⊂ T of maximum length. (If there are several paths
of maximum length, take one of them.) I claim that its endpoints v and w
are leaves. Indeed, assume deg v > 1. Then there is an edge of T incident
with v and not belonging to P . If the other end of this edge is also a vertex
of P , then T contains a cycle, which contradicts to it being a tree. If the
other end is not in P , then adding it to P we obtain a longer path. This
contradicts the choice of P . Thus the assumption deg v > 1 was false, v is
a leaf, and w is a leaf as well.

Definition 2.5. Let G be a graph and v a vertex of G. Denote by G − v
the graph obtained by deleting the vertex v and all edges incident to it. This
operation is called vertex deletion.

Lemma 2.6. Let T be a tree and v a leaf of T . Then T − v is also a tree.

Proof. The graph T − v is acyclic, because it is a subgraph of an acyclic
graph. It remains to prove that T − v is connected. Let x and y be two
vertices of T different from v. There is a path in T connecting x and y. This
path does not contain v, because otherwise the degree of v would be at least
2. Thus it can be considered as a path in T − v, so x and y are connected
within T − v.

2.3 The number of edges in a tree

Lemma 2.6 allows to use induction when proving theorems about trees.

Theorem 2.7. If a graph T = (V,E) is a tree, then |E| = |V | − 1.

Proof. Let |V | = n. Use induction on n. For n = 1, there is only one tree
with one vertex. It has no edges, which proves the induction base.
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Now let us prove the induction step: if every tree with n vertices has
n− 1 edges, then every tree with n+ 1 vertices has n edges. Take any tree
T with n + 1 vertices. By Lemma 2.4 it has a leaf v. By Lemma 2.6 the
graph T − v is also a tree. The tree T − v has n vertices, therefore by the
induction assumption it has n − 1 edges. But then T has n edges, and the
induction step is proved.

Corollary 2.8. A forest with n vertices and k components has n− k edges.

Proof. Let the components have n1, . . . , nk vertices. By the above theorem,
they have n1−1, . . . , nk−1 edges, respectively. By summing up the number
of edges we obtain the desired result.

2.4 Spanning trees

Definition 2.9. Let G = (V,E) be a graph. A subgraph of a graph G is
called a spanning tree if it is a tree with the same vertex set as G.

Figure 8 shows examples of spanning trees.

Figure 8: Examples of spanning trees.

Theorem 2.10. Every connected graph has a spanning tree.

We will find a spanning tree by deleting edges from the graph one by
one while taking care that the graph remains connected. For any graph
G = (V,E) and any its edge e ∈ E denote by G− e the graph (V,E \ {e}).
(Note that we are not removing any vertices, even if after deletion of e an
isolated vertex appears.) This is the operation of edge deletion.

Proof. Let G be a connected graph. If G contains a cycle C, then let e
be any edge of C. I claim that the graph G − e is connected. Indeed, let
v, w ∈ V be any two vertices of G. Since G is connected, there is a path in
G between v and w. If this path never uses the edge e, then this is also a
path in G − e. If it does use e, then instead going on e, take a detour via
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the path C − e. This produces a walk in G− e from v to w. A walk can be
transformed into a path by removing cycles.

Thus G − e is connected. If it is acyclic, then it is a spanning tree.
Otherwise repeat the operation: take another cycle and remove an edge
from it etc. until we arrive at an acyclic connected subgraph with the same
vertex set as G.

The following theorem is a strengthening of Theorem 2.7.

Theorem 2.11. Let G = (V,E) be a graph. If |E| > |V | − 1, then G
contains a cycle. If |E| < |V | − 1, then G is not connected.

Proof. Both statements are proved by contraposition. That is, we prove the
following: if G contains no cycle, then |E| ≤ |V | − 1; if G is connected, then
|E| ≥ |V | − 1.

Let G be acyclic. Then by Corollary 2.8 it has |V | − k ≤ |V | − 1 edges,
where k is the number of components of G.

Let G be connected. By Theorem 2.10, G has a spanning tree which, by
Theorem 2.7, has |V | − 1 edges. Thus G has at least |V | − 1 edges.

2.5 The number of spanning trees

The number of spanning trees of a given graph is an interesting combinatorial
problem.

Theorem 2.12 (Borchardt, Cayley). The complete graph on n vertices has
nn−2 spanning trees.

For example, K3 has 3 spanning trees (obtained by deleting one arbitrary
edge), K4 has 16, and K5 already 125 different spanning trees.

In order to count the spanning trees in an arbitrary graph, the following
matrix is needed.

Definition 2.13. The Laplacian matrix of a graph G is

L = D −A,

where D is the degree matrix, that is a diagonal matrix with dii = deg vi,
and A is the adjacency matrix of G.

The matrix L has zero determinant (because the vector (1, 1, . . . , 1) be-
longs to its kernel). Moreover, its rank equals n− k, where n = |V | and k is
the number of connected components of G. In particular, if G is connected,
then L contains an (n − 1) × (n − 1) minor with non-zero determinant. In
fact, detL = 0 implies that all cofactors (−1)i+j detLij are equal (you can
try to prove this). This common value is the number of the spanning trees.
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Theorem 2.14 (Kirchhoff). Let G be a connected graph, and L be its Lapla-
cian matrix. Then the number of spanning trees of G is equal to each of the
following numbers.

• (−1)i+j detLij, where Lij is the matrix obtained by removing the i-th
row and the j-th column from L;

• 1
nλ1λ2 · · ·λn−1, where λi are the non-zero eigenvalues of L.

In particular, for the complete graph we have the determinant of the
following (n− 1)× (n− 1) matrix:

det


n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1

 .

Cayley’s theorem indicates that it is equal to nn−2. Of course, it is easier
(but still not straightforward) to prove this equality without invoking two
difficult theorems above.

2.6 Minimum spanning tree: Kruskal’s algorithm

Every spanning tree in a connected graph on n vertices has n − 1 edges.
However, if edges are equipped with weights, then we can speak about the
spanning tree of minimum total weight. For example, if the weights of
edges are the costs of building railroads between towns, then the minimum
spanning tree is the cheapest railroad network connecting all towns.

Definition 2.15. A weighted graph is a pair (G,ω), where G is a usual
graph, and

ω : E(G)→ R

is a map. The number ω(e) is called the weight of the edge e.

Definition 2.16. A minimum spanning tree of a weighted connected graph
(G,ω) is a spanning tree (V,E′) of G such that the sum

∑
e∈E′ ω(e) has the

minimum possible value among all spanning trees of G.

A minimum spanning tree is not necessarily unique: if all weights are
the same, then all spanning trees have the same total weight.

Theorem 2.17 (Kruskal’s algorithm). Order the edges of a weighted con-
nected graph according to their weights:

(e1, . . . , em) such that ω(e1) ≤ · · · ≤ ω(em).
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Going through this list, mark an edge if it does not create a cycle together
with the previously marked edges. More exactly, put G0 = (V,∅): the graph
with isolated vertices only. If Gi is already defined, then put

Gi+1 =

{
Gi + ei+1 if Gi + ei+1 has no cycles

Gi otherwise.

The output of the algorithm is the graph Gm.

This is a greedy algorithm: at each step we do what seems to us the
best, we take the lightest edge. Of course, a “locally optimal” procedure
does not always lead to a “globally optimal” result. We must prove that
Kruskal’s algorithm outputs a minimum spanning tree. But first of all, we
must show that the output is a tree at all.

Proof that the output is a tree. By construction, every graph Gi, and in par-
ticular Gm, is acyclic. Let us show that Gm is connected. Assume the
converse. Take any two connected components of Gm. Since (V,E) is con-
nected, there is an edge ei ∈ E joining two vertices v and w from these
components. This ei does not belong to Gm. Thus at the i-th step of the
algorithm, when we were deciding to take ei or not, this edge created a cycle
with edges of Gi−1. This means that in Gi−1 (and hence in Gm) there is a
path from v to w. But then v and w are in the same connected component
of Gm, which is a contradiction.

Proof that the tree is minimal. We prove by induction on i that every graph
Gi is contained in some minimum spanning tree. For i = m this will tell us
that Gm is a minimum spanning tree.

As the induction base take i = 0. Here the assertion is trivially true,
because there exists at least one minimum spanning tree.

For the induction step, assume that Gi is a subgraph of a minimum
spanning tree Ti. Consider the next edge ei+1. If Gi+1 = Gi (which happens
if ei+1 creates a cycle), then Gi+1 is a subgraph of Ti, and we are good. If
Gi+1 = Gi + ei+1 and ei+1 is an edge of Ti, then Gi+1 is a subgraph of Ti as
well.

The only non-trivial case is when Gi+1 = Gi + ei+1 and ei+1 is not an
edge of Ti. Then the graph Ti + ei+1 contains a cycle, which is formed by
the edge ei+1 and the path P in Ti connecting the endpoints of ei+1. There
is an edge f of P that does not belong to Gi: if this is not the case, then
Gi+1 contains a cycle. The graph Ti + ei+1− f is a tree: it is connected and
has |V | − 1 edges. We claim that this tree is also a minimum tree. For this
one has to show that ω(f) = ω(ei+1).

Assume that ω(f) < ω(ei+1), then the edge f appears on the list of all
edges earlier than ei+1. But why did not we add f to the graph that we are
constructing? This can only be because f would create a cycle. But then f



34 CHAPTER II. GRAPH THEORY

also creates a cycle when added to Gi. Since Gi + f ⊂ Ti, it follows that Ti
contains a cycle, which is a contradiction.

Thus ω(f) ≥ ω(ei+1). It is not possible that ω(f) > ω(ei+1), because
then the tree Ti + ei+1− f has smaller weight than Ti, which by assumption
is a minimum spanning tree. Thus we have ω(f) = ω(ei+1). But then Gi+1

is a subgraph of the minimum spanning tree Ti + ei+1 − f , so the induction
step is proved.

Remark 2.18. There are other algorithms that find a minimum spanning
tree, for example Prim’s algorithm. Closely related to Kruskal’s algorithm is
the reverse-delete algorithm. Here we order the edges in the nonincreasing
order of weights, go through the list and delete an edge if this does not
disconnect the graph.

Remark 2.19. Another problem for a connected weighted graph is to find a
minimum path between two given vertices. This can be done with Dijkstra’s
algorithm. Note that a minimum spanning tree contains a path between any
pair of vertices, but this path is not necessarily minimal.

3 Planar graphs

3.1 Basics

Definition 3.1. A graph is called planar if it can be drawn in the plane in
such a way that its edges do not cross each other. A drawing with pairwise
non-crossing edges is called a planar embedding of the graph or, for short,
a plane graph.

A graph can have “different” embeddings in the plane, see Figure 9.

Figure 9: Two different embeddings of the same graph.

Two embeddings are called non-isotopic if one cannot be deformed into
the other continuously while remaining an embedding during the deforma-
tion.

Remark 3.2. Let us stress the difference between “planar graph” and
“plane graph”. A planar graph is an abstract graph that can be drawn
in the plane. A plane graph is a graph that is already drawn in the plane.
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The reason for distinguishing between plane and planar is that different
drawings can be possible. As the above example shows there are different
(non-isotopic) plane graphs which represent the same (isomorphic) planar
graphs.

Theorem 3.3. The graph K5 is not planar.

Sketch of proof. Let v1, . . . , v5 be the vertices of K5. We denote by the
same letters their images in the plane. The vertices v1, v2, v3, v4 and the
edges between them form a planar embedding of K4. Up to relabeling of
vertices and isotopy there is a unique embedding of K4 in the plane, see
Figure 10, left. The graph K4 separates the plane into four regions. The
fifth vertex v5 must lie in one of these regions. In whatever region it lies, it
will be separated from one of the first four vertices. For example, if it lies
in the outer region, then the edge v5v1 must intersect the contour v2v3v4 at
least once, see Figure 10, right.

v1

v2

v3 v4

v1

v2

v3

v5

v4

Figure 10: Proof of the non-planarity of K5.

The above is only a sketch of the proof, because the assertions “there
is a unique embedding of K4” and “the edge must intersect the contour”
require formal proofs. They follow from the Jordan curve theorem: any
embedded closed curve in the plane separates the plane in two connected
components. This might seem trivial but you should take into account that
there are curves which are neither smooth nor polygonal (maybe you have
heard about fractals).

On the other hand, there is the following theorem (whose proof relies on
the Jordan curve theorem).

Theorem 3.4 (Fáry). If a graph can be drawn in the plane, then it can also
be drawn with straight edges.

Thus we may always imagine our graphs being drawn with straight edges
and rely on our geometric intuition.
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Figure 11: Any planar graph can be drawn with straight edges.

3.2 Euler’s formula

A plane graph separates the plane into regions, called faces. Every embed-
ding has one unbounded face, called the outer face.

The graphs on Figure 9 have two faces each. If the graph has n vertices
and no edges, then its embedding has only one face: the plane punctured at
n points.

A face is called incident with an edge if the edge belongs to the boundary
of the face.

Definition 3.5. The degree of a face of a plane graph is the number of
edges incident with it. If on both sides of an edge lies the same face, then
this edge is counted twice when calculating the degree of the face.

For example, on Figure 9, left, the outer face has degree 7 and the inner
face has degree 3. On Figure 9, right, both the inner and the outer face have
degrees 5.

Theorem 3.6. For every plane graph the sum of the degrees of its faces is
twice the number of edges: ∑

f∈F
deg f = 2|E|.

(Here F denotes the set of all faces.)

Proof. Count the face-edge incidences in two ways: from the viewpoint of
the faces and from the viewpoint of the edges.
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Observe that in the previous theorem the graph may be disconnected; it
may have no edges at all.

Theorem 3.7 (Euler). Let G = (V,E) be a connected plane graph. Denote
by F the set of its faces. Then we have

|V | − |E|+ |F | = 2.

In particular, the number of faces does not depend on the choice of an em-
bedding.

Example 3.8. The graphs of platonic solids (and more generally, of all
convex polytopes) are planar. Thus the Euler formula holds for the numbers
of vertices, edges, and faces of any convex polytope. For example, the cube
has 8 vertices, 12 edges, and 6 faces, and we have indeed 8− 12 + 6 = 2.

Proof. Induction on the number of edges.
Let |E| = 0. The only connected graph without edges is the graph with

one vertex. It has one face, and we have 1− 0 + 1 = 2. The induction base
is proved.

Now take a graph with n edges, n ≥ 1. Consider two cases.
1) The graph is acyclic. Then it is a tree. A tree does not separate the
plane, so we have |F | = 1 in this case. By Theorem 2.7, |E| = |V |−1. Thus
we have

|V | − |E|+ |F | = |V | − (|V | − 1) + 1 = 2.

2) The graph contains a cycle. Let C ⊂ G be any cycle and let e be any
edge of C. The graph G− e is still connected and has one edge less. Let us
show that it also has one face less. Indeed, the points on different sides of e
belong to different faces of G: any arc connecting them must intersect the
cycle C. These two faces are merged to one face in G− e; all other faces are
unchanged. Thus G has the same number of vertices, one edge less, and one
face less than G − e. By the induction assumption, Euler’s formula holds
for G− e. Thus it also holds for G.

Theorem 3.9. Let G be a connected plane graph with n ≥ 3 vertices. Then
|E| ≤ 3|V | − 6. Moreover, equality holds if and only if all faces of G are
triangles.

Proof. Observe that in a plane graph with ≥ 3 vertices the degree of every
face is at least 3. Indeed, the only way for a face of a connected graph to
have degree 2 is to enclose an edge, in which case the graph has two vertices
and one edge. A face cannot have degree 1. And if a face of a connected
graph has degree 0, then the graph consists of a single vertex.

Then from Theorem 3.6 and Euler’s formula we get the inequality

2|E| =
∑
f∈F

deg f ≥ 3|F | = 3(2− |V |+ |E|),
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which implies |E| ≤ 3|V | − 6. The equality takes place only if the deg f = 3
for all f , that is if all faces are triangles.

Theorem 3.9 implies that the graph K5 is not planar. Indeed, it has 5
vertices and 10 > 3 · 5 − 6 edges. This proof of non-planarity of K5 looks
very nice and seems to avoid the intricacies of Jordan’s curve theorem. The
simplicity is deceiving: Jordan’s curve theorem is needed in the proof of
Euler’s formula (when we say that the cycle separates the plane).

An attempt to prove the non-planarity of K3,3 in the same way fails:
this graph has 6 vertices and 9 ≤ 3 ·6−6 edges. Note however that a planar
embedding of K3,3 (if it exists) has no faces of degree 3 (a bipartite graph
contains no odd cycles). For any plane graph without triangles we have

2|E| =
∑
f∈F

deg f ≥ 4|F | = 4(2− |V |+ |E|),

which implies |E| ≤ 2|V | − 4. Since K3,3 does not satisfy this inequality:
9 > 2 · 6− 4, it is not planar.

3.3 Planarity criteria

Theorem 3.10 (Kuratowski). A graph is planar if and only if it does not
contain a subgraph isomorphic to a subdivision of K5 or K3,3.

A graph G′ is a subdivision of a graph G if G′ is obtained from G by
repeated edge subdivisions. To subdivide an edge e = {v, w} of a graph G
means to introduce a new vertex x, delete e, and introduce two new edges
{x, v} and {x,w}. Figure 12 shows a subdivision of K5 and a subdivision of
K3,3.

Figure 12: Some subdivisions of K5 and K3,3.

One direction of the Kuratowski theorem is easy to prove: If a graph
contains a subdivision of K5 or K3,3, then it cannot be planar. Indeed,
an embedding of the graph would contain an embedding of a subdivision
of K5 or K3,3, and hence an embedding of K5 or K3,3. It is the opposite
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direction which is the most interesting and non-obvious: the only obstacles
to existence of a planar embedding of G are graphs K5 or K3,3 contained in
G (in the form of subdivisions).

There is a similar planarity criterion that uses the notion of a minor.

Theorem 3.11 (Wagner). A graph is planar if and only if it does not have
a minor isomorphic to K5 or K3,3.

A minor of a graph G is any graph obtained by repeated vertex deletions,
edge deletions and edge contractions. See Figure 13 for an example of an
edge contraction. If an edge contraction results in a multiple edge, then we
replace a multiple edge by a simple edge. If it results in a loop, then we
remove a loop.

e

Figure 13: An example of edge contraction.

Note that a minor of G is not necessarily isomorphic to a subgraph of
G. For example, the cycle C3 is a minor of C4 but not its subgraph.

Similarly to the Kuratowski theorem, one direction of the Wagner theo-
rem is easy to prove, but not the other.

3.4 Duality for embedded graphs

Let G be a connected plane graph. Define a new plane graph G∗ as follows.
Inside every face f of G choose a point f∗. For every edge e of G draw an
arc e∗ crossing the edge e and joining the points f∗1 and f∗2 inside the faces
incident with e. (If e is incident to one face only, then the arc e∗ is a loop.)

It is possible to draw all arcs e∗ so that they do not intersect each other.
(Mark a point in the interior of every edge; inside every face f , join the point
f∗ to the points marked on the incident edges in a non-self-intersecting way.)

See Figure 14 for an example.

Different planar embeddings of the same graph may have different duals.
For example, consider the duals of the graphs on Figure 9.

Let us describe those graphs whose duals have no loops and multiple
edges.
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Figure 14: A graph and its dual.

Definition 3.12. A graph is called k-edge connected if one needs to delete
at least k edges in order to disconnect the graph.

Thus a graph is 1-edge connected graphs if and only if it is connected.
A connected graph is not 2-edge connected if it has a bridge or cut edge: an
edge whose deletion disconnects the graph.

Lemma 3.13. The dual of a plane graph has no loops if and only if the
graph is 2-connected. The dual of a plane graph has no multiple edges if and
only if the graph is 3-connected.

The faces of the dual graph G∗ correspond to the vertices of G: the
duals of the edges incident to v ∈ V (G) form a cycle around v. Thus we
have bijections

V (G) 7→ F (G∗), E(G) 7→ E(G∗), F (G) 7→ V (G∗).

Observe that Theorem 3.6 is equivalent to the handshake lemma for the
dual graph G∗.

Finally, note that the dual of G∗ is G again:

(G∗)∗ = G.

For more information on planar graphs, see [3, Chapter 10].
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4 Matchings

4.1 Basics

Definition 4.1. Let G = (V,E) be a graph. A set of its edges M ⊂ E is
called a matching if no two edges in M have a common vertex. If a vertex
v belongs to an edge of M , then v is called matched, otherwise unmatched.
A matching is called perfect if all vertices of G are matched.

A graph that has at least one perfect matching is called matchable. A
matchable graph must have an even number of vertices. (More generally,
every connected component of a matchable graph must have an even number
of vertices.) But there are also connected unmatchable graphs with an even
number of vertices, see Figure 15, right.

Figure 15: Two connected graphs on six vertices: one matchable (matching
is shown by thick edges) and one non-matchable.

If it is not possible to match all vertices, then one can ask for a maximum
possible matching. There are two notions of maximality.

Definition 4.2. A matching M in a graph G is called a maximum matching
if it has the maximum possible number of edges among all matchings in G
(in other words if it covers a maximum possible number of vertices).

A matching is called inclusion-maximal if it is not contained in any
larger matching.

A maximum matching is obviously inclusion-maximal, but not vice versa.
See Figure 16 for two examples.

Figure 16: Two inclusion-maximal but not maximum matchings.

It follows that the greedy algorithm (add edges as long as it is possible)
does not always find a maximum matching.
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4.2 Augmenting paths and maximum matchings

Assume that M is a non-maximum matching in a graph. We want to modify
it so that to obtain a matching with more edges. By the previous section, it
is not always possible just to add edges to M , we also have to remove some.

Definition 4.3. Let M be a matching in G. An M -alternating path in G
is a path whose edges are alternately in M and not in M .

Figure 17 shows possible types of alternating paths.

Figure 17: Alternating paths.

Definition 4.4. An M -augmenting path is an M -alternating path that
starts and ends with unmatched vertices.

It follows that an M -augmenting path can look only as the bottom path
on Figure 17. In addition, there must be no edge of M incident to the initial
and terminal vertices of the path. See Figure 18.

Figure 18: An augmenting path.

An M -augmenting path can be used to modify M to a bigger matching
by “switching” the edges along the path. This is illustrated in Figure 19.

The following theorem provides a basis to an algorithm for finding a
maximum matching.

Theorem 4.5 (Berge). A matching M in G is a maximum matching if and
only if G contains no M -augmenting path.

Proof. Let us prove that if M is a maximum matching, then there is no
M -augmenting path. By contraposition we have to show that if G contains
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Figure 19: Modifying a matching with the help of an augmenting path.

an M -augmenting path, then M is not a maximum matching. This follows
from the observation we made before stating the theorem: an augmenting
path can be used to increase the number of edges in a matching.

For the opposite direction we have to show that if M is not a maximum
matching, then there is an M -augmenting path. Let M ′ be a maximum
matching in G. Then |M ′| > |M |. Let H be the graph formed by those
edges that belong to exactly one of M and M ′: the edge set of H is

(M \M ′) ∪ (M \M ′).

(This is called symmetric difference of M and M ′.) Every vertex of H has
degree 1 or 2 because it is incident to at most one edge from M and at
most one edge from M ′. Therefore each connected component of H is either
an even cycle with edges alternately in M and M ′ or a path with edges
alternately in M and M ′, see Figure 20.

Figure 20: Symmetric difference of a non-maximum matching M (blue) and
a maximum matching M ′ (red).

Due to |M ′| > |M |, in H there are more edges from M ′ than from
M . Therefore there is a path that starts and ends with an M ′-edge. The
endpoints of this path have no incident M -edges, otherwise such an edge
would also belong to H, and the path would not stop here. This path is an
M -augmenting path and the theorem is proved.
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In order to find a maximum matching in a graph, start with any matching
(for example, an empty set of edges). Then, recursively, find an augmenting
path and modify the current matching. If no augmenting path can be found,
then the current matching is a maximum one. Algorithms for finding an
augmenting path are described in [3, Section 16.5].

4.3 Matchings in bipartite graphs: Hall’s theorem

Definition 4.6. Let G = (V,E) be a graph. For any subset S ⊂ V of the
vertex set denote by N(S) the set of all vertices adjacent to vertices in S.
The set N(S) is called the neighbor set of S.

In a bipartite graph (X ∪ Y,E), if S ⊂ X, then N(S) ⊂ Y .

Theorem 4.7 (Hall). Let G = (X ∪ Y,E) be a bipartite graph. Then G
contains a matching that covers X if and only if

|N(S)| ≥ |S| for all S ⊂ X. (1)

In particular, if |X| = |Y |, then the above theorem provides a necessary
and sufficient condition for the existence of a perfect matching.

Proof. Assume there is a matching that covers all of X. This defines an
injective map f : X → Y associating to every x ∈ X its matched vertex in Y .
For every subset S ⊂ X we have f(S) ⊂ N(S), hence |N(S)| ≥ |f(S)| = |S|.
Thus condition (1) is necessary.

Let us show that it is sufficient. Let M be a maximum matching of G.
Suppose that M does not cover X; we will prove that (1) is violated. Take
a vertex u ∈ X unmatched by M and consider all alternating paths starting
from u. All these paths start with non-M -edges.

There are alternating paths of two sorts. Those made of an even number
of edges end in X. Denote the set of their endpoints by S. (We have u ∈ S,
because we also consider the path of zero length starting and ending at u.)
Alternating paths made of an odd number of edges end in Y . Denote the
set of their endpoints by T . See Figure 21.

We now prove a series of claims.

Claim 1. Every vertex v ∈ S other than u is matched to a vertex in T .
Indeed, v is the endpoint of a non-trival alternating path P of even length.
The last edge of P belongs to M , thus v is matched to some vertex w ∈ Y .
We have w ∈ T , because w is the endpoint of an alternating path P−{v, w}.

Claim 2. Every vertex w ∈ T is matched to a vertex in S. Assume that
some w ∈ T is not matched. Then the alternating path P from u to w is
an augmenting path, which contradicts the assumption of maximality of M .
If w is matched to v ∈ X, then the path P + {v, w} is also an augmenting
path, thus v ∈ S.
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uS

T

Figure 21: To the proof of Theorem 4.7.

Claim 3. |T | = |S|−1. Indeed, by the previous two claims the matching
M establishes a bijection between S \ {u} and T .

Claim 4. N(S) = T . Every edge incident to u is a length 1 alternating
path. Thus all neighbors of u belong to T . Let e be an edge incident to
v ∈ S, v 6= u. If e belongs to M , then its other endpoint is in T by Claim
1. If e does not belong to M , then it extends an alternating path ending
in v, thus again ends in T . This proves N(S) ⊂ T . We have T ⊂ N(S)
by construction of S and T : every vertex w ∈ T is the endpoint of an
alternating path starting at u. Just before coming to w, this path visited a
vertex in S.

It follows that |N(S)| = |T | = |S| − 1 < |S|, which violates (1). Thus
the assumption that a maximum matching does not cover all of X was false,
and the theorem is proved.

Corollary 4.8. Every k-regular (k > 0) bipartite graph has a perfect match-
ing.

Proof. Let G = (X ∪ Y,E) be a k-regular bipartite graph. Since every edge
is incident to exactly one vertex from X, and every vertex is incident to
exactly k edges, we have |E| = k|X|. Similarly, |E| = k|Y |. Thus we have
|X| = |Y |.

Let us show that k-regularity implies condition (1). Take any S ⊂ X
and consider the bipartite graph G′ = (S ∪N(S), E′), where E′ is the set of
all edges incident to a vertex from S. By the above argument, |E′| = k|S|.
On the other hand, for every v ∈ N(S) we have degG′ v ≤ k, which implies
|E′| ≤ k|N(S)|. It follows that

|N(S)| ≥ |E
′|
k

= |S|,

and we are done.
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Chapter III

Propositional logic

Introduction

We will study two logical systems: propositional logic and predicate logic.
The predicate logic is also know as first-order logic; there is also second-order
logic and higher order logics.

Every logic has two aspects: syntax and semantics. On the syntactic
side, logic consists of a language, which is a set of expressions built according
to certain rules. The semantics interprets each of these expressions as true
or false.

There are obvious parallels to human languages, but also important dif-
ferences. Every human language has syntax rules, but firstly a real language
is a living thing, so that the vocabulary and syntax are constantly changing,
and secondly one may intentionally break the rules in order to create an
artistic effect (you will easily find examples in literature or cinema). Also, a
human language contains sentences without truth values, such as “What’s
for lunch?” or “Mind the gap”.

Thus, if we apply logic to a human language, then we can deal only with
declarative sentences. An example of a declarative sentence is “It will snow
for Christmas”. This is certainly either true or false, although we do not
know it at the moment.

Here we come to an important point. Although we have said that every
logical expression has a well-defined truth value, it may be not clear what
this value is. A proof theory provides tools for determining this truth value.
Every proof theory contains a set of inference rules or deduction rules, which
allow to determine the truth value of an expression if the truth values of some
other expressions are known. This is, of course, the way we are using logic
in the everyday life, when we are trying to convince someone. A classical
example of deduction is

All men are mortal.
Socrates is a man.

47
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Therefore, Socrates is mortal.

(If the first two statements are true, then so is the third one.)
Formalization of human reasoning was at the origin of logic and stim-

ulated its development over the centuries. Another important motivation
was the search for foundations of mathematics (end of XIX – beginning of
XX century) as one has tried to axiomatize mathematics and formalize the
mathematical reasoning. Every mathematical proposition is either true or
false, but it can be difficult to determine which way it is. The four-color
theorem and Fermat’s Last Theorem are famous examples.

The following logic textbooks are recommended: [6, 4, 5, 9].

1 Syntax and semantics of propositional logic

1.1 Propositional formulas

The language of propositional logic consists of strings of symbols, where
each of the symbols is one of the following:

• A proposition symbol p, q, r, s, p1, p2, . . .. (A countably infinite set.)

• A logical connective ∧, ∨, →, ¬.

• An auxiliary symbol ( or ).

Sometimes to the list of logical connectives one adds ↔ and ⊥. We will
abstain from this.

The logical connectives have the following names.

∧ and conjunction
∨ or disjunction
→ if ..., then ... implication
¬ not negation

Now there come the syntax rules describing what strings of symbols are
allowed.

Definition 1.1. The set of propositions or propositional formulas PROP
is defined as follows.

1. Proposition symbols belong to PROP. They are called atoms or atomic
propositions.

2. If A ∈ PROP, then ¬A ∈ PROP.

3. If A,B ∈ PROP, then (A ∧B), (A ∨B), (A→ B) ∈ PROP.

4. A string of symbols belongs to PROP only if it can be obtained by
applying the above rules.
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The last condition can be replaced by the requirement that PROP is the
smallest (in the sense of inclusion) set satisfying the first three conditions.

A propositional formula has a recursive structure that can be represented
with a parse tree. See Figure 1 for an example.

¬q

p q q

(p ∨ q)

((p ∨ q)→ ¬q)

p

¬

q q

∨

→

Figure 1: Parse tree for ((p ∨ q)→ ¬q).

Parentheses in a propositional formula ensure that the parse tree is
unique. If the root of the parsing tree is labeled with ∧,∨, or →, then
the formula starts with ( and ends with ). This pair of parentheses is not
needed for parsing, and we will often omit it. Strictly speaking, this is
syntactically wrong, but should not lead to confusion.

1.2 Truth tables

The set of truth values is a two-element set {true, false}. For brevity we will
denote

1 = true, 0 = false.

Various other abbreviations are used, for example T for “true” and F for
“false”.

Definition 1.2. Let S = {p, q, r, s, p1, p2, . . .} be the set of all proposition
symbols. A valuation is a map

v : S → {0, 1}

assigning a truth value to all propositional symbols.

Once the truth values of all proposition symbols are known, one can
determine the truth value of any propositional formula. This is done with
the help of the truth tables for logical connectives given below.

A ¬A
0 1

1 0

A B A ∧B A ∨B A→ B

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 1
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Here A and B are arbitrary propositions. The tables tell you the truth
values of ¬A, A ∧ B, A ∨ B, A → B once the truth values of A and B are
known. They allow to write the truth table for any propositional formula
recursively by “climbing” the parse tree.

Example 1.3. The following table gives the truth values for the formula
((p∨ q)→ ¬q) and all of its subformulas depending on a valuation {p, q} →
{0, 1}.

p q (p ∨ q) ¬q ((p ∨ q)→ ¬q)
0 0 0 1 1

0 1 1 0 0

1 0 1 1 1

1 1 1 0 0

Speaking more formally, any valuation v extends to a unique map

v̂ : PROP→ {0, 1}

defined recursively by v̂(x) = v(x) for all x ∈ S and by

v̂(A ∧B) = v̂(A) ∧ v̂(B) v̂(A ∨B) = v̂(A) ∨ v̂(B)

v̂(A→ B) = v̂(A)→ v̂(B) v̂(¬A) = ¬v̂(A),

where the values at the right hand sides are computed according to the truth
tables of logical connectives.

Although by definition every valuation v assigns truth values to all
proposition symbols, in order to determine v̂(A) we need to know only the
values of symbols occuring in A.

1.3 Satisfiability, tautologies, logical equivalence

Definition 1.4. Let A be a proposition and v be a valuation. If v̂(A) = 1,
then we say that v satisfies A and denote this by v � A. If v̂(A) = 0, then
we say that v falsifies A and denote this by v 2 A.

Definition 1.5. A proposition A is satisfiable if it is satisfied by at least
one valuation. A proposition is unsatisfiable if it is not satisfied by any
valuation.

A proposition A is valid or a tautology if it is satisfied by all valuations:
v̂(A) = 1 for all v. We denote this by � A.

For example, looking at the truth table of Example 1.3 we see that the
formula ((p ∨ q)→ ¬q) is satisfiable but not a tautology.

Theorem 1.6. 1. Every tautology is satisfiable.

2. A proposition A is a tautology if and only if ¬A is unsatisfiable.
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Proof. The set of all valuations is non-empty. Therefore if all valuations
satisfy A, then there is at least one valuation that satisfies A.

From the truth table for ¬ it follows that

v � A if and only if v 2 ¬A.

It follows that A is satisfied by all valuations if and only if ¬A is not satisfied
by any.

The problem of determining whether a given proposition is satisfiable is
called satisfiability problem, abbreviated SAT . The problem of determining
whether a given proposition is a tautology is called tautology problem, ab-
breviated TAUT . The satisfiability problem is NP -complete, that is every
non-deterministically solvable in polynomial time problem can be reduced
to it. Therefore if SAT can be solved in polynomial time, then every NP -
problem can, that is P = NP . On the other hand, if TAUT is not NP ,
then P 6= NP . For more details, see [6, Section 3.3.5].

Definition 1.7. Two propositions A and B are called logically equivalent,
which is denoted by A ' B if they are satisfied by the same valuations:

v̂(A) = v̂(B) for all v.

In other words, A ' B if and only if A and B have the same truth table.

Example 1.8. Looking at the truth table of Example 1.3 we see that

((p ∨ q)→ ¬q) ' ¬q.

Remark 1.9. The symbol ' of the logical equivalence does not belong to
the alphabet of propositional logic, so that A ' B is not a propositional
formula. The symbols ' and �, and also symbols A and B used to denote
arbitrary propositions, all belong to the metalanguage, a language that we
use to describe propositional logic and prove its properties. Also the symbol
⇔ that we will use in our arguments as an abbreviation for “if and only
if” is a metasymbol. The definitions and statements in this section define
notions of a metalanguage and formulate metatheorems.

When we prove some properties of propositional logic, we are implicitly
using another, more complicated, logical system with its own semantics
(what is true and what is not true). If, in turn, we want to discuss this
more complicated system, then we need a metametalanguage and so on.

Imagine a computer program which is able to recognize propositional
formulas and compute their truth values for any valuation. This program
speaks the language of propositional logic, and it cannot analize its own ac-
tions. The programmer speaks a metalanguage and can predict the behavior
of the program.
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Theorem 1.10. Propositions A and B are logically equivalent if and only
if the proposition

(A→ B) ∧ (B → A)

is a tautology.

Proof. One proves that v̂((A → B) ∧ (B → A)) = 1 if and only if v̂(A) =
v̂(B) by a case distinction, that is by considering all four possible com-
binations of values v̂(A) and v̂(B). Thus if v̂(A) = v̂(B) for all v, then
(A→ B) ∧ (B → A) is a tautology, and vice versa.

There are several simple and useful equivalences between propositional
formulas.

• Associativity laws

(A ∧B) ∧ C ' A ∧ (B ∧ C) (A ∨B) ∨ C ' A ∨ (B ∨ C)

• Commutativity laws

A ∧B ' B ∧A A ∨B ' B ∨A

• Distributivity laws

A∧ (B ∨C) ' (A∧B)∨ (A∧C) A∨ (B ∧C) ' (A∨B)∧ (A∨C)

• De Morgan’s laws

¬(A ∧B) ' ¬A ∨ ¬B ¬(A ∨B) ' ¬A ∧ ¬B

• Idempotency laws

A ∧A ' A A ∨A ' A

• Double negation law
¬¬A ' A

The associativity laws allow us to omit parentheses in conjunctions or
disjunctions. Due to it we can allow abuse of notation and write strings like
this one:

p ∧ q ∧ r ∧ s.

This is against the syntax rules. In order to conform the rules, we must put
some parentheses. This leads to several different propositional formulas, like
((p∧ q)∧ (r∧ s)) or ((p∧ (q∧ r))∧ s). Although these formulas are different,
they are logically equivalent. Thus, the string p∧ q ∧ r∧ s stands for a class
of equivalent formulas.



1. SYNTAX AND SEMANTICS OF PROPOSITIONAL LOGIC 53

The distributivity laws allow us to operate with brackets as if ∧ is the
multiplication and ∨ is the addition or vice versa. For example,

¬p ∨ (p ∧ q) ' (¬p ∨ p) ∧ (¬p ∨ q).

Let us extend the language PROP by adding two new symbols > and ⊥.

We define a language P̃ROP by adding to the point 1. in Definition 1.1 that

> and ⊥ belong to P̃ROP and leaving the other conditions as they are. The
symbols > and ⊥ are logical constants: when computing the truth value of

a proposition A we replace each > by 1 and each ⊥ by 0. In P̃ROP there
are the following logical equivalences.

• Laws of zero and one.

(A∧ ⊥) '⊥ (A∨ ⊥) ' A
(A ∧ >) ' A (A ∨ >) ' >

(A ∧ ¬A) '⊥ (A ∨ ¬A) ' >

These equivalences can be used in order to simplify certain propositions
from PROP. As an example, let us simplify the formula we just obtained.

(¬p ∨ p) ∧ (¬p ∨ q) ' > ∧ (¬p ∨ q) ' ¬p ∨ q.

1.4 Boolean functions

Although the set of all proposition symbols is infinite, every proposition
contains only a finite number of distinct proposition symbols. Assume that
A ∈ PROP contains only symbols from the set {p1, p2, . . . , pn}. Then A
defines a map

fA : {0, 1}n → {0, 1}

in the following way. Every element (x1, . . . , xn) ∈ {0, 1}n can be viewed
as a partial valuation, giving pi the truth value xi for i = 1, . . . , n. Then
fA(x1, . . . , xn) is the truth value of A corresponding to this valuation:

fA(x1, . . . , xn) = v̂(A), where v(pi) = xi.

The function fA is described by the truth table of proposition A. As an
immediate reformulation of Definition 1.7,

A ' B ⇔ fA = fB.

In fact, 0-1-valued functions of 0-1-valued arguments are a very basic
object which can be studied irrespective of propositional logic.

Definition 1.11. A map f : {0, 1}n → {0, 1} is called a boolean function
of n variables.
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We have shown that every propositional formula A determines a boolean
function fA. One can now ask whether every boolean function f can appear
in this way. The answer is “yes”.

Theorem 1.12. Every boolean function {0, 1}n → {0, 1} can be represented
by a propositional formula.

Proof. First let us find a formula that represents a very simple function: a
function that takes value 1 at one point only. Take any vector x ∈ {0, 1}n
and put

f(x) = 1, f(y) = 0 for all y 6= x.

We need a propositional formula with symbols p1, . . . , pn that evaluates to
1 only when v(pi) = xi for all i. This is achieved by a conjunction

B = C1 ∧ C2 ∧ · · · ∧ Cn,

where

Ci =

{
pi, if x1 = 1,

¬pi, if x1 = 0.

Let us prove that fB = f in a formal way. Take any y ∈ {0, 1}n. By
definition, fB(y) = v̂(B) for the valuation v(pi) = yi. Apply the recursive
definition of v̂:

fB(y) = v̂(B) = v̂(C1) ∧ v̂(C2) ∧ · · · ∧ v̂(Cn).

The right hand side is equal to 1 if and only if v̂(Ci) = 1 for all i. By
definition of Ci we have

if xi = 1, then v̂(Ci) = v̂(pi) = v(pi) = yi

if xi = 0, then v̂(Ci) = v̂(¬pi) = ¬v̂(pi) = ¬yi,

which implies that v̂(Ci) = 1 if and only if yi = xi. It follows that fB(y) = 1
if and only if yi = xi for all i, that is fB = f .

Now let f be an arbitrary Boolean function of n arguments. If f(x) = 0
for all x, then one can represent f by the formula p1 ∧ ¬p1. Assume that
there is at least one x such that f(x) = 1. For every x ∈ {0, 1}n such that
f(x) = 1 construct a conjunction Bx as above and take the disjunction of
all such Bx:

A =
∨

f(x)=1

Bx.

We claim that fA = f . Indeed, A evaluates to 1 if and only if at least one
of Bx evaluates to 1 and, as we know, Bx evaluates to 1 only at x. Thus A
evaluates to 1 exactly at those points where f(x) = 1.



1. SYNTAX AND SEMANTICS OF PROPOSITIONAL LOGIC 55

Formally, for every y we have

fA(y) = v̂(A) =
∨

f(x)=1

v̂(Bx)

(where v(pi) = yi). The right hand side equals 1 if and only if v̂(Bx) = 1
for some x. But v̂(Bx) = 1 if and only if y = x. Thus fA(y) = 1 if and only
if y = x for some x such that f(x) = 1, which is just a complicated way to
say if and only if f(y) = 1. Hence fA = f , and the theorem is proved.

The above argument provides a procedure of writing a formula with a
given truth table. We will illustrate it on the example of the function given
by the table below.

p q ?

0 0 0

0 1 1

1 0 1

1 1 0

Mark the rows with 1 at the end. For each of these rows write a con-
junction of all proposition symbols, negated or not depending on whether
the value of this symbol in this row is 0 or 1. In our case these are ¬p ∧ q
and p ∧ ¬q. Then write the disjunction of the obtained conjunctions:

(¬p ∧ q) ∨ (p ∧ ¬q).

Observe that the formula constructed in Theorem 1.12 does not use the
connective →.

Definition 1.13. A system of logical connectives is called functionally com-
plete if every Boolean function can be represented by a formula using only
these connectives.

Thus the system ¬,∧,∨ is functionally complete. One can dispense of
one of the connectives ∧ or ∨ as well.

Lemma 1.14. Each of the systems of logical connectives ¬,∧ and ¬,∨ is
functionally complete.

Proof. By Theorem 1.12 every Boolean function can be represented by a
formula using ¬,∧,∨ only. Replace every occurrence of ∨ using a De Morgan
law and the double negation:

A ∨B ' ¬(¬A ∧ ¬B).

This gives an equivalent formula with connectives ¬ and ∧ only. One re-
moves conjunctions in a similar way with the help of the equivalence

A ∧B ' ¬(¬A ∨ ¬B).
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For example,

(¬p ∧ q) ∨ (p ∧ ¬q) ' ¬(¬(¬p ∧ q) ∧ ¬(p ∧ ¬q))
' ¬(p ∨ ¬q) ∨ ¬(¬p ∨ q)

One can achieve an absolute minimalism by introducing a logical con-
nective ↑ with the truth table

A B A ↑ B
0 0 1

0 1 1

1 0 1

1 1 0

(also called NAND for obvious reasons).

Lemma 1.15. The system of a single logical connective ↑ is functionally
complete.

Proof. Exercise.

1.5 Disjunctive and conjunctive normal forms

Propositional formulas that we obtained in Theorem 1.12 have a very special
form: they are disjunction of conjunctions of (possibly negated) proposition
symbols.

Let us fix some terminology. A literal is a proposition symbol or its
negation. A conjunctive clause is a conjunction of one or several literals.

Definition 1.16. A propositional formula is said to be in disjunctive normal
form (for brevity, DNF) if it is a disjunction of conjunctive clauses.

Corollary 1.17. Every propositional formula is logically equivalent to a
formula in DNF.

Proof. This follows from Theorem 1.12. Every formula represents a boolean
function. As we proved in Theorem 1.12, every boolean function is repre-
sented by a formula in DNF. Formulas representing the same function are
logically equivalent.

Similarly, a disjunctive clause is a disjunction of several literals.

Definition 1.18. A propositional formula is said to be in conjunctive nor-
mal form (for brevity, CNF) if it is a conjunction of disjunctive clauses.

Theorem 1.19. Every propositional formula is logically equivalent to a for-
mula in CNF.
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Proof. Let A be a propositional formula. By Corollary 1.17 the negation of
A is equivalent to some formula in DNF:

¬A '
N∨
α=1

Bα, Bα = Cα,1 ∧ · · · ∧ Cα,kα , Cα,i literals.

By De Morgan’s law we have

A ' ¬¬A ' ¬
N∨
α=1

Bα '
N∧
α=1

¬Bα '
N∧
α=1

(¬Cα,1 ∨ · · · ∨ ¬Cα,kα).

The negation of a literal is a negated or a doubly negated symbol. Double
negations can be removed, and we obtain a formula in CNF.

An unsatisfiable formula is equivalent to p ∧ ¬p. This formula is at the
same time in DNF (it is a single conjunctive clause) and in CNF (it is a
conjunction of two disjunctive clauses). A tautology is equivalent to p∨¬p,
which is also in DNF and in CNF.

Remark 1.20. If the logical symbols > and ⊥ are present, then one can
consider > as a disjunction of zero length (and thus a CNF and a DNF for a
tautology), and ⊥ as a conjunction of zero length (thus a CNF and a DNF
for an unsatisfiable formula).

DNF is not unique: different formulas in DNF can be equivalent. The
procedure described in Theorem 1.12 produces a disjunction of clauses of
length n (where n is the number of variables in the input formula). For
example, the formula p∨q (although it is already in DNF) will be represented
by (p ∧ q) ∨ (p ∧ ¬q) ∨ (¬p ∧ q). The same applies to CNF.

2 Proof theories

2.1 Deductive systems

A proof theory is a method of establishing the validity of a proposition
(that is whether a given proposition is a tautology). There is a type of proof
theories called deductive systems. A deductive system consists of

• a set of propositional formulas called axioms;

• a set of inference rules.

An inference rule has the form Γ ` A, where A is a proposition and Γ is
a set of propositions. It is convenient to write an axiom A in the form ` A.
This allows to define provable propositions recursively.
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Definition 2.1. A proposition is called provable if and only if it is an
axiom or can be obtained from provable propositions by applying rules of
inference, that is there is a set of provable propositions Γ such that Γ ` A is
an inference rule.

One can be more concrete by defining formal proofs as follows.

Definition 2.2. A formal proof is a sequence of propositional formulas,
where each formula is an axiom or is obtained from some of the previous
formulas by an inference rule. That is, if Γ ` A is an inference rule and the
sequence already contains all the formulas from the list Γ, then you can add
A at the end of the sequence.

The final formula of a formal proof is called a theorem.

Thus, a formula is called provable if and only if it is a theorem. An
axiom is also a theorem. Its proof is a sequence consisting of a single term.

Definition 2.3. A proof system is called sound if every provable formula is
a tautology. A proof system is called complete if every tautology is provable.

In terms of the turnstile notation, a system is sound if ` A ⇒� A, and
complete if � A⇒` A.

2.2 A Hilbert system

A Hilbert-style deductive system has a single inference rule, the so-called
modus ponens:

A,A→ B ` B

(If A is provable and A → B is provable, then B is provable.) We will
abbreviate modus ponens by MP.

There are many different axiom systems. Here is one of them, the third
 Lukasiewicz’ system.

` A→ (B → A)

` (A→ (B → C))→ ((A→ B)→ (A→ C))

` (¬A→ ¬B)→ (B → A)

Here A, B, and C may be any propositional formulas. Thus, in fact, we
have infinitely many axioms (axiom instances) that can be obtained from
the above axiom schemata by substituting for A, B, and C some particular
formulas.

Example 2.4. Let us prove the tautology A→ A. First, substitute in the
second axiom (A→ A) for B and A for C:

` (A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A))
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Now substitute (A→ A) for B in the first axiom:

` (A→ ((A→ A)→ A))

This coincides with the “left half” of the previous formula, so by modus
ponens we infer the “right half” of that formula:

` (A→ (A→ A))→ (A→ A)

Now take the first axiom with B substituted for A:

` (A→ (A→ A)).

This is the left half of the previous formula, so again by modus ponens we
infer

` (A→ A),

and the proof is finished.

Theorem 2.5. A Hilbert system is sound if and only if all of its axioms are
tautologies.

Proof. Exercise.

2.3 Gentzen’s sequent calculus: the idea

Given a proposition A, we want to determine whether it is a tautology.
Recall that A is not a tautology if and only if there is a valuation v that
falsifies A. (We will also call v a counterexample to A.) So let us try to
falsify A or to show that this is impossible. As an example, take

A = (p→ q)→ (p ∨ q).

In order to falsify a proposition of the form B → C one has to satisfy B
and falsify C at the same time. This reduces our problem to a combination
of two simpler ones. Let us write our new task on the top of the old one:

p→ q ` p ∨ q
` (p→ q)→ (p ∨ q)

The turnstile symbol is used as a separator: on the left we write the things
we want to satisfy, on the right the things we want to falsify. (One can use
any other separator. The choice of ` looks awkward because the symbol
was used earlier to denote provability. This choice is partially motivated by
the subsequent sections.)

So, now we want to satisfy p → q and falsify p ∨ q. In order to falsify
p ∨ q we have to falsify both of them at the same time. We express this by
p→ q ` p, q. Now on the right hand side we have a list of formulas that we
want to falsify simultaneously. Our diagram takes the following form:
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p→ q ` p, q
p→ q ` p ∨ q

` (p→ q)→ (p ∨ q)

There are two ways to satisfy p → q: one has either to satisfy q or to
falsify p. This introduces branching in the diagram:

q ` p, q ` p, p, q
p→ q ` p, q
p→ q ` p ∨ q

` (p→ q)→ (p ∨ q)

Now, any valuation that solves one of the problems on the top of the
diagram also solves the problem in the bottom. The first problem sounds
“satisfy p and falsify p and q”. This is, of course, impossible. But the second
problem says “falsify p and q”. This is solved by setting v(p) = 0, v(q) = 0.
From the construction principle of the diagram it follows that this valuation
falsifies the initial proposition A = (p→ q)→ (p ∨ q). Thus we have shown
that A is not a tautology.

A couple of remarks are in order. First, there is no need to repeat two
equal propositions on the same side of ` as we did with p on the top right.
(We did it just to show that trying to satisfy p → q brings q to the left
or p to the right.) Second, sometimes we have a choice which connective
to eliminate. Here we had it at the second step. If we choose to eliminate
p→ q before p∨q, then the branching happens earlier, and the final diagram
looks as follows.

q ` p, q
q ` p ∨ q

` p, q
` p, p ∨ q

p→ q ` p ∨ q
` (p→ q)→ (p ∨ q)

2.4 Sequents and inference rules

In the above example we have operated with sets of propositions split into
two subsets: those to satisy and those to falsify.

Definition 2.6. A sequent is a pair (Γ,∆) of finite (possibly empty) sets
of propositions. The set Γ is called the antecedent, the set ∆ is called the
succedent. A sequent is written as Γ ` ∆ with the elements of Γ and ∆
listed in an arbitrary order.

For any proposition in the sequent there is a rule that eliminates its
outermost connective. This rule depends on whether the proposition occurs
in the antecedent or in the succedent. Thus there are eight rules operating
on sequents, two for each of the connectives ∧, ∨, →, ¬.
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Definition 2.7. The inference rules of the sequent calculus are as follows.

(∧ left) :
A,B,Γ ` ∆

A ∧B,Γ ` ∆
(∧ right) :

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧B,∆

(∨ left) :
A,Γ ` ∆ B,Γ ` ∆

A ∨B,Γ ` ∆
(∨ right) :

Γ ` A,B,∆
Γ ` A ∨B,∆

(→ left) :
Γ ` A,∆ Γ, B ` ∆

A→ B,Γ ` ∆
(→ right) :

Γ, A ` B,∆
Γ ` A→ B,∆

(¬ left) :
Γ ` A,∆
¬A,Γ ` ∆

(¬ right) :
A,Γ ` ∆

Γ ` ¬A,∆

The sequents above the line are called premises, the sequents below the line
are called conclusions.

Definition 2.8. A valuation v falsifies a sequent A1, . . . , Am ` B1, . . . , Bn
if it satisfies all of Ai and falsifies all of Bj:

v � (A1 ∧ · · · ∧Am) ∧ (¬B1 ∧ · · · ¬Bn).

A sequent is called falsifiable if it is falsified by some valuation. A sequent
is called valid if it is not falsifiable.

Lemma 2.9. For each of the rules given in Definition 2.7, a valuation v
falsifies the conclusion if and only if it falsifies at least one of the premises.

Proof. The proof is done by looking at the truth tables of the logical con-
nectives. Let us prove, for example, the (∧ right) rule:

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧B,∆

A valuation v falsifies the conclusion if and only if it satisfies all propositions
in Γ, falsifies A∧B, and falsifies all propositions in ∆. But v falsifies A∧B
if and only if it either falsifies A or falsifies B. Thus v falsifies the conclusion
if and only if it

• satisfies Γ and falsifies A and ∆, or

• satisfies Γ and falsifies B and ∆.

These conditions are the premises of the (∧ right) rule, therefore the state-
ment of the lemma holds for this rule. Similar arguments work for all of the
other rules.

For any proposition A one can form a sequent ` A, which is falsifiable,
respectively valid, if and only if A is falsifiable, respectively valid (a tautol-
ogy). Thus if we learn to prove all valid sequents, then we will be able to
prove all tautologies.
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2.5 Axioms and proofs

Definition 2.10. A sequent Γ ` ∆ is an axiom if and only if Γ ∩∆ 6= ∅:
there is a proposition listed both in Γ and ∆.

Example 2.11. The following sequents are axioms:

• q ` p, q,

• (p→ q), p ` (p→ q), q.

Lemma 2.12. All axioms are valid.

Proof. In order to falsify a sequent Γ ` ∆, we have to satisfy all proposi-
tions in Γ and falsify all propositions in ∆. If Γ and ∆ contain a common
proposition, then no valuation falsifies Γ ` ∆. Thus, Γ ` ∆ is valid.

Definition 2.13. A deduction tree is a rooted tree whose vertices are labeled
with sequents so that every parent vertex forms an inference rule together
with its children, where the children are the premises and the parent is the
conclusion.

A parent vertex in a rooted tree is a vertex with the out-degree ≥ 1 in
the canonical orientation of the edges, see Figure 7. Vertices of out-degree 0
will be called leaves of a rooted tree. Since the in-degree of every non-root
vertex is 1, non-root leaves are leaves in the usual sense. However, the root
is a leaf if and only if the tree has only one vertex.

A standalone sequent is a simplest deduction tree (tree with one vertex).
Next to it are the deduction trees copied from the inference rules as shown
in Figure 2. Note that in a deduction tree, the root is at the bottom and
the children of every vertex are situated above the vertex.

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧B,∆

Γ ` A ∧B,∆

Γ ` A,∆ Γ ` B,∆

Figure 2: The (∧: right) inference rule as a deduction tree.

Definition 2.14. A deduction tree is called a proof tree if all of its leaves
are axioms. A sequent is called provable if there is a proof tree with this
sequent at the root.
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2.6 Soundness of the sequent calculus

Theorem 2.15. The sequent calculus is sound: every provable sequent is
valid.

Lemma 2.16. A valuation falsifies the root of a non-trivial deduction tree
if and only if it falsifies at least one of its leaves.

Proof. Induction on the number of vertices.
For trees with one vertex the statement is trivial.
Assume that the statement is proved for all deduction trees with < n

vertices. Let T be a deduction tree with n vertices. By definition, if we
delete the root of T , then we obtain one or two deduction trees “growing”
from the children of the root, see Figure 3. Besides, the root of T is the
conclusion and its children are the premises of an inference rule. Hence
by Lemma 2.9 a valuation falsifies the root if and only if it falsifies one
of its children. The subtrees growing from the children have < n vertices,
therefore by induction assumption a valuation falsifies a child if and only if
it falsifies one of the leaves of the corresponding subtree. Such a vertex is
also childless in the big tree. This proves the induction step.

Figure 3: Deduction trees near their roots.

Proof of Theorem 2.15. We want to show that for every proof tree the se-
quent at its root is valid. By Lemma 2.16, if some valuation falsifies the
root, then it falsifies one of the leaves. But all leaves of a proof tree are
axioms, and by Lemma 2.12 they cannot be falsified.

2.7 Closed deduction trees and completeness of the sequent
calculus

Definition 2.17. A deduction tree is called closed if the sequents labeling
its leaves consist of proposition symbols only.

Lemma 2.18. Every sequent is the root of some closed deduction tree.

Proof. Induction on the number of connectives.
A sequent without connectives consists of proposition symbols. Assume

that every sequent with < n connectives is the root of a closed tree. Take
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any sequent S with n connectives, choose the outermost connective in any
of its propositions and eliminate it. This produces a small tree with S at the
root. In every inference rule, each of the premises contains less connectives
than the conclusion. Thus by induction assumption the leaves of our small
tree are roots of closed deduction trees. Together, this produces a closed
deduction tree with S at the root.

Theorem 2.19. The sequent calculus is complete: every valid sequent is
provable.

Proof. For a given sequent, consider its closed deduction tree. It has leaves
of two kinds:

• Leaves labeled with axioms p1, . . . , pk ` q1, . . . , ql such that pi = qj for
some i, j.

• Leaves with labels p1, . . . , pk ` q1, . . . , ql such that pi 6= qj for all i, j.
These are called counterexample leaves.

A counterexample leaf is falsifiable: it suffices to set v(pi) = 1 for all i and
v(qj) = 0 for all j. Thus if the closed deduction tree has a counterexample
leaf, then the sequent at the root is also falsifiable.

If our sequent is valid, then all of the leaves are of the first kind, and the
tree is a proof tree.

Note that we get more than just completeness: constructing a closed
deduction tree provides a concrete counterexample to a falsifiable sequent.

2.8 A byproduct: CNF and DNF

Theorem 2.20. Let A be a proposition. Take a closed deduction tree with
` A at the root. For each counterexample leaf p1, . . . , pk ` q1, . . . , ql of this
tree write a disjunctive clause

¬p1 ∨ · · · ∨ ¬pk ∨ q1 ∨ · · · ∨ ql.

Then the conjunction of all such clauses is a CNF for A.

Proof. By Lemma 2.16, a valuation v satisfies A if and only if it satisfies
all leaves of the deduction tree. The leaf p1, . . . , pk ` q1, . . . , ql is satisfied
if and only if the disjunctive clause above is satisfied (see Definition 2.8).
Finally, v satisfies all leaves if and only if it satisfies the conjunction of all
these clauses.

One constructs a DNF for A in a similar way starting from the se-
quent A `.



Chapter IV

Predicate logic

Introduction

Predicate logic is a more complicated and powerful system than the propo-
sitional logic.

Before proceeding to formal definitions, let us have a glimpse at how it
works. Consider the statement

For every number x one has x < x+ 1.

It can be expressed by a predicate formula

∀xP (x, f(x)), (1)

where f(x) = x + 1, and P (x, y) means x < y. Functions of one or several
arguments that take truth values (such as x < y or “x is blue”) are called
predicates. Formula (1) contains all the main building blocks of the predicate
logic: a variable x, a function f , and a predicate P .

Let us now forget the origin of formula (1). In order to make sense of it,
its elements must be interpreted: what kind of objects are represented by
the variable x, how is the function f defined, and what does P (x, y) mean.
This interpretation can be as above, but can also be different. For example,
the same formula can be interpreted as

It gets colder every day.

Now x is a day, f(x) is the day after day x, and P (x, y) means “y is colder
than x”.

Our first interpretation evaluates the formula (1) to true, while the sec-
ond evaluates it to false. A formula of the predicate logic is valid if it
evaluates to true in all interpretations. Similarly to the propositional logic,
one aims at finding a method (a proof theory) to establish the validity of a
formula.

65
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1 Syntax and semantics of predicate logic

1.1 First-order languages

The alphabet of the predicate logic consists of

• variables;

• function symbols;

• predicate symbols;

• logical connectives ∧,∨,¬,→,∀,∃;

• auxiliary symbols ( and );

• equality symbol =.

Informally speaking (and as indicated in the introduction), a variable is
an object, a function is an operation with objects whose result is also an
object, and a predicate is a statement about one or several object (in other
words, an operation with objects whose result is a truth value).

Compared to the propositional logic, we have two new logical connec-
tives: the universal quantifier ∀ and the existential quantifier ∃.

The equality symbol is not always included in the alphabet. Accordingly,
there are two slightly different versions of predicate logic: logic with equality
and logic without equality.

Before stating the rules according to which the alphabet symbols can be
combined one has to fix a signature. This is a list of function symbols and
predicate symbols together with the number of arguments for each of them.

Definition 1.1. A signature is a triple of sets (V,F ,P) together with two
maps F → N ∪ {0} and P → N ∪ {0} which describe the arity of functions
and predicates.

One can use the same set V of variables in all signatures. This is a
countably infinite set; we use the letters x, y, z, x1, x2, . . . etc. to denote its
elements. As function symbols we will use f , g, h, f1, f2, . . . and as predicate
symbols P , Q, R, P1, P2, . . ..

The strange word arity describes the number of arguments: a function
or a predicate can be unary, binary, k-ary, and even nullary. The arity
can be indicated by the number of dots (or other placeholders) between the
brackets. Below is an example of a signature.

F : f(·) one unary function symbol
P : P (·, ·), Q(·) one binary and one unary predicate symbol

Nullary functions and nullary predicates have no arguments.
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Definition 1.2. Terms are expressions that can be obtained by finitely many
applications of the following rules.

• Any variable is a term.

• If f is a k-ary function symbol, and t1, . . . , tk are terms, then f(t1, . . . , tk)
is a term.

In particular, if f is a nullary function, then f() is a term. We will usually
omit the brackets in this situation. This has one drawback: syntactically, a
nullary function becomes indistinguishable from a variable. (Later we will
see that their semantics is different.)

For example, with a ternary function f , a binary function g, and a 0-ary
function a one can compose the following terms:

f(x, g(y, x), a), g(f(x, y, a), g(x, z)).

Definition 1.3. Formulas are expressions that can be obtained by finitely
many applications of the following rules.

• If P is a k-ary predicate symbol, and t1, . . . , tk are terms, then P (t1, . . . , tk)
is a formula.

• If t1 and t2 are terms, then t1 = t2 is a formula.

• If ϕ is a formula, then so is ¬ϕ.

• If ϕ and ψ are formulas, then so are ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ.

• If ϕ is a formula, and x is a variable, then ∀xϕ and ∃xϕ are formulas.

Formulas obtained by applying the first or the second rule are called
atomic formulas (because they cannot be decomposed into smaller formulas).

For example, in the signature

F : a(), f(·)
P : P (·, ·)

one can build the following formulas:

∀x¬(f(x) = a)

∀x(f(x) = f(y)→ x = y)

∀xP (x, f(x)).

Definition 1.4. The set of all formulas (based on a given signature) is
called a first-order language.
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1.2 Free and bound variables

A variable in a predicate formula may be bound by a quantifier or be free.
For example, in the formula ∀xP (x, y) the variable x is bound, while the
variable y is free.

Unfortunately, this is not as simple as it seems. Consider the formula

(∀xP (x, y))→ (∃yQ(y)).

The variable y in the first half of the formula is free, the same variable y in
the second half is bound. It is more convenient to work with formulas where
such things do not happen.

Definition 1.5. A formula is called rectified if the following two conditions
are satisfied:

• no variable occurs as free and as bound;

• distinct quantifiers bind distinct variables.

One can rectify any formula by renaming the variables as follows.

• For every quantifier in the formula determine its “scope”. For this,
look at the recursive structure of the formula, namely at the step
when the quantifier appeared: ϕ  ∀xϕ. The subformula ϕ is the
scope of ∀x.

• If the variable x bound by a quantifier occurs not only inside the scope,
but also outside, then replace all occurrences of x inside the scope and
under the quantifier by some completely new symbol.

The resulting formula is semantically equivalent to the original one (al-
though we have not yet described the semantics).

Example 1.6. Rectification of

∃x∀yP (x, y)→ ∀y∃xP (x, y)

produces, for example,

∃z∀tP (z, t)→ ∀y∃xP (x, y).

Remark 1.7. Non-rectified formulas are absolutely legitimate. The main
reason to introduce rectification is that some formal definitions and pro-
cedures are easier to describe for rectified formulas than for non-rectified
ones.
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1.3 Closed formulas and universal closure

Definition 1.8. A formula is called closed if it does not contain free vari-
ables.

Definition 1.9. The universal closure of a formula is obtained by adding a
universal quantifier for every free variable.

Example 1.10. The universal closure of Q(x) ∧ ∃yP (y, z) is

∀x∀z(Q(x) ∧ ∃yP (y, z)).

1.4 First-order structures

A signature only lists symbols of functions and predicates with the number
of their arguments; it does not specify what operations and relations stand
behind these symbols.

Definition 1.11. A first-order structure (based on a given signature) is a
pair (U, I), where U is a non-empty set and I is a map which assigns to
each k-ary function symbol f a function I(f) : Uk → U and to each k-ary
predicate symbol P a predicate I(P ) : Uk → {0, 1}.

For k = 0 the set Uk is a one-element set. Therefore an interpretation of
a nullary function I(a) : U0 → U is equivalent to choosing an element of U .
This is the reason why nullary functions are also called constants. Similarly,
an interpretation of a nullary predicate is a choice of a truth value for it.

Example 1.12. Consider again the signature

F : a(), f(·)
P : P (·, ·)

Here is one of possible structures for it:

U = N, a = 1, I(f)(x) = x+ 1, I(P ) = {x ≤ y}.

Here I(P ) = {x ≤ y} means I(P )(x, y) is true if and only if x ≤ y. In other
words, we define I(P ) by describing the preimage of 1 under the map I(P ).

Given a structure, one can evaluate every closed formula. For example,
the formula ∀x¬(f(x) = a) acquires the meaning

∀x ∈ N x+ 1 6= 1,

which we identify as a true statement.
It should be intuitively clear how to find the truth value of a given

closed formula. But one needs a formal definition. Of course, it proceeds
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by recursion because formulas have a recursive structure. This means that,
even if we want to determine the truth values only of closed formulas, we also
need to determine the truth values of formulas with free variables (which
appear as intermediate steps when building a closed formula).

A variable assignment is a map µ : V → U which associated to every
variable an element from the universe. Together with interpretation I it
allows to evaluate every term to an element of U and every formula to a
truth value.

• Given terms t1, . . . , tk which evaluate to u1, . . . , uk ∈ U and a k-ary
function symbol f , the term f(t1, . . . , tk) evaluates to I(f)(u1, . . . , uk).

• Similarly, a formula P (t1, . . . , tk) evaluates to I(P )(u1, . . . , uk) if ti
evaluates to ui.

• Given terms t1 and t2 which evaluate to u1 and u2, the formula t1 = t2
evaluates to true if and only if u1 = u2.

• Formulas of the form ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, ¬ϕ evaluate according to
the truth tables for logical connectives.

• A formula ∃xϕ evaluates to true if there exists an evaluation µ′ that
differs from µ only in the value of x such that ϕ evaluates under µ′ to
true.

• A formula ∀xϕ evaluates to true if ϕ evaluates to true under all as-
signments µ′ that differ from µ only in the value of x.

One sees that the truth values of ∃xϕ and ∀xϕ do not depend on the as-
signment value of the variable x. It follows that the truth values of closed
formulas are independent of the variable assignments, hence determined by
M = (U, I) only.

Definition 1.13. One says that a structure M satisfies a closed formula ϕ,
if ϕ evaluates to true under M . In this case M is also called a model of ϕ,
and one writes M � ϕ.

Definition 1.14. A closed formula ϕ is called satisfiable if it has at least one
model. A closed formula ϕ is called valid if M � ϕ for every structure M .

1.5 Propositional logic inside predicate logic

Consider the signature without functions and with nullary predicates only:

P : P1(), P2(), . . . (2)

Formulas in this signature contain no terms, because a term must occur
as an argument of a predicate, but nullary predicates have no arguments.
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We can introduce variables in the formulas only with quantifiers by writing
something like ∀x∃yP ∧Q, but in any structure this formula evaluates in the
same way as P∧Q. Thus the formulas in signature (2) look like propositional
formulas with variable symbols Pi.

How does P ∧Q actually evaluate? By definition, a first-order structure
(U, I) assigns to each nullary predicate P a truth value I(P ). Then the
truth value of P ∧Q is I(P )∧I(Q) (and the universe U has no significance).
Similarly for every other formula: an evaluation with respect to interpreta-
tion I is the same as evaluation of a propositional formula with I viewed as
valuation v.

Thus signature (2) realizes the propositional logic as a special case of the
predicate logic. One can state this as follows.

Theorem 1.15. A predicate formula in signature (2) is valid if and only if
the corresponding propositional formula is a tautology.

2 Proof theory

We will present Gentzen’s sequent calculus for predicate logic. There are
other proof theories, for example Hilbert-style systems. These theories are
equivalent to each other, which means that a formula provable within one
of them is also provable within any other. (Postfactum it follows from
their soundness and completeness, but one can describe a transformation of
Hilbert proof into a Gentzen proof and vice versa in a direct way.)

2.1 Substitutions

Let A be a predicate formula, and let t be a term. Assume that A contains
a free variable x. Then we can define a new formula A[t/x] obtained by sub-
stitution of t for all free occurrences of x. (We don’t exclude the possibility
that x also occurs bound in A.)

Intuitively, A[t/x] should represent a special case of A, so that for exam-
ple if A is true for all x, then A[t/x] is valid. However, some substitutions
do not have this property. Take for example

A = ∃y(y < x), t = y.

Then we have A[t/x] = ∃y(y < y). This is false in the universe of integers,
although A was true.

Definition 2.1. A term t is free for x in A if no variable of t becomes bound
after the substitution of t for all free occurrences of x.

In other words, when we are substituting t for free occurrences of x, we
also want all parts of t to remain free in the resulting formula.
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In order to determine the truth value of a non-closed formula A, one
needs a structure M = (U, I) and an assignment µ for all free variables in A
(that is, µ is a map from the set of free variables in A to U). A formula A
is called satisfiable (respectively, falsifiable) in M if there is an assignment
µ such that (M,µ) � A (respectively, (M,µ) 6� A).

Lemma 2.2. Assume that a term t is free for x in A. Then for every
structure M the following holds:

• If ∀xA is satisfiable in M , then A[t/x] is satisfiable in M .

• If ∃xA is falsifiable in M , then A[t/x] is falsifiable in M .

More specifically, consider substitution in A of a variable y for a free
variable x.

Lemma 2.3. Assume that a variable y is free for x in A and is not occurring
freely in A. Then for every structure M the following holds:

• If ∃xA is satisfiable in M , then A[y/x] is satisfiable in M .

• If ∀xA is falsifiable in M , then A[y/x] is falsifiable in M .

An example showing that y should not occur freely in A:

∃xA = ∃x(P (x) ∧ ¬P (y)).

This formula is satisfiable in any structure where the interpretation of pred-
icate P is not constant. But after the quantifier removal and substitution
of y for x it becomes

A[y/x] = P (y) ∧ ¬P (y),

which is not satisfiable.

2.2 Inference rules

Gentzen system for the predicate logic without equality operates with se-
quents Γ ` ∆, where Γ and ∆ are sets of predicate formulas. As before, we
are building a deduction tree with the root ` A, where A is a formula which
we are trying to prove or disprove.

Definition 2.4. A sequent A1, . . . , Am ` B1, . . . , Bn is called falsifiable if
there exists a first-order structure M and a variable assignment µ which
simultaneously make all Ai true and all Bj false:

(M,µ) � Ai for all i, (M,µ) 6� Bj for all j.
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Axioms of the Gentzen system are, as before, sequents Γ ` ∆ with some
formula occurring on both sides: A ∈ Γ ∩ ∆. Axioms are valid (because
no structure can at the same time satisfy and falsify A). Inference rules for
the logical connectives ∧,∨,→,¬ are the same. There are four new rules
involving the quantifiers.

(∀ left) :
A[t/x], ∀xA,Γ ` ∆

∀xA,Γ ` ∆
(∀ right) :

Γ ` A[y/x],∆

Γ ` ∀xA,∆

(∃ left) :
A[y/x],Γ ` ∆

∃xA,Γ ` ∆
(∃ right) :

Γ ` A[t/x],∃xA,∆
Γ ` ∃xA,∆

Here t is any term free for x in A, and y is any variable free for x in A and
not occurring freely in the conclusion (that is, in the sequent Γ ` ∀xA,∆
for the right ∀ rule and in the sequent ∃xA,Γ ` ∆ for the left ∃ rule). In
particular, one can substitute x for itself if x does not occur freely in Γ
and ∆.

As before, a deduction tree is a proof tree if all of its leaves are axioms.
A sequent is called provable if there is a proof tree with this sequent as a
root.

Lemma 2.5. For each of the inference rules, the conclusion is falsifiable in
some structure M if and only if at least one of the premises is falsifiable in
the structure M .

Proof. For the inference rules for ∧,∨,→,¬ the argument simply invokes
the truth tables.

For the inference rules involving quantifiers this follows from Lemmas
2.2 and 2.3.

Theorem 2.6. Provable formulas are valid. In other words, sequent calculus
for predicate logic is sound.

Proof. Follows from Lemma 2.5.

Example 2.7. Let us prove the formula ∃x(P → Q(x))→ (P → ∃yQ(y)).

P ` P,∃yQ(y)

Q(z1), P ` Q(z1),∃yQ(y)

Q(z1), P ` ∃yQ(y)

P, P → Q(z1) ` ∃yQ(y)

P → Q(z1) ` P → ∃yQ(y)

∃x(P → Q(x)) ` P → ∃yQ(y)

` ∃x(P → Q(x))→ (P → ∃yQ(y))

At the second step we are introducing a new variable z1 while applying
the left ∃ inference rule. After application of the branching left → rule we
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obtain an axiom on the left (with P on both sides of `). On the right we
are applying the right ∃ rule, where we can make a clever choice of a term
to substitute for y. Choosing z1/y as the substitution, we obtain two equal
terms on both sides of `, and the proof tree is finished.

Example 2.8. The following deduction tree allows us to find a counterex-
ample for ∃x(P → Q(x))→ (P → ∀yQ(y)).

P ` P,∀yQ(y)

Q(z1), P ` Q(z2)

Q(z1), P ` ∀yQ(y)

P, P → Q(z1) ` ∀yQ(y)

P → Q(z1) ` P → ∀yQ(y)

∃x(P → Q(x)) ` P → ∀yQ(y)

` ∃x(P → Q(x))→ (P → ∀yQ(y))

The leaf on the right has a counterexample: take a universe with two
elements z1 and z2, evaluate the nullary predicate P to true, and the unary
predicate Q to true on z1 and false on z2.

2.3 Completeness of the sequent calculus

Theorem 2.9. The sequent calculus is complete: every valid formula is
provable.

We will not give a detailed proof of this theorem, but will describe a
procedure which, for every closed predicate formula A, constructs a deduc-
tion tree with the root ` A with one of the following two properties. The
algorithm assumes that the signature does not contain functions; if it does,
some modifications are needed.

• It is finite and each of its leaves is an axiom.

• It is finite and has a leaf from which a counterexample can be read off.

• It contains an infinite path producing a counterexample.

One cannot exclude the possibility of an infinite tree because there are
formulas satisfied by all finite structures but falsified by some infinite struc-
ture (see the exercises).

Algorithm description. We assume that the signature contains no function
symbols. Given a closed formula A, put the sequent ` A at the root.

From the set of variables choose an infinite sequence of symbols u1, u2, . . . ,
not occurring in A. (The set U = {u1, u2, . . .} or a finite initial segment of it
will later be our universe.) During the algorithm, the variables from the se-
quence u1, u2, . . . will be activated in their natural order. At the beginning,
only u1 is active, the rest is not.
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At every step of the algorithm we have some previously constructed
deduction tree and are going to apply an inference rule to one of its leaves.
Each inference rule consists in copying most of the formulas of the sequent
and changing only one of them, called the principal formula. The type of
the inference rule is determined uniquely by the principal formula: this is
the rule for the outermost connective in the principal formula, and it is the
left or the right rule according on which side of ` the principal formula is
situated. For the connectives of propositional logic the inference rules are
unique. For the quantifiers, one needs to specify the substitutions. This is
done as follows.

• Right ∀ or left ∃ rule: substitute the first inactive variable from the
sequence {u1, u2, . . .}.

• Left ∀ or right ∃ rule: substitute all active ui not previously substituted
into this formula.

That means, if there are several active variables not yet substituted into ∀ `
or ` ∃, then the corresponding inference rule is applied several times. We
abbreviate this sequence of steps as

A[uk+1/x], . . . , A[ul/x],∀xA,Γ ` ∆

∀xA,Γ ` ∆

(and similarly for ∃xA on the right), where uk+1, . . . , ul are all active vari-
ables not substituted into ∀xA at some previous step.

Let us note that if the signature contains function symbols, then in the
left ∀ and right ∃ case one must substitute all possible terms with currently
active variables (this is a finite but possibly quite large set).

The inference rules are applied in a breadth-first way: in one round
we go over all leaves, and every non-atomic formula inside a leaf is used
as a principal formula. More exactly, if A1, . . . , Am ` B1, . . . , Bn is a leaf
sequent, then we first apply the inference rule with A1 as the principal
formula. After that we apply the inference rule with A2 as the principal
formula to all “newly grown” leaves. Then we work with A3 in all new
leaves, and so on. Only after we finished the work with the formula Bn, we
proceed to the next leaf sequent.

A leaf is called closed if one of the following occurs:

• its sequent contains only atomic formulas;

• its sequent contains only atomic formulas and ∀x-formulas on the left
or ∃x-formulas on the right for which all substitutions (of active vari-
ables, see the instructions above) have already been performed.
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A closed leaf with only atomic formulas is either an axiom leaf or a
counterexample leaf (see Example 2.8).

Example 2.10 illustrates the second possibility.
It can happen that after every round there are non-closed leaves. In this

case the algorithm never terminates, and the sequent at its root is falsifiable.
Namely, the tree will contain an infinite path, and a counterexample can be
read off this path as illustrated in Example 2.11 below.

Example 2.10. Disprove the formula ∀x∃yP (x, y).

` P (u2, u1), P (u2, u2),∃yP (u2, y)

` ∃yP (u2, y)

` ∀x∃yP (x, y)

This tree is closed, and its only leaf describes a counterexample:

U = {u1, u2}, I(P )(u2, u1) = I(P )(u2, u2) = false

(the value of I(P ) on (u1, u2) and (u1, u1) is inessential).

Example 2.11. Disprove the formula ∃x∀yP (x, y).

· · ·
` P (u1, u2), P (u2, u3), ∃x∀yP (x, y)

` P (u1, u2), ∀yP (u2, y),∃x∀yP (x, y)

` P (u1, u2),∃x∀yP (x, y)

` ∀yP (u1, y), ∃x∀yP (x, y)

` ∃x∀yP (x, y)

The tree is infinite, and it is easy to read off a counterexample:

U = {u1, u2, . . .}, I(P )(ui, ui+1) = false for all i.

(Again, the values of I(P ) on other pairs of arguments do not matter.)

Remark 2.12. It is important to work in a breadth-first way, otherwise one
can obtain an infinite tree for a valid formula. This happens, for example,
in the following deduction tree for the formula (P ∨ ¬P ) ∨ ∃x∀yP (x, y):

· · ·
` Q,¬Q,P (u1, u2), P (u2, u3), ∃x∀yP (x, y)

· · ·
` Q,¬Q,∃x∀yP (x, y)

` (Q ∨ ¬Q) ∨ ∃x∀yP (x, y)

` (Q ∨ ¬Q) ∨ ∃x∀yP (x, y)

Here we are neglecting the non-atomic formula ¬Q and working with ∃x∀yP (x, y)
only, which produces an infinite path from Example 2.11. Constructed in
a breadth-first way, this tree will close with an axiom leaf with Q on both
sides of `.

For details see [8].
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3 Gödel’s incompleteness theorems

3.1 Theories and models

Very often, we will deal with closed predicate formulas. For brevity, a closed
formula will be called a sentence.

Definition 3.1. A (first-order) theory is any set of sentences of the predi-
cate logic. These sentences are called axioms of the theory.

Example 3.2. The theory consisting of the following two sentences:

∀x(¬P (x, x))

∀x∀y(P (x, y)→ P (y, x))

is called first-order graph theory. Any model of this theory is a graph: the
universe corresponds to the vertex set, and the predicate interpretation to
the edge set.

Definition 3.3. A theory T is called satisfiable if it has at least one model,
that is a structure which satisfies all sentences of the theory:

M � T
def⇐⇒M � A for all A ∈ T.

Example 3.4. The theory {A,¬A}, where A is any sentence, is unsatisfi-
able. Indeed, in every model one of the sentences A,¬A takes the true value,
the other one the false value.

Example 3.5. Every model M defines a theory TM = {A | M � A}, the
set of all sentences satisfied by the model M .

The theory TM has the property that for every A either A ∈ TM or
¬A ∈ TM .

Definition 3.6. Two models M and M ′ are called elementarily equivalent
(denoted M ∼ M ′) if TM = TM ′, that is every sentence satisfied by one is
also satisfied by the other.

Definition 3.7. A theory T is called complete if it is satisfiable and any
two models satisfying it are elementarily equivalent:

M � T,M ′ � T ⇒M ∼M ′.

Example 3.8. First-order graph theory 3.2 is satisfiable but incomplete.
The sentence ∃x∃y(x 6= y) is false in the model with one-element universe
(graph with a single vertex) and true in any other model.



78 CHAPTER IV. PREDICATE LOGIC

Remark 3.9. One can show that two finite models are elementarily equiva-
lent if and only if the corresponding graphs are isomorphic. But this is false
for infinite models: a doubly infinite path is elementarily equivalent to the
union of two of its copies.

The connectivity property of a graph cannot be written as a sentence
of the first-order logic. One can express it with the help of quantifiers over
subsets of the universe, which belong already to the second-order logic.

Definition 3.10. A sentence A is said to be a semantic consequence of a
theory T (denoted T � A) if every model of T satisfies A:

T � A
def⇐⇒ if M � T, then M � A.

Example 3.11. A semantic consequence of an empty theory is a valid
sentence (one which is true in all structures). If A is valid, then we write
� A.

Lemma 3.12. A theory T is complete if and only if it is satisfiable and for
every sentence A one has either T � A or T � ¬A.

Proof. Assume T is complete, and let M be any of its models. For every
sentence A, we have either M � A or M � ¬A. Due to the completeness of
T this implies T � A, respectively T � ¬A.

Assume T is incomplete. Then there are two models M and M ′ whose
sets of satisfied formulas differ. Without loss of generality, let M � A and
M ′ 6� A. Then neither T � A nor T � ¬A hold.

Exercise 3.1. For every model M , the theory TM is complete.

The first-order theory of graphs is incomplete, and this is good: one has
many different graphs with different properties. But if we want to know
everything about the arithmetics of N, the natural numbers, then we need a
complete theory. The theory should contain some axioms for addition and
multiplication and maybe some other axioms, so that every sentence has a
well-defined truth value (that is, all structures that satisfy our axioms assign
to it the same value). For example, the question “Can every integer greater
than 2 be expressed as the sum of two primes?” should have a definite
answer.

One might use the result of the above exercise: if we assume that N is
something objectively real, then there is the corresponding complete the-
ory TN. But this theory has “too many” axioms, and we have no explicit
description for it, apart from saying “what is true, is true”. Gödel’s incom-
pleteness theorem says that there is no complete theory of N such that for
every sentence one can decide in finite time is it an axiom of the theory or
not.

Before we say more about the incompleteness theorem, we must discuss
proofs, a constructive way to derive consequences of a theory.
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3.2 Models and proofs: Gödel’s completeness theorem

Definition 3.13. A sentence A is said to be a syntactic consequence of a
theory T (denoted T ` A) if there is a deduction tree with Γ ` A at the root,
where Γ ⊂ T is any finite subset, and logical axioms at the leaves. One says
that A is a theorem of theory T . The set of all theorems of T is denoted by
Th(T ).

Exercise 3.2. If T ` A and T ′ ⊃ T , then T ′ ` A.

Example 3.14. The definition of a group can easily be formulated as a first-
order theory. It is also possible to state and to prove the following theorem:
If all elements of a group have order two, then the group is commutative.

Lemma 3.15. A syntactic consequence is a semantic consequence. That is,
T ` A implies T � A.

Proof. Proof by contradiction. Assume that there is a model M of T which
does not satisfy A. Then this model falsifies the sequent Γ ` A, and therefore
falsifies one of the leaves of the deduction tree. But this is impossible, thus
every model that satisfies T also satisfies A.

Theorem 3.16 (Gödel’s completeness theorem). A semantic consequence
of a theory is also its syntactic consequence:

T � A⇒ T ` A.

In other words, every sentence which is true in a given theory has a formal
proof.

A special case of this theorem is Theorem 2.9, which says that � A
implies ` A (here the theory is empty).

The completeness theorem can be formulated in a different way.

Definition 3.17. A theory T is called (syntactically) consistent if there is
no sentence A such that T ` A and T ` ¬A.

Lemma 3.18. Every satisfiable theory is consistent.

Proof. Proof by contraposition. Let T be an inconsistent theory: there is
a sentence A such that T ` A and T ` ¬A. Assume that T is satisfiable:
M � T . Then the soundness of the proof system implies that M � A
and M � ¬A, which is a contradiction. Thus every inconsistent theory is
unsatisfiable.

The inverse implication is also correct; it can be derived from the com-
pleteness theorem and vice versa by some manipulations with deduction
trees. Therefore it is also called the completeness theorem.
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Theorem 3.19 (Gödel’s completeness theorem, second version). Every con-
sistent theory is satisfiable.

Corollary 3.20. A theory T is complete if and only if it is consistent and
syntactically complete, that is for every sentence A either T ` A or T ` ¬A
but not both.

3.3 Peano arithmetic

The signature consists of a nullary function 0, a unary function s (successor),
two binary functions + and ·. The equality predicate =. Axioms of PA:

1. ∀x¬(s(x) = 0)

2. ∀x∀y(s(x) = s(y)→ x = y)

3. ∀x(x = 0 ∨ ∃y(s(y) = x))

4. ∀x(x+ 0 = x)

5. ∀x∀y(x+ s(y) = s(x+ y))

6. ∀x(x · 0 = 0)

7. ∀x∀y(x · s(y) = x · y + x)

8. ∀ȳ ((A(0, ȳ) ∧ ∀x(A(x, ȳ)→ A(s(x), ȳ))→ ∀xA(x, ȳ))

The last item is the induction schema, that is it encodes infinitely many sen-
tences. Here ȳ denotes y1, . . . , yn, and ∀ȳ denotes ∀y1 . . . ∀yn. The number
n can be any non-negative integer, and A can be any formula with n + 1
free variables x, y1, . . . , yn.

The theory consisting of the first seven axioms is called Robinson arith-
metic, we will denote it by PA0. It does not imply that the addition is
commutative.

Since we assume that N is an objective reality and the operations with
positive integers satisfy the above properties, theory PA is satisfiable and
hence consistent.

3.4 Recursive functions and recursive sets

Definition 3.21. A recursive function is a function f : X → N defined on
a subset X of Np for some p which can be computed in finite time.

The above definition is highly informal. The formal definition says that
a recursive function is one that can be obtained from basic functions (con-
stants, x 7→ x + 1, projections) by finitely many operations such as com-
position, primitive recursion (which allows to construct f(x, y) = x + y,
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for example), and minimization. (Functions which can be obtained with-
out using minimization are called primitive recursive functions.) It can be
shown that recursive functions are exactly those which can be computed by
Turing machines. The input of a machine is a p-tuple of positive integers
x = (x1, . . . , xp); if x ∈ X, then the machine outputs f(x), if x /∈ X, then
the machine outputs an error or never stops. (Without loss of generality, one
can assume that for x /∈ X the machine never stops: if one has a machine
that outputs an error, attach to it a machine which reacts on this error by
starting an infinite loop.)

Definition 3.22. A set X ⊂ Np is called recursive if the function

1X : Np → N, 1X(x) =

{
1, if x ∈ X
0, if x /∈ X

is recursive.

In other words, a set X is recursive if there is an algorithm which for
every input x terminates in finite time and tells whether x belongs to X or
not.

Definition 3.23. A set X ⊂ Np is called recursively enumerable if the
function

1X : X → N, 1X(x) = 1 for all x ∈ X

is recursive.

In other words, X is recursively enumerable if there is an algorithm
which terminates only when the input x belongs to X.

Recursive sets are also called decidable, and recursively enumerable are
called semi-decidable.

Example 3.24. The set of prime numbers is recursive. It is not easy to
give an example of a recursively enumerable but not recursive set.

Lemma 3.25. A set X ⊂ Np is recursive if and only if both X and Np \X
are recursively enumerable.

Proof. If we have an algorithm for computing 1X , then modify it by going
into an endless loop if the output is 0. This computes the function 1X . The
function 1Np\X is computed similarly.

If one has an algorithm which stops only for inputs x ∈ X and an
algorithm which stops only for inputs x /∈ X, then run them parallelly and
interpret the output of the first algorithm as 1, and the output of the second
algorithm as 0. This allows us to compute the function 1X .
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Definition 3.26. Let B be a formula of the predicate logic in the signa-
ture of Peano arithmetic with exactly one free variable y. One says that B
represents a subset Y ⊂ N if

n ∈ Y if and only if PA0 ` B[n/y],

where n = s ◦ s ◦ · · · ◦ s︸ ︷︷ ︸
n times

(0).

Theorem 3.27. Every recursive subset of N is representable.

3.5 Gödel’s incompleteness theorems

Denote by L the language of PA (that is, the set of all formulas in the
signature of PA). There is an injective map

] : L→ N

called Gödel numbering such that its image ](L) ⊂ N is a recursive set.
(Such a map can be constructed by associating to every symbol a number
(similarly ASCII encoding) and then encoding a sequence of numbers by a
single number for example through (k1, . . . , kn) 7→ pk11 · · · pknn , where pi is
the i-th prime number.) That the image of this map is recursive means that
there is an algorithm which determines for any number m ∈ N whether it
encodes a well-formed formula. It is clear how to reconstruct a sequence
of symbols from its Gödel number, and it is clear how to check whether a
sequence of symbols is a formula.

The Gödel numbering can be extended to sequences of formulas:

]] : L∗ → N.

A proof of a formula can be represented as a sequence of formulas (this is
so in the Hilbert proof system, for the Gentzen system one has to agree
how to transform a tree into a list; this is doable). Thus every proof has
a Gödel number as well, with different numbers corresponding to different
proofs (and some numbers not corresponding to any proof).

Gödel numbering allows to speak about recursive sets of formulas.
Let Th(T ) denote the set of all theorems of theory T .

Definition 3.28. A theory T is called recursive if the set

]T = {]A | A ∈ T} ⊂ N

is recursive.
A theory T is called decidable if the set

]Th(T ) = {]A | A ∈ Th(T )} ⊂ N

is recursive.
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For a recursive theory there is an algorithm which, for any given formula,
tells us in finite time whether this formula is an axiom of our theory or not.
This is a very reasonable condition for a theory: one should be able to
distinguish axioms from non-axioms. For a decidable theory there is an
algorithm which, for any given formula, tells us whether this formula can be
derived from the axioms or not.

Lemma 3.29. If theory T is recursive, then its set of theorems Th(T ) is
recursively enumerable.

Intuitively, if we can distinguish axioms from non-axioms, then the set
of proofs is recursive. From certain properties of recursive sets it follows
that the set of last terms of proofs is recursively enumerable.

Theorem 3.30. A complete and recursive theory is decidable.

Proof. By the lemma, the set Th(T ) is recursively enumerable, so that it
remains to show that its complement is recursively enumerable. But in a
complete theory, T 6` A if and only if T ` ¬A. Thus, if we use ¬A as an
input for the algorithm which stops if and only if its input is a theorem,
then this algorithm will stop if and only if A is not a theorem.

Theorem 3.31. Let T ⊃ PA0 be a consistent theory. Then T is undecid-
able. In particular, PA0 and PA are undecidable.

Observe that this theorem together with the previous one immediately
imply

Theorem 3.32 (First Gödel’s incompleteness theorem). Every consistent
and recursive theory which contains PA0 is incomplete.

Proof of Theorem 3.31. Assume that T is decidable. Consider the set

X = {(m,n) | m = ]A(·), T ` A[n/·]} ⊂ N2.

(Here A(·) means that A has one free variable, and A[t/·] means substitution
of term t for this variable.) Since T is decidable, the set X is recursive (there
is an algorithm which decides whether (m,n) ∈ X or not).

Now let
Y = {n | (n, n) /∈ X}.

Clearly, since X is recursive, so is Y . By Theorem 3.27, the set Y is repre-
sentable. That is, there is a formula B(y) such that

n ∈ Y ⇒ PA0 ` B[n/y]

n /∈ Y ⇒ PA0 ` ¬B[n/y]

Since T ⊃ PA0, for every C such that PA0 ` C we also have T ` C.
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Now let n = ]B(y). Let us ask ourselves if n ∈ Y or not. Assume n ∈ Y .
By definition of Y , X, and n we have

n ∈ Y ⇒ (n, n) /∈ X ⇒ T 6` B[n/y].

On the other hand, by definition of B(y) we have

n ∈ Y ⇒ T ` B[n/y],

a contradiction. Now, if we assume that n /∈ Y , then we derive similarly
that T ` B[n/y] and T ` ¬B[n/y], an inconsistency. Thus the decidabil-
ity assumption contradicts the consistency assumption, and the theorem is
proved.

Corollary 3.33. The set V = {A | A is valid} is recursively enumerable
but not recursive.

Proof. The set V is the set of theorems of the empty theory. Since the
empty theory is recursive, V is recursively enumerable.

Denote byB the conjunction of all seven axioms of PA0. If V is recursive,
then for any sentence A one can decide in finite time whether B → A belongs
to V or not. But an answer to this question is equivalent to an answer to
the question whether A ∈ Th(PA0) or not. This contradicts the fact that
PA0 is undecidable, thus V cannot be recursive.

For details see [4, 5].



Chapter V

Combinatorics II

Additional reading for this part of the course: [1].

1 Linear recursive sequences

1.1 Fibonacci sequence and Binet formula

The Fibonacci sequence is defined as follows:

a0 = 0, a1 = 1, an = an−1 + an−2 for n ≥ 2.

Here are the first several terms:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Theorem 1.1 (Binet). The n-th Fibonacci number is equal to

an =

(
1+
√

5
2

)n
−
(

1−
√

5
2

)n
√

5

At the first sight it is not clear at all that this formula produces a rational
and even integer number.

A direct consequence of the Binet formula is that the Fibonacci sequence
grows as a geometric progression with ratio equal to the golden ratio

τ =
1 +
√

5

2
= 1, 618 . . . .

Indeed, the second summand is(
1−
√

5

2

)n
= (−0, 618 . . .)n → 0 as n→∞,

85
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which implies that

an ∼
τn√

5
,

and even more exactly

an =

⌊
τn√

5

⌉
,

where bxe denotes the closest integer to the number x.

1.2 Linear recursive sequences of order 2

We will prove not only the Binet formula, but show that similar formulas
hold for all sequences defined similarly to the Fibonacci sequence.

Definition 1.2. A sequence an, n = 0, 1, . . ., is called a linear recursive
sequence of order 2 if it satisfies the relation

an = ran−1 + san−2 for all n ≥ 2 (1)

for some constant coefficients r and s, where s 6= 0.

Such a sequence is uniquely determined by the values of a0 and a1.

Definition 1.3. The characteristic polynomial of the sequence (1) is the
quadratic polynomial

x2 − rx− s.

Theorem 1.4. 1. If the characteristic polynomial of (1) has two differ-
ent roots λ1, λ2, then one has

an = c1λ
n
1 + c2λ

n
2

for some c1, c2 ∈ R.

2. If the characteristic polynomial of (1) has one (double) root λ, then
one has

an = c1λ
n + c2nλ

n

for some c1, c2 ∈ R.

Proof. Part 1. Let us show that each of the two geometric progressions λn1
and λn2 satisfies the recurrence relation (1). Indeed, one has

λni − rλn−1
i − sλn−2

i = λn−2
i (λ2

i − rλi − s) = 0,

which implies λni = rλn−1
i + sλn−2

i . It follows that for any constant coeffi-
cients c1 and c2 the sequence c1λ

n
1 + c2λ

n
2 also satisfies the relation (1).
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Let us show that the coefficients c1 and c2 can be chosen so that

c1 + c2 = a0

c1λ1 + c2λ2 = a1.

This is a system of two linear equations for two unknowns c1 and c2, which
has a (unique) solution because the matrix of the system has a non-zero
determinant: ∣∣∣∣ 1 1

λ1 λ2

∣∣∣∣ = λ2 − λ1 6= 0.

Once the sequences c1λ
n
1 + c2λ

n
2 and an coincide in the first two terms, they

coincide everywhere. This proves the first part of the Theorem.
Part 2. The proof is similar, but as the basis sequences we take λn and

nλn. The first of them satisfies the linear recurrence by the same reason as
in Part 1. To check the recurrence for the second sequence, observe that λ
being the double root of the characteristic polynomial means that

x2 − rx− s = (x− λ)2 ⇒ r = 2λ, s = −λ2.

Thus we have

nλn− r(n− 1)λn−1− s(n− 2)λn−2 = λn−2(nλ2− 2λ(n− 1)λ+ λ2(n− 2))

= λn(n− 2(n− 1) + (n− 2)) = 0.

As next one has to find the coefficients c1 and c2 which make the linear
combination c1λ

n + c2nλ
n to coincide with the sequence an in the first two

terms:

c1 = a0

c1λ+ c2λ = a1.

Clearly, this linear system has a solution.

Let us apply the algorithm from the above proof to find an explicit
formula for Fibonacci numbers.

The characteristic polynomial is λ2 − λ− 1. Its roots are

λ1 =
1 +
√

5

2
, λ2 =

1−
√

5

2
. (2)

If we start the Fibonacci sequence from the zeroth term so that the recur-
rence relation holds between a0, a1, a2 as well, then we must put a0 = 0.
Thus the coefficients c1 and c2 are found from the system

c1 + c2 = 0

c1λ1 + c2λ2 = 1.
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From the first equation one has c2 = −c1. Substituting this into the second
equation one obtains

c1 =
1

λ1 − λ2
=

1√
5
.

The result is the formula of Binet:

an =
1√
5
λn1 −

1√
5
λn2 .

1.3 Linear recursive sequences of higher order

Linear recursive sequences of higher orders are defined similarly and can be
handled in a similar way.

Definition 1.5. A sequence a0, a1, a2, . . . is called a linear recursive se-
quence of order k if it satisfies the relation

an = r1an−1 + r2an−2 + · · ·+ rkan−k (3)

for all n ≥ k for some constants r1, . . . , rk, where rk 6= 0.

A linear recursive sequence of order k is completely determined by the
values of its first k terms.

Definition 1.6. The characteristic polynomial of the sequence (3) is

P (x) = xk − r1x
k−1 − r2x

k−2 − · · · − rk.

Theorem 1.7. Let P (x) = (x − λ1)k1 · · · (x − λm)km be the complete fac-
torization of the characteristic polynomial of a linear recursive sequence
an. Then the sequence an is a linear combination of the sequences njλni ,
0 ≤ j ≤ ki − 1.

We don’t give the proof, which is similar to the case of sequences of order
2. If all roots of P (x) are distinct, then the coefficients ci in

an = c1λ
n
1 + · · ·+ ckλ

n
k

are found by solving a system of k linear equations with k unknowns. If
there are multiple roots, some work should be done in order to prove that
the sequences njλni satisfy the recursive relation (3).

1.4 The case of complex roots

Back to the case of a recursive sequence of order 2, what happens if the
characteristic polynomial

x2 − rx− s
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has no real roots? This happens when the discriminant D = r2 + 4s is
negative. Then it has two complex roots

λ1,2 =
r ±
√
D

2
,

and all arguments remain valid: the geometric progressions λni solve the
recurrence and every sequence satisfying the recurrence can be written as a
linear combination of these two progressions.

The two complex roots are conjugate to each other:

λ1 = λ, λ2 = λ.

A linear combination of the progressions λn and λ
n

takes real values only if
the coefficients are conjugate:

an = cλn + cλ
n
.

Let us write the roots in the exponential form:

λ = ρeiϕ = ρ(cosϕ+ i sinϕ), λ = ρe−iϕ = ρ(cosϕ− i sinϕ).

Then we have

cλn + cλ
n

= ρn(ceinϕ + ce−inϕ)

= ρn(c(cosnϕ+ i sinnϕ) + c(cosnϕ− i sinnϕ))

= ρn((c+ c) cosnϕ+ i(c− c) sinnϕ)

That is, every recursive sequence is a linear combination with real coefficients
of the following two sequences:

ρn cosnϕ and ρn sinnϕ.

Consider the special case ρ = 1. Then the recursive relation has the form

an = ran−1 − an−2,

where r = 2 cosϕ. If ϕ is a rational multiple of π, then this sequence will be
periodic independently of the initial values a0, a1. For example, this is the
case of the recurrence

an = an−1 − an−2

Here ϕ = π
3 , and the sequence will have period 6. (This is also easy to

check by iterating the recurrence relation and writing a2, a3, . . . in terms of
a0 and a1.) If ϕ is not a rational multiple of π, then the sequence will not be
periodic. It will fill densely some interval. This is the case of the recurrence

an =
an−1

2
− an−2.
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1.5 An application of the Binet formula

Theorem 1.8. The square of every Fibonacci number differs from the prod-
uct of its left and right neighbors by 1. For example,

32 = 2 · 5− 1, 52 = 3 · 8 + 1, 82 = 5 · 13− 1.

This and many other relations between Fibonacci numbers can be proved
by induction, sometimes in a not very straightforward way. When the Binet
formula is used, the proof consists of simple algebraic manipulations.

Proof. We have an = 1√
5
(λn1 − λn2 ) with λi as in (2). Taking into account

that λ1λ2 = −1, one computes

a2
n =

1

5
(λ2n

1 − 2λn1λ
n
2 + λ2n

2 ) =
1

5
(λ2n

1 + λ2n
2 − 2(−1)n).

On the other hand,

an−1an+1 =
1

5
(λn−1

1 − λn−1
2 )(λn+1

1 − λn+1
2 )

=
1

5
(λ2n

1 − λn−1
1 λn+1

2 − λn−1
2 λn+1

1 + λ2n
2 )

=
1

5
(λ2n

1 + λ2n
2 − λn−1

1 λn−1
2 (λ2

1 + λ2
2)).

One computes

λ2
1 + λ2

2 =
1 + 2

√
5 + 5

4
+

1− 2
√

5 + 5

4
= 3,

which implies

an−1an+1 =
1

5
(λ2n

1 + λ2n
2 − 3(−1)n−1) = a2

n + (−1)n.

2 Generating functions

2.1 Fibonacci again

Take the Fibonacci sequence

(a0, a1, a2, a3, . . .) = (0, 1, 1, 2, . . .)

and write a power series

A(x) =

∞∑
k=0

akx
k = a0 + a1x+ a2x

2 + · · · .
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Because of

xA(x) = a0x+a1x
2 + a2x

3 + · · ·
x2A(x) =a0x

2 + a1x
3 + · · ·

we have

xA(x) + x2A(x) = a0x+ (a1 + a0)x2 + (a2 + a1)x3 + · · ·
= a2x

2 + a3x
3 + · · · = A(x)− a0 − a1x = A(x)− x.

This implies

A(x)(1− x− x2) = x⇒ A(x) =
x

1− x− x2
.

(At the moment it is not clear what this equation means and why can we
perform with the power series A(x) the above algebraic manipulations. A
justification will be given later. Now let us continue to do whatever looks
reasonable.)

We claim that there are real numbers A,B such that

x

1− x− x2
=

x

(1− λ1x)(1− λ2x)
=

A

1− λ1x
+

B

1− λ2x

Here λ1 = 1+
√

5
2 , and λ2 = 1−

√
5

2 .

The numbers A and B can be found by a smart guess:

x

(1− λ1x)(1− λ2x)
=

1

λ1 − λ2

(1− λ2x)− (1− λ1x)

(1− λ1x)(1− λ2x)

=
1√
5

(
1

1− λ1x
− 1

1− λ2x

)
Or they can be found by writing down a system of linear equations:

x

(1− λ1x)(1− λ2x)
=

A

1− λ1x
+

B

1− λ2x

=
A(1− λ2x) +B(1− λ1x)

(1− λ1x)(1− λ2x)
=

(A+B)− (Aλ2 +Bλ1)x

(1− λ1x)(1− λ2x)

⇒

{
A+B = 0

Aλ2 +Bλ1 = −1

Anyway, we have

A(x) =
x

1− x− x2
=

1√
5

(
1

1− λ1x
− 1

1− λ2x

)
.
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Now, from the formula for geometric progression

1

1− y
= 1 + y + y2 + y3 + · · ·

by substituting y = λx we get

1

1− λx
= 1 + λx+ λ2x2 + λ3x3 + · · · .

Thus we have

A(x) =
1√
5

( ∞∑
k=0

λk1x
k −

∞∑
k=0

λk2x
k

)
=
∞∑
k=0

λk1 − λk2√
5

xk,

which means that

ak =
λk1 − λk2√

5
,

the Binet formula again.

2.2 Operations with formal power series

There are two ways of interpreting the calculations we made above. The
first approach is by viewing x as a real number close to 0 such that the
power series

∑∞
k=0 akx

k converges. Then some theorems from calculus en-
sure that all our operations were correct. The second approach is to deal
with

∑∞
k=0 akx

k as a formal expression, to define operations with such ex-
pressions, and to show that these operations satisfy all of the usual algebraic
properties. We choose the second approach: formal power series.

Definition 2.1. Let A(x) =
∑∞

k=0 akx
k and B(x) =

∑∞
k=0 bkx

k be two
formal power series. Their sum is the formal power series

A(x) +B(x) =

∞∑
k=0

(ak + bk)x
k,

and their product is the formal power series

A(x)B(x) =

∞∑
k=0

ckx
k,

where

ck = a0bk + a1bk−1 + · · ·+ akb0 =
k∑
i=0

aibk−i.
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The formula for the product comes from expanding the brackets in

(a0 + a1x+ a2x
2 + · · · )(b0 + b1x+ b2x

2 + · · · ).

It can easily be checked that the sum and the product defined above satisfy
the usual rules, such as

A(x)(B(x) + C(x)) = A(x)B(x) +A(x)C(x)

etc.

Definition 2.2. A formal power series B(x) is called (a multiplicative)
inverse of A(x) if

A(x)B(x) = 1 = 1 + 0 · x+ 0 · x2 + · · · .

Lemma 2.3. Every formal power series A(x) =
∑∞

k=0 akx
k such that a0 6= 0

has a unique multiplicative inverse.

Proof. The equation A(x)B(x) = 1 consists of an infinite sequence of equa-
tions

a0b0 = 1

a0b1 + a1b0 = 0

a0b2 + a1b1 + a2b0 = 0

· · ·

with unknowns b0, b1, . . .. The first equation implies b0 = 1
a0

(which is
defined because a0 6= 0). Knowing b0 we can express b1 from the second
equation:

b1 = −a1b0
a0

and continue in the same spirit, because (k + 1)-st equation can be solved
for bk:

bk = − 1

a0

k∑
i=1

aibk−i.

This shows that the inverse series B(x) exists and is unique.

We denote the inverse series to A(x) by (A(x))−1 or 1
A(x) .

Example 2.4. One has

(1− x)−1 = 1 + x+ x2 + · · · ,

as the brackets expansion

(1− x)(1 + x+ x2 + · · · ) = 1 + (x− x) + (x2 − x2) + · · · = 1

shows.
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Definition 2.5. For A(x) =
∑∞

k=0 akx
k and B(x) =

∑∞
k=0 bkx

k define the
composition as

A(B(x)) =
∞∑
k=0

ak(B(x))k.

The composition is not always well-defined. Indeed, we have

A(B(x)) = a0 + a1(b0 + b1x+ b2x
2 + · · · ) + a2(b0 + b1x+ b2x

2 + · · · )2 + · · · .

In particular, the constant term is an infinite sum a0 + a1b0 + a2b
2
0 + · · · ,

which is not good. However, if b0 = 0, then we have

ak(B(x))k = ak(b1x+ b2x
2 + · · · )k = akb

k
1x

k + higher order terms,

so that the coefficient at xk in A(B(x)) is a finite expression in ai, bj . Thus
we arrive to the following conclusion.

Lemma 2.6. The composition A(B(x)) is well-defined if b0 = 0.

(Note that it is also well-defined for any value of b0 provided that A(x)
is a polynomial, but we are not going to need this.)

The composition is compatible with sum and product:

if C(x) = A(x) +B(x), then C(D(x)) = A(D(x)) +B(D(x)),

if C(x) = A(x)B(x), then C(D(x)) = A(D(x))B(D(x)).

This implies in particular that for every formal power series B(x) with
b0 = 0 one has

(1−B(x))−1 = 1 +B(x) + (B(x))2 + · · · .

Example 2.7. One has

(1 + x)−1 = 1− x+ x2 − · · · ,

(1− λx)−1 = 1 + λx+ λ2x2 + · · · ,

(1− x2)−1 = 1 + x2 + x4 + · · · .

The definition and lemmas of this section give a meaning to the manip-
ulations done in Section 2.1.

2.3 Linear recursive sequences and partial fraction decom-
position

Definition 2.8. The formal power series

a0 + a1x+ a2x
2 + · · · =

∞∑
k=0

akx
k

is called the generating function of the sequence a0, a1, a2, . . ..
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Theorem 2.9. The generating function of a sequence satisfying the linear
recursion

an = r1an−1 + r2an−2 + · · ·+ rkan−k, n ≥ k

can be written in the form B(x)

P (x)
, where B(x) is some polynomial, and

P (x) = 1− r1x− r2x
2 − · · · − rkxk.

Proof. Exercise.

Note that P (x) is related to the characteristic polynomial P (x) through

P (x) = xkP

(
1

x

)
.

It follows that the roots of the polynomial P (x) are reciprocals of the roots
of P (x). More exactly, if P (x) = (x− λ1)k1 · · · (x− λm)km , then

P (x) = (1− λ1x)k1 · · · (1− λmx)km .

The following theorem generalizes our representation of the fraction
x

1−x−x2 as a sum of two simpler fractions.

Theorem 2.10 (Partial fraction decomposition). 1. Let λ1, . . . , λk ∈ R,
and let B(x) be a polynomial of degree < k. Then there are real num-
bers c1, . . . , ck such that

B(x)

(1− λ1x) · · · (1− λkx)
=

c1

1− λ1x
+ · · ·+ ck

1− λkx

2. Let λ1, . . . , λm ∈ R, k1, . . . , km ∈ N such that k1 + · · · + km = k, and
let B(x) be a polynomial of degree < k. Then there are real numbers
cij, 1 ≤ i ≤ m, 1 ≤ j ≤ ki such that

B(x)

(1− λ1x)k1 · · · (1− λmx)km
=

m∑
i=1

ki∑
j=1

cij
(1− λix)j

Remark 2.11. Note that if degB ≥ k, then we can divide B(x) by the
denominator with remainder:

B(x) = Q(x)(x− λ1)k1 · · · (x− λm)km +R(x), degR < k,

and then apply the theorem to a fraction with R in place of B.
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We don’t give a proof of the above theorem, but there is a simple algo-
rithm that allows to compute the coefficients ci, respectively cij . Bring the
equation to a common denominator, it becomes an equation between the
numerators. The numerators are polynomials; they are equal if and only
if their corresponding coefficients are equal. This yields a system of linear
equations on the unknowns ci (respectively cij).

Because of
1

1− λix
= 1 + λix+ λ2

ix
2 + · · ·

the first part of the above theorem implies that every linear recursive se-
quence has the form an =

∑
i ciλ

n
i , if the characteristic polynomial has only

simple roots λi. In the case of multiple roots we need to represent the
quotient 1

(1−λx)j
as a formal power series.

2.4 Generalized binomial theorem

Theorem 2.12. For every positive integer n one has

(1 + x)−n =
∞∑
k=0

(
−n
k

)
xk, (4)

where (
−n
k

)
=
−n · (−n− 1) · . . . · (−n− k + 1)

k!
.

What do we mean by (1 + x)−n? This is a power series A(x) such that
A(x)(1 + x)n = 1.

Remark 2.13. Observe that(
−n
k

)
= (−1)k

(n+ k − 1)(n+ k − 2) · . . . · n
k!

= (−1)k
(
n+ k − 1

k

)
= (−1)k

(
n+ k − 1

n− 1

)
.

Therefore, by substituting −x instead of x one can rewrite (4) as

(1− x)−n =
∞∑
k=0

(
n+ k − 1

n− 1

)
xk.

Theorem 2.12 will follow from a more general theorem below. Now let
us just check it for a special case n = 2:

(1− x)−2 = (1− x)−1(1− x)−1 = (1 + x+ x2 + · · · )(1 + x+ x2 + · · · )
= 1 + (x · 1 + 1 · x) + (x2 + x · x+ x2) + · · · = 1 + 2x+ 3x2 + · · ·
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Definition 2.14. For every α ∈ R and every non-negative integer k define
the generalized binomial coefficient

(
α
k

)
as(

α

k

)
=
α(α− 1) · · · (α− k + 1)

k!
.

For k = 0 the products in the denominator and in the numerator are
empty, therefore we have

(
α
k

)
= 1

1 = 1.

Theorem 2.15 (Vandermonde’s identity). For every α, β ∈ R the following
holds: (

α+ β

k

)
=

k∑
i=0

(
α

i

)(
β

k − i

)
.

A straightforward consequence of this is the following.

Corollary 2.16. For every α ∈ R put by definition

(1 + x)α =

∞∑
k=0

(
α

k

)
xk

(which for α ∈ N agrees with the binomial formula, so that this definition
does not override the usual definition of (1 + x)n). Then for every α, β ∈ R
the following identity between formal power series holds:

(1 + x)α(1 + x)β = (1 + x)α+β.

In particular, for every p ∈ Z and q ∈ N one has(
(1 + x)

p
q

)q
= (1 + x)p.

It follows that one can extract q-th root from any formal power series
with non-zero constant term.

Proof of Theorem 2.15. Step 1. If α = m and β = n are positive integers,
then (

m+ n

k

)
=

k∑
i=0

(
m

i

)(
n

k − i

)
can be proved by a combinatorial argument:

(
m+n
k

)
is the number of different

choices of k elements from the set {1, . . . ,m + n}. To choose k elements,
one has to choose i elements among {1, . . . ,m} and k − i elements among
{m+ 1, . . . ,m+n} for some i between 0 and k. The number of such choices
is
(
m
i

)(
n
k−i
)
. Summing over i we obtain the desired formula.

Step 2. Let us prove(
α+ n

k

)
=

k∑
i=0

(
α

i

)(
n

k − i

)
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for all α ∈ R and all positive integers n. For fixed n and k the left hand side
of the above formula is a polynomial in α of degree k; the right hand side
is also a polynomial in α of degree k. Both polynomials take equal values
at α = m for all positive integers m. It follows that the polynomials are
identical (if two polynomials of degree k coincide at k+ 1 points, then their
difference is a polynomial of degree ≤ k with > k roots, hence identically
zero).

Step 3. Finally let us prove(
α+ β

k

)
=

k∑
i=0

(
α

i

)(
β

k − i

)
for all α, β ∈ R. Fix α ∈ R and k ∈ Z≥0. Then the left and the right
hand sides are polynomials in β of degree k. By Step 2, the values of these
polynomials coincide whenever β is a positive integer. Thus the polynomials
are identically equal. (In particular, evaluating the left hand side and the
right hand side for any values of α, k, β leads to the same results.)

2.5 Summary of the generating function method

The combined results of this section on generating functions provide a gen-
eral method to give a recursive formula for a linear recursive sequence an.
We start by setting

A(x) =
∞∑
k=0

akx
k.

Step 1: Use Theorem 2.9 to write A(x) as a quotient

B(x)

P (x)
,

where B(x) is some polynomial and P (x) is the characteristic polynomial of
the recursive sequence. One can find B(x) by multiplying:

B(x) = A(x)P (x).

Step 2: Use partial fraction decomposition (Theorem 2.10) to write the
quotient

B(x)

P (x)

as a simple sum of summands of the type

c

1− λx
.
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Depending on the case of Theorem 2.10 we use, we may get powers of the
denominator.

Step 3: Use the generalised binomial theorem (Theorem 2.12) to write each
such summand as

c

1− λx
= c

∞∑
k=0

(
n+ k − 1

n− 1

)
λkxk

.

Step 4: Compare A(x) to the sum of the terms as we wrote them in Step 3.
We get that ak equals the sum of coefficients for xk for all the terms as we
wrote them in Step 3. This provides a closed formula for ak.

Exercise 2.1. Go back to the example of the Fibonacci numbers in Sec-
tion 2.1 and identify the 4 steps of the generating function method.

The generating function method is robust in the sense that it can be
applied also to some sequences that are not linearly recursive: it works as
soon as it is possible to write the generating function for a sequence as a
quotient of two polynomials.

3 Partition of integers

In this section we will count the number of decompositions of a positive
integer into summands. There are different versions of this problem. Before
coming to the most difficult and interesting one in Section 3.4 we look at
simpler versions.

3.1 Money changing problem

Imagine a country where only 9, 17, and 31 dollar banknotes are in circula-
tion. In how many different ways can one pay 1000 dollars without change?

The problem can be reformulated as finding the number of integer solu-
tions of the equation

9k + 17l + 31m = 1000, k, l,m ≥ 0

More generally, denote by an the number of different ways to pay n dollars
without change. What can one say about an?

Theorem 3.1. The generating function of the sequence an has the following
form:

∞∑
n=0

anx
n =

1

(1− x9)(1− x17)(1− x31)
.
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Proof. The right hand side is equal to

(1 + x9 + x18 + · · · )(1 + x17 + x34 + · · · )(1 + x31 + x62 + · · · )

=
∑

k,l,m≥0

x9k+17l+31m.

(We pick x9k from the first brackets, x17l from the second brackets, and
x31m from the third brackets). Thus the coefficient at xn is the number of
solutions of the equation

9k + 17l + 31m = n, k, l,m ≥ 0,

that is an.

One can represent the quotient 1
(1−x9)(1−x17)(1−x31)

as the sum of partial

fractions. For this one has to factorize 1 − x9. Complex roots of unity will
appear. It is ultimately possible (but very time-consuming) to write a closed
formula for the number of ways to change n dollars. What is easier to prove
is the asymptotics of the number an:

an ∼
n2

9 · 17 · 31
=

n2

4743
, that is lim

n→0

an
n2

=
1

4743
.

3.2 Compositions again

Recall that a weak composition of a number n is a representation of n as
a sum of non-negative integers. (One counts ordered sums: 5 = 2 + 3 and
5 = 3 + 2 are different compositions.) We have computed the number of
weak compositions in Section 3.5 by the “stones and sticks” method. Let us
do it again with generating functions.

Fix a positive integer k and denote by an the number of weak composi-
tions of n from k parts.

Theorem 3.2. The generating function of the sequence an has the following
form:

∞∑
n=0

anx
n =

1

(1− x)k
.

Proof. One has

1

(1− x)k
= (1 + x+ x2 + · · · ) · · · (1 + x+ x2 + · · · )︸ ︷︷ ︸

k

When one expands the brackets in the product on the right hand side, one
picks from the first brackets a monomial xm1 , from the second xm2 and so
on up to xmk from the last brackets. The product of these monomials is
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xm1+···+mk . When one collects the monomials of degree n, one obtains a
term anx

n, where n is the number of solutions of the equation

m1 + · · ·+mk = n,

where the unknowns m1, . . . ,mk can take only non-negative integer values.
The number of solutions is exactly the number of weak compositions of n
from k parts.

Now, by applying the generalized binomial theorem one obtains

∞∑
n=0

anx
n =

1

(1− x)k
= (1− x)−k =

∞∑
n=0

(−1)n
(
−k
n

)
xn

Thus we have

an = (−1)n
(
−k
n

)
=

(
n+ k − 1

n

)
=

(
n+ k − 1

k − 1

)
.

3.3 Fibonacci once again

Write the generating function for the Fibonacci sequence in the following
way:

x

1− x− x2
=

x

1− (x+ x2)
= x(1 + (x+ x2) + (x+ x2)2 + · · · )

Multiplying out the power (x + x2)k, one obtains monomials of the form
xm1+···+mk , where each of mi is equal 1 or 2. Summing (x+ x2)k over all k
(and not forgetting the factor x on the right hand side of the above equation)
one obtains

x

1− x− x2
=

∞∑
n=1

an−1x
n,

where an is the number of ways to represent n as a sum of ones and twos.
The number of summands is not prescribed, and representations that differ
in the order of summands are counted separately.

The above interpretation of Fibonacci numbers is equivalent to the fol-
lowing one: the n-th Fibonacci number is the number of domino tilings of
the 2× (n− 1) rectangle. See Figure 1.

3.4 Partitions and their generating function

Definition 3.3. A partition of a positive integer n is its representation as
a sum of positive integers. Representations that differ only in the order of
summands are considered the same.

The number of partitions of n is denoted by pn.
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Figure 1: This tiling corresponds to the representation 7 = 1 + 2 + 1 + 1 + 2.

In order to distinguish between different partitions, it is convenient to
write the summands in the non-increasing order. This means, one can also
define partitions as compositions with non-increasing summands.

Example 3.4. Below is the list of all partitions of the number 5.

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1

Thus we have p5 = 7.

Here are the first few terms of the sequence pn, starting with p0 which
we by definition set to be equal to 1:

1, 1, 2, 3, 5, 7, 11, 15, 22, . . . .

Unlike for the money changing problem and for Fibonacci numbers, there
is no closed formula for the number of partitions. But there are a lot of
beautiful theorems about partitions, and we will only get a glimpse of the
theory. Often we will be using the generating function method.

Theorem 3.5. The generating function of the sequence pn is

∞∑
n=0

pnx
n =

1

(1− x)(1− x2)(1− x3) · · ·
.

Proof. This is similar to the money changing problem, but with banknotes
of any denomination available.

The right hand side is equal to

(1+x+x2+· · · )(1+x2+x4+· · · )(1+x3+x6+· · · ) · · · =
∑

xm1+2m2+3m3+···+kmk ,
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where the sum is taken over all k and all collections of non-negative integers
m1, . . . ,mk. When we collect the like terms, the coefficient at xn will be
equal to the number of representations of n in the form m1+2m2+· · ·+kmk.
This corresponds to a unique partition, namely to

n = k + · · ·+ k︸ ︷︷ ︸
mk

+ · · ·+ 1 + · · ·+ 1︸ ︷︷ ︸
m1

.

Thus the product on the right hand side is equal to the generating function
of the number of partitions.

3.5 Infinite products of power series

In the above proof we met an infinite product of power series. This product
is again a power series because in order to compute the coefficient at xn

only finitely many factors from the infinite product are needed (the first n
factors in the above case). The definitions below formalize this.

Definition 3.6. One says that a sequence cn stabilizes to c if cn = c for all
sufficiently big n:

∃N such that cn = c∀n > N.

Definition 3.7. Let B1(x), B2(x), . . . be a sequence of formal power series
with

Bk(x) =

∞∑
n=0

bk,n(x)xn

One says that the sequence Bk(x) of power series converges to the power
series B(x) =

∑∞
n=0 bnx

n:

lim
k→∞

Bk(x) = B(x)

if the sequence of coefficients at xn in Bk(x) stabilizes to the coefficient at
xn in B(x):

∀n∃Kn such that bk,n = bn∀k > Kn.

Definition 3.8.
∞∏
i=1

Ai(x) = lim
k→∞

k∏
i=1

Ai(x)

Lemma 3.9. Let Ai(x) = 1 + ai,1x + ai,2x
2 + · · · . The infinite product∏∞

i=1Ai(x) is well-defined if and only if lim
k→∞

deg(Ak(x)− 1) =∞. Here the

degree of a formal power series is the index of the first non-zero coefficient:

deg(amx
m + am+1x

m+1 + · · · ) = m if am 6= 0.
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3.6 Algebraic and bijective proofs

Here is the first amazing fact about partitions.

Theorem 3.10. The number of partitions of n into distinct parts is equal
to the number of partitions of n into odd parts.

Algebraic proof. The generating function for partitions into distinct parts is

(1 + x)(1 + x2)(1 + x3) · · ·

The generating function for partitions into odd parts is

(1+x+x2+· · · )(1+x3+x6+· · · )(1+x5+x10+· · · ) · · · = 1

1− x
1

1− x3

1

1− x5
· · ·

Let us show that the first formal power series is equal to the second one.

(1+x)(1+x2)(1+x3) · · · = 1− x2

1− x
1− x4

1− x2

1− x6

1− x3
· · · = 1

1− x
1

1− x3

1

1− x5
· · ·
(5)

This equation is a bit more subtle than it appears. We have

(1 + x) · · · (1 + x2k) =
1− x2

1− x
· · · 1− x

4k

1− x2k
=

(1− x2k+2) · · · (1− x4k)

(1− x) · · · (1− x2k−1)

The right hand side has the same coefficient at xi for i ≤ 2k as the infinite
product on the right hand side of (5). And the left hand side has the same
coefficient at xi for i ≤ 2k as the infinite product on the left hand side of
(5).

Bijective proof. Take a partition of n into odd parts:

n = 1 ·m1 + 3 ·m3 + 5 ·m5 + · · ·

It can be transformed into a partition into distinct parts as follows. Write
m2k+1 in the binary system:

m2k+1 = 2d1 + · · ·+ 2ds , di 6= dj .

Then replace (2k + 1) ·m2k+1 by

(2k + 1)(2d1 + · · ·+ 2ds) = 2d1(2k + 1) + · · ·+ 2ds(2k + 1).

Being done for all k, this gives a new partition of n. The parts of the new
partition are different. Indeed, any two parts that come from the same k
are distinct: 2di(2k + 1) 6= 2dj (2k + 1) because di 6= dj . Any two parts that
come from different k are also distinct: 2di(k)(2k+1) 6= 2dj(l)(2l+1) because
they have different greatest odd divisors 2k + 1 6= 2l + 1.
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In the opposite direction, we transform every partition of n into distinct
parts as follows:

n = k1 + · · ·+ kt, ki 6= kj

= o12d1 + · · ·+ ot2
dt , oi odd

= 1 ·m1 + 3 ·m3 + · · · , m2k+1 =
∑

oi=2k+1

2di

It can easily be shown that this transformation is inverse to the first one.
Thus we have a bijection between partitions into odd and partitions into
distinct parts.

Example 3.11. Turning a partition with odd parts into a partition with
distinct parts:

42 = 7+7+7+3 + · · ·+ 3︸ ︷︷ ︸
7

= 7(2+1)+3(4+2+1) = 14+7+12+6+3 = 14+12+7+6+3

Turning a partition with distinct parts into a partition with odd parts:

42 = 20+12+10 = 4 ·5+4 ·3+2 ·5 = (4+2)5+4 ·3 = 5 + · · ·+ 5︸ ︷︷ ︸
6

+3+3+3

3.7 Recursive formulas for the number of partitions

Denote by p(n,≤ k) the number of partitions of n into at most k parts.
Clearly, one has pn = p(n,≤ n).

Theorem 3.12. One has

p(n,≤ k) = p(n,≤ k − 1) + p(n− k,≤ k). (6)

Proof. Partitions of n into ≤ k parts can be split into two classes: partitions
into ≤ k−1 parts and partitions into exactly k parts. By definition, the first
class contains p(n,≤ k−1) partitions. Take a partition from the second class
and subtract 1 from each of its parts. Since it had exactly k parts, the sum
of the parts becomes n−k, and their number becomes ≤ k (it will be strictly
less than k if the smallest part was of size 1, and exactly k if the smallest
part was larger than 1). This establishes a bijection between the second
class and partitions of n− k into ≤ k parts and proves the theorem.

Using relation (6), one can compute the entries of the table p(n,≤ k)
recursively. First, one fills the row k = 1 and the column n = 0 with ones.
Then, one can fill the table row after row or column after column. One
should observe that for k > n one has p(n,≤ k) = p(n,≤ n). If one goes
column after column, then in order to fill the column for n = i one marks
the diagonal n+k = i and computes the (n, k)-entry as the sum of the entry
immediately above it and the entry on the intersection of the current row
and the marked diagonal.
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kn 0 1 2 3 4 5 6

1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4
3 1 1 2 3 4 5 7
4 1 1 2 3 5 6 9
5 1 1 2 3 5 7 10
6 1 1 2 3 5 7 11

There is a recurrence which allows a much faster computation of the
number of partitions.

Theorem 3.13 (MacMahon’s recurrence). The number of partitions satis-
fies the following recurrence relation:

p(n) =

∞∑
k=1

(−1)k−1

(
p

(
n− 3k2 − k

2

)
+ p

(
n− 3k2 + k

2

))
Here the notation p(n) is used instead of pn.

Computing the first few terms of the sequences 3k2±k
2 , one rewrites

MacMahon’s recurrence as

pn = pn−1 + pn−2 − pn−5 − pn−7 + pn−12 + pn−15 − · · ·

The sum on the right hand side looks infinite but is in fact finite: p(n − i)
becomes zero as soon as i exceeds n. Thus the sum contains about 2

√
2
3n

summands and allows a very fast computation of pn. MacMahon, more than
a hundred years ago, has computed p(n) for n up to 200. In particular, he
found that

p(200) = 3972999029388.

We do not give a proof MacMahon’s recurrence.

3.8 More about partitions

• An infinite (but fast convergent) series that computes pn was found by
Ramanujan and Hardy and later improved by Rademacher. A conse-
quences of the latter is the asymptotics for the number of partitions:

pn ∼
1

4n
√

3
eπ
√

2n/3.

• Ramanujan observed and later proved that

p5n+4 is divisible by 5,

p7n+5 is divisible by 7,

p11n+6 is divisible by 11.
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• Erdös and Lehner proved that a “random” partition of n has 2π√
6

√
n log n

summands.

Both Ramanujan and Erdös were extraordinary figures. For the biogra-
phy of Ramanujan see, for example, http://www-history.mcs.st-andrews.
ac.uk/Biographies/Ramanujan.html.

Further reading about partitions: [2].

http://www-history.mcs.st-andrews.ac.uk/Biographies/Ramanujan.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Ramanujan.html
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4 Catalan numbers

4.1 Rooted binary trees

Recall that a rooted tree is a tree with a marked vertex, the root. We have
used rooted trees (with labels at the vertices) as parse trees of propositional
formulas and as proof structures in the sequent calculus. Edges or a rooted
tree have a natural orientation such that the path from the root to every
vertex goes in the direction of edges. The out-degree of a vertex in a rooted
tree is the number of outward-directed edges incident to this vertex. Simi-
larly, the in-degree is the number of inward-directed edges; the in-degree of
the root is zero, and the in-degrees of all other vertices are one.

A binary rooted tree is a rooted tree where the out-degrees of all vertices
are at most two. A full binary rooted tree is a rooted tree where the out-
degree of each vertex is either two or zero. (Vertices with out-degree zero
are the leaves of the tree.)

With the help of the handshake lemma and the relation |V | = |E| + 1
one can show that a full binary rooted tree with n + 1 leaves has 2n + 1
vertices and 2n edges.

Definition 4.1. The number of different full binary rooted trees with n+ 1
leaves is called the n-th Catalan number and is denoted by cn.

We count trees not up to isomorphism, but take into account also the
way they are drawn in the plane. For example, Figure 2 shows all binary
trees with 4 leaves. (When there is no risk of confusion, by “binary tree”
we mean “full binary rooted tree”.)

Figure 2: All 5 binary trees with 4 leaves.

One has c1 = 1, c2 = 2, c3 = 5, c4 = 14, . . ..

Theorem 4.2. The sequence of Catalan numbers satisfies the recurrence

cn+1 =

n∑
k=0

ckcn−k = c0cn + c1cn−1 + · · ·+ cnc0, (7)

where one puts c0 = 1.

Proof. Take a binary tree with n+ 2 leaves and remove its root. This splits
the tree into two parts: the left subtree and the right subtree, see Figure 3.



4. CATALAN NUMBERS 109

Figure 3: Proof of the recurrence for Catalan numbers.

Each of them is either a full binary tree or a single vertex. If the left subtree
contains k+ 1 leaves, then the right subtree contains n− k+ 1 leaves (if the
subtree has only one vertex, then the number of leaves is one). For every
k, there are ck possible left subtrees and cn−k possible right subtrees. This
leads to the formula.

4.2 Generating function and the formula for cn

Theorem 4.3. The n-th Catalan number is equal to

cn =
1

n+ 1

(
2n

n

)
. (8)

Lemma 4.4. For the generating function C(x) = c0 + c1x + c2x
2 + · · · of

the Catalan sequence the following identity holds:

(C(x))2 =
C(x)− 1

x
.

Observe that on the right hand side we divide a formal power series by
x. In Section 2.2 we have shown that division by formal power series with
non-zero constant term is possible. In general, it is not allowed to divide by
x: for example, 1+x

x does not correspond to any power series (there is no
series A(x) such that 1 +x = xA(x)). But in the above case one has c0 = 1,
therefore C(x)− 1 = c1x+ c2x

2 + · · · , and we put by definition

C(x)− 1

x
= c1 + c2x+ c3x

2 + · · · .

Proof. One has

(C(x))2 = (c0 + c1x+ c2x
2 + · · · )(c0 + c1x+ c2x

2 + · · · )
= c2

0 + (c0c1 + c1c0)x+ (c0c2 + c2
1 + c2c0)x2 + · · ·

= 1 + c2x+ c3x
2 + · · · = C(x)− 1

x



110 CHAPTER V. COMBINATORICS II

Proof of Theorem 4.3. Lemma 4.4 implies that C(x) satisfies a quadratic
equation

x(C(x))2 − C(x) + 1 = 0.

It follows that

C(x) =
1−
√

1− 4x

2x
.

(We choose the minus sign before the square root because otherwise the
numerator is not divisible by x. One can check that this is a solution of
the quadratic equation by direct substitution.) By the generalized binomial
formula one has

√
1− 4x =

∞∑
k=0

(1
2

k

)
(−4x)k,

where(1
2

k

)
=

1
2 · −

1
2 · · · · ·

(
1
2 − k + 1

)
k!

= (−1)k−1 (2k − 3)!!

2kk!

= (−1)k−1 (2k − 2)!

22k−1k!(k − 1)!
= (−1)k−1 1

22k−1k

(2k − 2)!

(k − 1)!(k − 1)!

= (−1)k−1 1

22k−1k

(
2k − 2

k − 1

)

for all k ≥ 1, while
( 1

2
0

)
= 1. By substituting the expression for

( 1
2
k

)
into the

binomial formula one gets

√
1− 4x = 1−

∞∑
k=1

1

22k−1k

(
2k − 2

k − 1

)
4kxk = 1−

∞∑
k=1

2

k

(
2k − 2

k − 1

)
xk.

It follows that

C(x) =
1

2x

∞∑
k=1

2

k

(
2k − 2

k − 1

)
xk =

∞∑
k=1

1

k

(
2k − 2

k − 1

)
xk−1 =

∞∑
k=0

1

k + 1

(
2k

k

)
xk,

which proves the theorem.

4.3 Bracket-variable expressions

Assume that we have to multiply three variables x, y, and z. Here by
“multiplication” we mean any binary operation. If this operation is com-
mutative and associative, then neither the order of variables nor the order
of operations is important:

(xy)z = x(yz) = x(zy).
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If the operation is associative but not commutative (as multiplication of
matrices for example), then the order of variables matters, but the order of
operations does not:

(xy)z = x(yz) 6= x(zy).

Finally, if the operation is neither commutative nor associative (as, for ex-
ample, xy := xy), then we must take care both of the order of variables and
the order of operations:

(xy)z 6= x(yz).

In how many ways can one multiply a given sequence of variables without
changing their order? For two variables there is only one way, for three
variables two: (xy)z and x(yz), below are all expressions with four variables:

((x1x2)x3)x4, (x1(x2x3))x4, (x1x2)(x3x4), x1((x2x3)x4), x1(x2(x3x4)).

Theorem 4.5. The number of different multiplication orders in a sequence
of n+ 1 variables is equal to the n-th Catalan number.

Proof. We establish a bijection between binary trees with n + 1 leaves and
bracket-variable expressions with n+ 1 variables.

Any tree with n + 1 leaves is the parse tree of some bracket-variable
expression. Put the variables x1, . . . , xn+1 at the leaves of the tree, in the
order from the left to the right. Then mark the non-leaf vertices of the tree
in the following way: if the children of a vertex are marked with A and B,
then mark the vertex with (AB). The expression which appears at the root
is the bracket-variable expression parsed by the tree. (It has extra brackets
around it, which can be removed.)

Thus one has a map from the set of binary trees to the set of bracket-
variable expressions. In order to show that this map is a bijection, one
has to show that from every bracket-variable expression one can reconstruct
uniquely the tree which produces this expression by the above procedure.

This reconstruction (the inverse map from expressions to trees) is de-
scribed as follows. Consider the last multiplication to be performed and
split the expression at this place. Draw a root with two children and write
the left part of the expression at the left child, and the right part at the
right child. Split in the same way the expressions at the child vertices and
continue until all leaves will be marked with variables.

4.4 Triangulations of polygons

A triangulation of a polygon is a subdivision of the polygon into triangles
by diagonals.

Theorem 4.6. The number of different triangulations of a convex (n+ 2)-
gon is equal to the n-th Catalan number.
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In Figure 4 all triangulations of a regular pentagon are presented. As one
can see, triangulations which differ by rotation or reflection of the polygon
are counted separately.

Figure 4: All 5 triangulations of the pentagon.

Proof. We establish a bijection between triangulations and binary trees.

Place a dot inside every triangle of the triangulation and place a dot near
every edge of the polygon just outside of the polygon. Then draw a segment
between every pair of vertices separated by an edge of the triangulation or
by an edge of the polygon. The result is a tree; every vertex inside of a
triangle has degree 3, and the vertices outside of the polygon are leaves.
Remove the dot at the base edge of the polygon and the edge incident to it.
The result is a rooted binary tree. See Figure 5 for an example.

rotate

base

root

Figure 5: From a triangulation to a binary tree.

The base edge is chosen in advance. For example, if the polygon “stands”
on a line, one can declare the lowest edge the base edge. Distinguishing the
base edge reflects the fact that the polygon is not allowed to rotate.

From every binary tree one can reconstruct the corresponding triangu-
lation in a unique way. First, add an edge to the root so that all non-leaf
vertices have degree 3. Then draw a triangle around each vertex so that
each of the sides of the triangle intersects one edge of the tree. Finally, for
every edge of the tree glue the triangles surrounding the incident vertices
along their sides intersecting this edge.

4.5 Dyck paths

Recall that a monotone lattice path is a path on the coordinate grid moving
only upwards and to the right. As we know, there are

(
2n
n

)
monotone paths
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from (0, 0) to (n, n).

Definition 4.7. A Dyck path is a monotone lattice path from (0, 0) to (n, n)
that stays above the diagonal. The path is allowed to touch the diagonal, but
not to cross it.

It is convenient to look at a Dyck path on a rotated grid as shown in
Figure 6.

(0, 0) (n, n)

Figure 6: A Dyck path.

Theorem 4.8. The number of Dyck paths from (0, 0) to (n, n) is equal to
the n-th Catalan number.

Proof. Let us show that the sequence dn of numbers of Dyck paths satisfies
the same recurrence relation that the sequence of Catalan numbers. Take
a path from (0, 0) to (n + 1, n + 1) and let (k + 1, k + 1) be the first point
after (0, 0) where it touches the diagonal. The number k can take any value
between 0 and n. The point (k+ 1, k+ 1) separates the path into two parts.
The first part never touches the diagonal except at the endpoints. If we
remove from it the initial and the terminal segments, then we get a Dyck
path from (1, 0) to (k+1, k). It can be identified by translation with a Dyck
path from (0, 0) to (k, k). The part of the path after the point (k+ 1, k+ 1)
can be identified with a Dyck path from (0, 0) to (n− k, n− k).

Conversely, from any k-Dyck path and any (n − k)-Dyck path one can
build a (n + 1)-Dyck path by “lifting up” the k-path and concatenating it
with the (n− k)-path. Thus the number of (n + 1)-Dyck paths whose first
contact with the diagonal is at (k+1, k+1) is dkdn−k, and the total number
of (n+ 1)-Dyck paths is

dn+1 =

n∑
k=0

dkdn−k.
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0 n+ 1k + 1

k-path
(n− k)-path

Figure 7: Proving the recursive relation for the number of Dyck paths.

Thus we have for the sequence dn the same recursive relation, and also the
same starting value d0 = 1. It follows that dn = cn for all n.

Corollary 4.9. The number of balanced bracket sequences of n opening and
n closing brackets is cn.

Balanced bracket sequences are characterized by the property that, when
reading it from the left to the right, the number of closing brackets never
exceeds the number of opening brackets. This leads to a natural bijection
with Dyck paths: interpret an opening bracket as a step upwards, and a
closing bracket as a step to the right.

4.6 A combinatorial proof of the formula for cn

The proof of the formula for cn in Section 4.2 was algebraic, building upon
the recursive formula (7). Since Catalan numbers have so many combina-
torial interpretation, it would be good to have a combinatorial proof of the
same formula.

Instead of counting Dyck paths let us count paths that enter the triangle
below the diagonal. They may stay all the time below the diagonal or cross
the diagonal one or several times. We call them non-Dyck paths.

Lemma 4.10. Among the monotone paths from (0, 0) to (n, n) there are
exactly

(
2n
n−1

)
non-Dyck paths.

If we prove this lemma, then the formula for cn follows immediately:

cn =

(
2n

n

)
−
(

2n

n− 1

)
=

(2n)!

n!n!
− (2n)!

(n+ 1)!(n− 1)!

=
(2n)!

(n+ 1)!n!
((n+ 1)− n) =

1

n+ 1

(
2n

n

)
.
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Proof of Lemma 4.10. Let (k, k − 1) be the first point where a non-Dyck
path enters the triangle below the diagonal. The number k can take any
value between 1 (which means that the first step goes below the diagonal)
and n. Reflect the part of the path from (k, k − 1) to (n, n) as shown in
Figure 8.

Figure 8: Counting non-Dyck paths.

This transforms every non-Dyck path to a path from (0, 0) to (n+1, n−
1). For every path from (0, 0) to (n + 1, n − 1) there is a unique non-
Dyck path that produces it. To reconstruct this non-Dyck path, apply the
same operation: take the first point of the form (k, k − 1) on the path to
(n+ 1, n− 1) and reflect the part of the path after this point.



116 CHAPTER V. COMBINATORICS II



Chapter VI

Automata theory

The main source for this chapter is [7].

1 Finite automata

1.1 Alphabets, words, and languages

An alphabet is any finite set of symbols. Examples:

• the binary alphabet {0, 1};

• the alphabet of a single symbol {0};

• the alphabet {p1, . . . , pn}∪ {¬,∧,∨,→, (, )} of the propositional logic.

A string or a word is a finite sequence of symbols from a given alphabet.
The set of words of length n in the alphabet Σ is denoted by Σn:

Σn = {x1 . . . xn | xi ∈ Σ ∀i}.

This is the same as the Cartesian power Σn, with only a notational difference:
x1 . . . xn instead of (x1, . . . , xn).

The concatenation of two words defines a map Σm × Σn → Σm+n.
Clearly, uv 6= vu in general. Denote by Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · · the
set of all words in the alphabet Σ.

There is a unique element in Σ0: the word of zero length; it is denoted
by ε. One has

εw = w = wε for all w ∈ Σ∗.

A language is a subset of Σ∗. Here are some examples of languages.

• The set of all sequences of zeros of prime length:

{0p | p is a prime number}.

117
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• The set of all binary palindromes (binary sequences that read the same
forward and backward):

{ε, 0, 1, 00, 11, 000, 010, . . .}.

• In the alphabet of propositional logic, the set of all propositional for-
mulas.

• In the same alphabet, the set of all propositional formulas which are
tautologies.

1.2 Deterministic finite automata

A finite automaton is a machine with finitely many states that changes its
states according to the input.

Definition 1.1. A deterministic finite automaton (DFA) is a quintuple
(Q,Σ, δ, q0, F ), where

• Q is the set of states;

• Σ is the input alphabet;

• δ is the transition function, that is, a map δ : Q× Σ→ Q;

• q0 is the initial state;

• F ⊂ Q is the set of final states.

The sets Q and Σ are assumed to be finite, and F non-empty.

It is convenient to represent a DFA in the form of a transition diagram.
A transition diagram is a graph whose vertex set is the set of states, and
edges are directed and labeled by the alphabet symbols. The edges describe
the transition function: if δ(qi, a) = qj , then we draw a directed edge from
qi to qj and label it with a. The initial state is indicated by an incoming
arrow starting at nowhere. The final states are indicated by double circles.
Figure 1 shows an example of a DFA.

q0 q1

1

1

0 0

Figure 1: A deterministic finite automaton.
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At the beginning the automaton is in the initial state. When it receives
an input word w ∈ Σ∗, it reads it from left to right and changes its state
after each letter according to the transition function. If after reading the
input the automaton is in one of the final states, then one says that the
word w is accepted by the automaton. (Because of this, the final states are
sometimes called accepting states.)

One describes it formally by extending the transition function δ to a
function δ̂ : Q × Σ∗ → Q. The value of δ̂(q, w) is the state in which the
automaton ends if it starts at q and reads the word w. The definition is
recursive:

1. δ̂(q, ε) = q for every state q;

2. δ̂(q, wa) = δ(δ̂(q, w), a) for every state q, every word w, and every
letter a.

Definition 1.2. Let M be a DFA. A word w ∈ Σ∗ is called accepted by M
if δ̂(q0, w) ∈ F . The language L(M) accepted by M is the set of all words
accepted by M :

L(M) = {w ∈ Σ∗ | δ̂(q0, w) ∈ F}.

Example 1.3.

a) The language accepted by the automaton on Figure 1 consists of all
strings with an odd number of ones.

b) One has ε ∈ L(M) if and only if the initial state q0 of M belongs to
the set of final states of M .

Definition 1.4. A language is called regular if it is accepted by some DFA.

The main question which will be studied is:

What languages are regular?

In other words, what decision problems can be solved by DFAs? For
example, is there a DFA with the alphabet of propositional logic, which can
tell if a given sequence of symbols is a tautological propositional formula?

Remark 1.5. Alternatively to a transition diagram, a DFA can be repre-
sented by a table. For the DFA from Figure 1 this is

0 1

q0 q0 q1

q1 q1 q0

The table contains the information about the transition function, the set of
states, and the input alphabet. In addition one should specify the set of
final states, F = {q1} in our case.
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1.3 Nondeterministic finite automata

In a nondeterministic finite automaton (NFA) one allows the transition from
a given state on a given input to be not uniquely defined or undefined. In
other words, while on the transition diagram of a DFA for every state q and
every input symbol a there is a unique outgoing arrow from q labeled with
a, on the transition diagram of an NFA there might be several arrows like
that or none at all. Figure 2 shows an example of an NFA.

q0 q1

0, 1

0 0

0, 1

q2

Figure 2: A nondeterministic finite automaton.

A formal definition is as follows.

Definition 1.6. A nondeterministic finite automaton (NFA) is a quintuple
(Q,Σ, δ, q0, F ), where as before Q is a set of states, Σ is a finite alphabet,
q0 ∈ Q is the initial state, F ⊂ Q is the set of final states. However, the
transition function

δ : Q× Σ→ 2Q

associates to a pair (q, a) not a state, but a set of states P ⊂ Q, which is
allowed to be empty.

(Recall that 2Q denotes the set of all subsets of Q.)
As next, we need to describe how an NFA works, that is what words does

it accept. Informally speaking, an NFA can be in several states at the same
time, and when an input symbol is read, each of these states generates a
new set of states. The number of current states does not necessarily increase
with each step, because for some input there may be no transition defined
from some states: some branches die off. In a more dramatic way this can be
imagined as creation of parallel universes when the transition is not uniquely
defined and an apokalypsis in a given universe if the transition for a given
input symbol is undefined.

Formally, we define an extended transition function recursively as

1. δ̂(q, ε) = {q};

2. δ̂(q, wa) =
⋃

p∈δ̂(q,w)

δ(p, a).

Now, a word w is considered accepted by an NFA if there is a sequence
of transitions corresponding to the input w that ends up in a final state.
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(That is, a word is accepted if it is accepted in at least one of the parallel
universes.)

Formally, we define the language accepted by a non-deterministic au-
tomaton M as

L(M) = {w ∈ Σ∗ | δ̂(q0, w) ∩ F 6= ∅}. (1)

Example 1.7.

a) The automaton in Figure 2 accepts all words that contain two con-
secutive zeros. Indeed, the state q2 can be reached only if the input
contains two consecutive zeros, and once q2 is reached, one stays there
forever.

b) The automaton in Figure 3 accepts all words that do not contain two
consecutive zeros. Indeed, it “breaks down” only if the input contains
two consecutive zeros, and if it does not break down, then it accepts
the input.

q0 q1

1

0

1

Figure 3: A nondeterministic finite automaton with δ(q1, 0) = ∅.

Definition 1.8. Two finite automata M and M ′ are called equivalent if
they accept the same languages: L(M) = L(M ′).

Theorem 1.9. For any NFA there is an equivalent DFA.

Proof. The proof is based on the interpretation of an NFA as “being in
several states at the same time”. One constructs a deterministic automaton
whose states correspond to sets of states of NFA.

Take any NFA M = (Q,Σ, δ, q0, F ). Define a DFA M ′ = (Q′,Σ, δ′, q′0, F
′)

as follows.

• Q′ = 2Q: the states of M ′ are all subsets of the set of states of M .

• q′0 = {q0}, a one-element set.

• F ′ = {P ⊂ Q | P ∩ F 6= ∅}, all subsets of Q that contain at least one
final state of M .

• For any P ⊂ Q put δ′(P, a) =
⋃
p∈P

δ(p, a).
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We claim that

δ̂′({q}, u) = δ̂(q, u)

for all q ∈ Q and all u ∈ Σ∗ and prove it by induction on the length of u. If
u = ε, then both sides are equal to {q}. Take any word of length at least 1,
and let a be its last letter. Then this word can be written as wa, and we
have

δ̂′({q}, wa) = δ′(δ̂′({q}, w), a) =
⋃

p∈δ̂′({q},w)

δ(p, a)

δ̂(q, wa) =
⋃

p∈δ̂(q,w)

δ(p, a)

By induction hypothesis, δ̂′({q}, w) = δ̂(q, w), and the induction step is
proved.

Definition of F ′ and definition (1) imply that L(M) = L(M ′).

Example 1.10. Let us construct a DFA equivalent to the NFA in Figure 2.
For convenience, write first the table of our NFA.

δ 0 1

q0 {q0, q1} {q0}
q1 {q2} ∅
q2 {q2} {q2}

The set Q = {q0, q1, q2} has 8 subsets, so if we follow the construction given
in the theorem literally, we must write a table with 8 rows. However, not
all of the 8 states will be accessible from the initial state. The inaccessible
states can be removed from the automaton without affecting the language.
Therefore we will introduce new rows in our table for M ′ only as soon as
they are needed. Also, for a better distinction we will use in M ′ the [ ]
brackets instead of the set brackets { }. The result is the following table:

δ′ 0 1

[q0] [q0, q1] [q0]
[q0, q1] [q0, q1, q2] [q0]

[q0, q1, q2] [q0, q1, q2] [q0, q2]
[q0, q2] [q0, q1, q2] [q0, q2]

For brevity, rename the states so that the table takes the form

δ′ 0 1

q′0 q′1 q′0
q′1 q′2 q′0
q′2 q′2 q′3
q′3 q′2 q′3
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The corresponding transition diagram is shown in Figure 4. The final states
are q′2 and q′3 because they correspond to the sets which contain the final
state q2 of M ′.

q′0

1 1

q′3q′1
0

q′2

0

0

0

1

Figure 4: A DFA equivalent to the NFA in Figure 2.

Example 1.11. Figure 5 shows the DFA constructed from the NFA in
Figure 3. The state q′2 corresponds to the empty set.

q′0 q′1

1

0

1

0, 1

q′2
0

Figure 5: A DFA equivalent to the NFA in Figure 3.

1.4 Finite automata with epsilon-transitions

This is a further extension of the concept of a finite automaton. In addition
to “branching” and “emergency stops” present in NFA we allow sponta-
neous transitions between some states. That is, the transition diagram may
contain arrows marked by ε, the empty word. Spontaneous transitions may
branch as well: there might be several ε-arrows starting from the same state.

Here is a formal definition.

Definition 1.12. A nondeterministic finite automaton with ε-transitions
(ε-NFA) is a quintuple (Q,Σ, δ, q0, F ), where Q, Σ, q0 ∈ Q, and F ⊂ Q are,
as before, the set of states, the input alphabet, the initial state, and the set
of final states, but

δ : Q× (Σ ∪ {ε})→ 2Q.

A word w is accepted by an ε-NFA if there is a path from the initial
state to one of the final states which corresponds to the input w with any
number of ε-transitions inbetween.
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Example 1.13. The automaton on Figure 6 accepts positive and negative
integers: strings of digits, possibly preceded by the minus sign, the only
string beginning with 0 is 0.

q2
1-9 ε

q3q1q0
ε,−

0-9

0

Figure 6: An ε-NFA recognizing decimally represented integers.

The transition table of this automaton is given below.

ε − 0 1-9

q0 {q1} {q1} {q3} ∅
q1 ∅ ∅ ∅ {q2}
q2 {q3} ∅ {q2} {q2}
q3 ∅ ∅ ∅ ∅

In order to proceed we need the following notion.

Definition 1.14. A subset of the set of states P ⊂ Q is called ε-closed
if all ε-transitions from states of P lead to P : for every q ∈ P one has
δ(q, ε) ⊂ P .

The ε-closure of a subset P ⊂ Q is the minimal ε-closed subset contain-
ing P . We denote the ε-closure of P by P .

In other words, P is P together with all states that can be reached from
P by sequences of ε-transitions.

Let us modify and extend the transition function so that it will tell us
what states are accessible from a given state for a given input.

1. δ̂(q, ε) = {q}

2. δ̂(q, wa) = δ(δ̂(q, w), a) for all w ∈ Σ∗

(Note that δ̂(q, w) is a set, so that δ(δ̂(q, w), a) denotes the union of δ(p, w)
over all p ∈ δ̂(q, w).)

Observe that, contrarily to the case of DFA and NFA, δ̂(q, a) 6= δ(q, a),
but rather

δ̂(q, a) = δ({q}, a) ⊃ δ(q, a).

It is not hard to see that δ̂(q, w) consists of all states reachable from q on
the input w with arbitrarily many ε-transitions before w, in the middle of
w, and after w.
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In terms of the extended transition function the language accepted by
an ε-NFA is defined as follows.

Definition 1.15. The language accepted by an ε-NFA M is

L(M) = {w ∈ Σ∗ | δ̂(q0, w) ∩ F 6= ∅}.

We will now show that ε-NFAs are not more powerful than DFA: any
language accepted by an ε-NFA is also accepted by some DFA.

Theorem 1.16. For every ε-NFA there is an equivalent DFA.

Proof. Let M = (Q,Σ, δ, q0, F ) be an ε-NFA. Construct a DFA M ′ =
(2Q,Σ, δ′, q′0, F

′) by putting

q′0 = {q0}, F ′ = {P ⊂ Q | P ∩ F 6= ∅},

and defining the transition function by

δ′(P, a) = δ(P, a).

We claim that for any word w ∈ Σ∗ holds

δ̂′(q′0, w) = δ̂(q0, w), (2)

where δ̂ and δ̂′ are the extended transition functions of M and M ′. This is
proved by induction on the length of the word w. The base: |w| = 0, that
is w = ε. We have

δ̂′(q′0, ε) = q′0 = {q0} = δ̂(q0, ε).

The induction step: assume (2) holds for all words of length n. Any word of
length n+1 has the form wa, where |w| = n and a ∈ Σ. Using the induction
hypothesis, we obtain

δ̂′(q′0, wa) = δ′(δ̂′(q′0, w), a) = δ′(δ̂(q0, w), a) = δ(δ̂(q0, w), a) = δ̂(q0, wa).

Now, by definition we have

w ∈ L(M)⇔ δ̂(q0, w) ∩ F 6= ∅,

w ∈ L(M ′)⇔ δ̂′(q′0, w) ∈ F ′ ⇔ δ̂′(q′0, w) ∩ F 6= ∅,

which implies L(M) = L(M ′) due to (2).

Example 1.17. Let us construct a DFA equivalent to the ε-NFA from
Example 1.13.

The transition table is obtained by consulting the table from Example
1.13 and applying the rule δ′(P, a) = δ(P, a). As in the construction of an
NFA out of a DFA, it might be not necessary to consider all subsets of Q.
We start with the row corresponding to the initial state, and add a new row
for every state which appeared in one of the previous rows. The construction
ends when no new states appear.

The initial state in our case is {q0} = {q0, q1}.
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− 0 1-9

{q0, q1} {q1} {q3} {q2, q3}
{q1} ∅ ∅ {q2, q3}
{q3} ∅ ∅ ∅
{q2, q3} ∅ {q2, q3} {q2, q3}

∅ ∅ ∅ ∅

{q0, q1}

{q1}

∅

{q3}

1-9

−

0

−, 0-9

−

1-9

{q2, q3}

−, 0-9

0-9

−, 0

Figure 7: A DFA equivalent to the ε-NFA from Example 1.13.

The diagram of this automaton is shown in Figure 7.

2 Regular expressions

A regular expression is a formula which describes a language. We will see
that languages represented by regular expressions are regular (i.e. are ac-
cepted by a finite automaton) and that every regular language can be rep-
resented by a regular expression.

2.1 Definition and examples

A regular expression is defined recursively. The basic building blocks are
the following.

1. ∅ is a regular expression and denotes the language ∅.

2. ε is a regular expression and denotes the language {ε}.

3. a is a regular expression for every a ∈ Σ and denotes the language {a}.
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Don’t confuse the empty language ∅ and the language {ε} consisting of an
empty word.

Sometimes one uses the boldface a to denote the language {a}. We will
use the same symbol a.

From these building blocks one constructs more complex regular expres-
sions by using the following operations. If r and s are regular expressions
denoting the languages R and S respectively, then

1. (r + s) is a regular expression and denotes the language R ∪ S;

2. (rs) is a regular expression and denotes the language RS = {uv | u ∈
R, v ∈ S};

3. r∗ is a regular expression and denotes the language R∗ = ∪∞i=0R
i,

where Ri = RR · · ·R︸ ︷︷ ︸
i

(the Kleene closure of language R).

Example 2.1. The language of all binary words can be represented by the
expression (0 + 1)∗.

One can omit some of the brackets in regular expressions by adopting
the convention that ∗ precedes the concatenation, and the concatenation
precedes the sum. For example, ((0(1∗))+0) may be written as 01∗+0, and
we have

01∗ + 0 = {0, 01, 011, 0111, . . .}.

Two regular expressions are called equivalent if they describe the same
language. Here are some simple equivalences:

(rs)t ∼ rs(t), (r + s)t ∼ rt+ st.

Instead of the equivalence sign we will use the equality sign to denote the
equivalence of regular expressions. For example,

01∗ + 0 = 01∗, ∅r = ∅, εr = r.

Recall that a language is called regular if there is a finite automaton
(DFA, NFA, or ε-NFA, which does not matter, as we have shown) that
accepts this language. The main theorem is the following.

Theorem 2.2. A language is regular if and only if it can be represented by
a regular expression.

This theorem will be proved in the next two sections. Now let us give
some examples of regular expressions and languages corresponding to them.
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Example 2.3. The language of words consisting of alternating 0’s and 1’s.
It can be represented by a regular expression (01)∗+(10)∗+0(10)∗+1(01)∗.
In this expression a case distinction is incorporated: if the word is of even
length and starts with 0, then it belongs to the language (01)∗, etc.

The same language can be described by the expression

(01)∗ + 1(01)∗ + (01)∗0 + 1(01)∗0 = (ε+ 1)(01)∗(ε+ 0).

Example 2.4. The set of all binary words whose tenth symbol from the
right is 1 can be described by a regular expression (0 + 1)∗1(0 + 1)9, where
(0 + 1)9 denotes (0 + 1) · · · (0 + 1)︸ ︷︷ ︸

9

.

Example 2.5. The set of all binary words that contain at least one 0 and
at least one 1 can be represented by

(0 + 1)∗0(0 + 1)∗1(0 + 1)∗ + (0 + 1)∗1(0 + 1)∗0(0 + 1)∗.

2.2 Equivalence of regular expressions and regular languages

We will now prove Theorem 2.2. It splits in two parts.

Lemma 2.6. The language described by a regular expression is regular.

Proof. We describe a construction algorithm of an ε-NFA that accepts the
language described by a given regular expression r. Moreover, the resulting
automaton will have a unique accepting state. The construction uses the
recursive structure of the regular expression.

Let r be any regular expression. By definition, r is either basic or is
obtained from one or two simpler expressions through sum, concatenation
or closure.

If r is basic, then the corresponding language is accepted by one of the
automata shown in Figure 8.

q0 q1q0 q1

r = ε

q0

r = ∅ r = a

a

Figure 8: Automata for basic regular expressions.

If r = r1 + r2, then by assumption there are ε-NFAs M1 and M2, each
with a unique final state, for the languages represented by r1 and r2. The
automaton in Figure 9 accepts the language of the expression r1 + r2.

If r = r1r2, then we combine the automata for r1 and r2 as shown in
Figure 10.
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q1 f1M1

q2 f2M2

ε

ε

ε

ε

q0 f0

Figure 9: Automaton realizing the union of two languages.

q1 f1M1
q2 f2M2

ε

Figure 10: Automaton realizing the concatenation of two languages.

Finally, the automaton in Figure 11 accepts the language of (r1)∗.
In order to show that these automata do what they are meant to do,

one has to prove two things: first, each word from the language R1 + R2

(respectively, R1R2, or R∗1) is accepted by the automaton; second, each
word accepted by the automaton belongs to the respective language. The
arguments proving this are rather straightforward, and we omit them.

Example 2.7. Construct an automaton accepting the language 01∗ + 1.
The automaton obtained with the above argument has ten states, see

Example 2.12 from the first edition of Hopcroft-Ullman. One can rather
easily construct an ε-NFA with three states. The above algorithm aims not
for the smallest number of states, but for the simplicity of the construction.

Now we proceed to the second part of Theorem 2.2.

Definition 2.8. A word x is called a prefix of a word w if w = xy for some
word y. In particular, both ε and w are prefixes of w. A proper prefix of w
is a prefix distinct from ε and w.

Lemma 2.9. Every regular language can be described by a regular expres-
sion.

Proof. Let R be the language accepted by a DFA with the set of states
Q = {q1, . . . , qn}, where q1 is the initial state. Our goal is to construct a
regular expression r that describes R.

Denote by Rkij the set of all words w such that

• δ̂(qi, w) = qj ;
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q1 f1M1
q0 f0

εε

ε

ε

Figure 11: Automaton realizing the Kleene closure of a language.

• δ̂(qi, x) ∈ {q1, . . . , qk} for all proper prefixes x of w.

In other words, Rkij is the set of all words that lead you from qi to qj through
the states with indices less or equal k only. Note that we allow i or j to
be bigger than k: one may be in a state with number bigger than k at the
beginning or at the end, but not in between. One has

R =
⋃
qj∈F

Rn1j .

We will prove by induction on k that each of Rkij can be represented by a
regular expression.

Base: k = 0. By definition, R0
ij consists of direct transitions from qi to

qj . Thus

R0
ij =

{
{a | δ(qi, a) = qj}, if i 6= j,

{a | δ(qi, a) = qj} ∪ {ε}, if i = j.

In both cases, the set R0
ij is finite and therefore described by a regular

expression of the following form:

r0
ij =


a1 + · · ·+ ap, if i 6= j and R0

ij = {a1, . . . , ap},
∅, if i 6= j and R0

ij = ∅,
a1 + · · ·+ ap + ε, if i = j and R0

ij = {a1, . . . , ap},
ε, if i = j and R0

ij = {ε}.

Step. Let us prove that for k ≥ 1 and for all i, j one has

Rkij = Rk−1
ij ∪Rk−1

ik (Rk−1
kk )∗Rk−1

kj .

Indeed, take any w ∈ Rkij and look at the corresponding path from qi to qj .

If this path does not pass through qk, then w ∈ Rk−1
ij . Otherwise split the

path into the following pieces:

• from qi to qk without passing through qk;
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• from qk to qk without passing through qk (there may be several pieces
like this);

• from qk to qj without passing through qk.

This represents the word w as a concatenation w = w1 · · ·wm, where

w1 ∈ Rk−1
ik , w2, . . . , wm−1 ∈ Rk−1

kk , wm ∈ Rk−1
kj .

Thus w ∈ Rk−1
ik (Rk−1

kk )∗Rk−1
kj . It is also clear than any w ∈ Rk−1

ij or

Rk−1
ik (Rk−1

kk )∗Rk−1
kj leads from qi to qj without passing through states with

the number > k.
By induction assumption, for all i, j there is a regular expression rk−1

ij

which describes the language Rk−1
ij . The language Rkij is then described by

the regular expression

rkij = rk−1
ij + rk−1

ik (rk−1
kk )∗rk−1

kj .

Finally, the language R is described by the regular expression

r = rn1,m+1 + · · ·+ rn1,n,

where F = {qm+1, . . . , qn}.

Example 2.10. (Example 2.13. from [7].) Find a regular expression for
the language accepted by the automaton on Figure 12.

q1

q3

q20

1 0, 1

1

0

Figure 12: Automaton for Example 2.10.

One fills the table in Figure 13 column after column according to the
above algorithm.

The first column is easy. For the second and the third column use the
recursive formula. Sometimes a regular expression can be simplified, and
this was done at several places in this table. For example,

r1
22 = r0

22 + r0
21(r0

11)∗r0
12 = ε+ 0(ε)∗0 = ε+ 00.
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k = 0 k = 1 k = 2

rk11 ε ε (00)∗

rk12 0 0 0(00)∗

rk13 1 1 0∗1
rk21 0 0 0(00)∗

rk22 ε ε+ 00 (00)∗

rk23 1 1 + 01 0∗1
rk31 ∅ ∅ (0 + 1)(00)∗0
rk32 0 + 1 0 + 1 (0 + 1)(00)∗

rk33 ε ε ε+ (0 + 1)0∗1

Figure 13: Finding a regular expression for Example 2.10.

More interesting things happen to r2
13, which by the direct application of

the recursive formula is equal to

r2
13 = r1

12(r1
22)∗r1

23 + r1
13 = 1 + 0(ε+ 00)∗(1 + 01).

Because of (ε+ 00)∗ = (00)∗ and 1 + 01 = (ε+ 0)1 this can be rewritten as

r2
13 = 1 + 0(00)∗(ε+ 0)1.

Further, one has (00)∗(ε+ 0) = 0∗, so that

r2
13 = 1 + 00∗1 = 0∗1.

A regular expression for the language accepted by this automaton is r3
12+r3

13.
Each of the summands is a lengthy expression. After some simplifications
one obtains

r = 0∗1((0 + 1)0∗1)∗(ε+ (0 + 1)(00)∗) + 0(00)∗.

It should be noted that one does not need all of the table 13 to compute
the expression r.

3 Properties of regular languages

3.1 Closure under boolean operations

Theorem 3.1. Let R,R1, R2 be any regular languages in the alphabet Σ.
Then the languages R1 ∪R2, R1 ∩R2,Σ

∗ \R are also regular.

Proof. If r1 is a regular expression for R1, and r2 is a regular expression
for R2, then the regular expression r1 + r2 describes the language R1 ∪R2,
which is therefore regular.
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Given regular expressions r1, r2, r, it is very difficult to find regular
expressions for the intersection R1 ∩R2 and the complement Σ∗ \R. Let us
approach the problem from a different direction.

Let M = (Q,Σ, δ, q0, F ) be a DFA accepting the language R. Then
M := (Q,Σ, δ, q0, Q \ F ) accepts the language Σ∗ \R. Indeed,

w ∈ Σ∗ \R⇔ w /∈ R⇔ δ̂(q0, w) /∈ F ⇔ δ̂(q0, w) ∈ Q \ F ⇔ w ∈ L(M).

Therefore Σ∗ \R is regular.
With the intersection we are helped by de Morgan’s rule:

R1 ∩R2 = R1 ∪R2,

where the overline denotes the complement. Since the operations applied
on the right hand side preserve regularity, the intersection of two regular
languages is regular.

Theorem 3.2. The equivalence of finite automata and the equivalence of
regular expressions is decidable. (That is, there is an algorithm for each of
these problems, which gives a correct answer in finite time.)

Proof. We have an algorithm which converts a regular expression into a finite
automaton. Therefore it suffices to find an algorithm for the equivalence of
finite automata.

Given two finite automata M1 and M2, let L1 = L(M1) and L2 = L(M2).
By Theorem 3.1, the symmetric difference

L14L2 = (L1 \ L2) ∪ (L2 \ L1)

is a regular language. Thus there is a finite automaton M that accepts the
language L14L2. One has

L1 = L2 ⇔ L14L2 = ∅.

Therefore it suffices to decide whether the language accepted by M is empty.
The language is empty if and only if from the initial state no final state can
be reached. This is easy to check algorithmically.

3.2 The pumping lemma

Let Σ be a finite alphabet. The set Σ∗ of all words in Σ is countably infinite.
The set 2Σ∗ of all languages in Σ is uncountable: it has the cardinality of the
continuum. On the other hand, the set of regular languages is countable,
because the set of all regular expressions (and of all finite automata) is
countable. (Note that different automata or different regular expressions
can define the same language, but this is not a problem.) It follows that
“most” languages are non-regular.
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The above argument is a pure existence proof. In this section we prove
the pumping lemma, a tool that allows to prove the non-regularity of some
languages.

Before stating the lemma, let us explain the underlying idea. Let M be
a DFA. Any word z accepted by M determines a path from the initial state
q0 to one of the finals states q ∈ F . If the word z is long enough (namely if
its length is bigger than the number of states of M), then the corresponding
path contains a cycle. This cycle gives rize to infinitely many other words
accepted by M , because one can run along it several times. For example, in
Figure 14 one has z = a1a2a3a4a5a6a7 ∈ L(M). By repeating or removing
the cycle contained in the path, one obtains

a1a2(a3a4a5)ka6a7 ∈ L(M)

for all k, including k = 0.

q0

a3

a7
a1

a2 a6

a5

a4

q

Figure 14: Idea of the pumping lemma: a long word contains a subword
which can be repeated.

The existence of a cycle can be stated as follows.

Lemma 3.3. Any path of length ≥ n (the length of a path is the number of
edges) in a graph with n vertices contains a cycle. Besides, there is a cycle
within the first n edges of this path.

We are now ready to state and prove the pumping lemma.

Theorem 3.4 (Pumping lemma for regular languages). Let L be a regular
language. Then there is an integer n such that for any word z ∈ L of length
|z| ≥ n the word z can be represented as z = uvw in such a way that

|uv| ≤ n, |v| ≥ 1, and for all k ≥ 0 one has uvkw ∈ L.

Proof. Since L is a regular language, there is a DFA accepting it. Let n be
the number of states of such a DFA. Then any word z ∈ L determines a path
of length |z| from q0 to one of the final states. By Lemma 3.3, if |z| ≥ n,
then within the first n edges of this path there is a cycle. Let u be the prefix
of z before the beginning of this cycle, let v be the subword corresponding
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to the cycle, and let w be the remaining suffix. Then z = uvw, and the path
determined by the word uvkw differs from the path determined by uvw in
the number of times it runs along the cycle of v, but has the same endpoint,
a final state of the DFA. Thus uvkw ∈ L for all k ≥ 0.

Example 3.5. Take the alphabet of one symbol Σ = {0} and consider
the language L = {0k2 | k is a positive integer}: all sequences of 0’s whose
length is a perfect square. Let us show that L is not regular. Assume the
contrary, and let n be the integer in the pumping lemma. Let z = 0n

2
. By

the pumping lemma, z = uvw, where 1 ≤ |v| ≤ |uv| ≤ n, and uvkw ∈ L
for all k. For k = 2 one has n2 + 1 ≤ |uv2w| ≤ n2 + n < (n + 1)2, thus
uv2w /∈ L. This contradiction shows that our assumption was false, and L
is not regular.

The only property of the sequence of perfect squares that was used is
the existence of arbitrarily large gaps. Therefore any language of the form
{0ak}, where ak is a monotone sequence of integers such that for every n
there is k such that ak+1 − ak > n, is non-regular. Later we will be able to
show that the only regular languages of the form {0ak} are those for which
the sequence ak is periodic.

Example 3.6. The language L consisting of all binary words with an equal
number of zeros and ones is not regular. Indeed, assume the contrary, and
let n be the integer in the pumping lemma. Then 0n1n ∈ L. By the pumping
lemma, one can write 0n1n = uvw, where |uv| ≤ n, and uvkw ∈ L for all
k. It follows that the words u and v consist of zeros only. Since |v| ≥ 1,
the word uw = uv0w has less zeros than ones, thus it does not belong to L.
This contradiction shows that our assumption was false.

The pumping lemma can be used to prove the following theorem.

Theorem 3.7. A language accepted by a DFA with n states is

1. nonempty if and only if the automaton accepts some word of length
less than n;

2. infinite if and only if the automaton accepts some word of length `,
where n ≤ ` < 2n.

Proof. 1) The path corresponding to the shortest accepted word does not
visit any state more than once. Otherwise it contains a cycle, and by re-
moving this cycle we obtain a shorter accepted word. Therefore the length
of the shortest accepted word is strictly less than n.

2) The “if” direction. If z is an accepted word of length ≥ n, then its
path contains a cycle. By pumping this cycle, we obtain infinitely many
accepted words.
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The “only if” direction. If the language is infinite, then it contains a
word z with |z| ≥ n. If |z| < 2n, then we are done. If |z| ≥ 2n, then write
z as z = uvw according to the pumping lemma. Then uw is also accepted,
and we have |uw| = |z| − |v| ≥ |z| − n ≥ n. Thus we can apply the same
case distiction to the word uw and proceed until we get a word of length
≥ n and < 2n.

3.3 Closure under homomorphisms

Let Σ and ∆ be two finite alphabets.

Definition 3.8. A homomorphism is a map h : Σ∗ → ∆∗ such that

h(xy) = h(x)h(y) for all x, y ∈ Σ∗.

Lemma 3.9. A homomorphism is uniquely determined by the images of
the letters of the alphabet Σ. That is, any h : Σ → ∆∗ extends to a unique
homomorphism.

Proof. Let us prove the uniqueness. If we know h(a) for all a ∈ Σ, then we
have no other choice but put

h(a1 . . . an) = h(a1) . . . h(an).

Also by definition of a homomorphism one has

h(x) = h(εx) = h(ε)h(x),

which implies h(ε) = ε. Thus there is no more than one homomorphism
with given values on the letters of the alphabet.

On the other hand, putting h(a1 . . . an) = h(a1) . . . h(an) and h(ε) = ε
defines a homomorphism, so the extension exists and is unique.

Definition 3.10. Let L ⊂ Σ∗ be a language. The homomorphic image of
L is the language

h(L) = {h(w) | w ∈ L} ⊂ ∆∗,

where h : Σ∗ → ∆∗ is some homomorphism.

Example 3.11. • Σ = ∆ = {0}, L = Σ∗, h(0) = 00. Then h(L)
consists of all even length sequences of zeros.

• Σ = ∆ = {0, 1}, L = Σ∗, h(0) = 0, h(1) = 10. For every word w its
image h(w) is obtained by inserting a 0 after every 1. The language
h(L) consists of all words without two consecutive 1’s and not ending
with 1.

Theorem 3.12. A homomorphic image of a regular language is regular.
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Proof. Let L be a regular language, and let r be a regular expression rep-
resenting L. Make a substitution in r, replacing every symbol by its image
under the homomorphism. The result is a regular expression in the alphabet
∆; denote it by h(r). Then the language defined by h(r) is h(L), thus h(L)
is regular.

The claim L(h(r)) = h(L(r)) is proved by induction on the complexity
of the expression r. Here is the induction step to h = h1 + h2:

L(h(r1 + r2)) = L(h(r1) + h(r2)) = L(h(r1)) ∪ L(h(r2))

= h(L(r1)) ∪ h(L(r2)) = h(L(r1) ∪ L(r2)) = h(L(r1 + r2)).

For example, if h(0) = 0 and h(1) = 10, then h((0 + 1)∗) = (0 + 10)∗.
The next example shows that a homomorphic image of a non-regular

language can be regular.

Example 3.13. The language {0k1k | k ≥ 0} is non-regular, as can be
shown with the help of pumping lemma. But under the homomorphism
h(0) = 0, h(1) = 0 it goes to the language {02k | k ≥ 0}, which is regular.

Lemma 3.14. The language of all propositional formulas is not regular.

Proof. Let Σ be the alphabet of the propositional logic. Consider the ho-
momorphism h : Σ∗ → {0, 1}∗ defined by

(7→ 0, ) 7→ 1, x 7→ ε for all other symbols of Σ.

Every propositional formula is sent to a balanced bracket sequence (now
represented by zeros and ones), and every balanced bracket sequence is the
image of some propositional formula. If the language of all propositional
formulas is regular, then the language of all balanced bracket sequences is
also regular. But it is not, by the pumping lemma: if n is the number
from the lemma, then 0n1n = uvw belongs to the language, but uv2w is
unbalanced.

3.4 Closure under inverse homomorphism

Definition 3.15. Let h : Σ∗ → ∆∗ be a homomorphism, and L ⊂ ∆∗ be a
language in the alphabet ∆. The inverse homomorphic image of L is

h−1(L) = {x ∈ Σ∗ | h(x) ∈ L}.

Example 3.16. Let Σ = {a, b}, ∆ = {0, 1}, and h(a) = 01, h(b) = 10.
Then

h−1(1001) = {ba}, h−1(0011) = ∅.

For L = (00+1)∗ one has h−1(L) = (ba)∗ (check this!). One has h(h−1(L)) =
(1001)∗ 6= L.
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One always has

h(h−1(L)) ⊂ L ⊂ h−1(h(L)),

and the inclusions can be strict.

Theorem 3.17. An inverse homomorphic image of a regular language is
regular.

Proof. Let L ⊂ ∆∗ be a regular language, and h : Σ∗ → ∆∗ a homomor-
phism. Let M = (Q,∆, δ, q0, F ) be a DFA accepting L. We will construct
a DFA accepting h−1(L) thus proving that this language is regular. The
idea is to use the same set of states and the same set of final states, but
interpret each symbol a ∈ Σ as h(a) ∈ ∆. Then a word w ∈ Σ∗ will be
accepted by the new automaton if and only if h(w) was accepted by the old
one. Formally, put

M ′ = (Q,Σ, δ′, q0, F ), where δ′(q, a) = δ̂(q, h(a)).

It can be shown by induction on the length of a word w that δ̂′(q, w) =
δ̂(q, h(w)). Thus we have

w ∈ L(M ′)⇔ δ̂′(q, w) ∈ F ⇔ δ̂(q, h(w)) ∈ F ⇔ h(w) ∈ L⇔ w ∈ h−1(L),

which means L(M ′) = h−1(L).

4 The Myhill-Nerode theorem

4.1 Equivalence of words with respect to a language

Definition 4.1. Let L ⊂ Σ∗ be a language. Two words u, v ∈ Σ∗ are called
L-equivalent (written as u ∼L v) if

∀x ∈ Σ∗ either ux, vx ∈ L or ux, vx /∈ L.

In other words, u and v are not L-equivalent if they have a distinguishing
extension: a word x ∈ Σ∗ such that one of the words ux, vx is in L, and the
other not.

Example 4.2. If u ∈ L and v /∈ L, then u 6∼L v. Indeed, ε is a distinguishing
extension for u and v.

Lemma 4.3. The relation ∼L is an equivalence relation.

Proof. The reflexivity and the symmetry are obvious. To prove the tran-
sitivity, let u ∼L v, v ∼L w, and assume that u 6∼L w. Then there is a
distinguishing extension x for u and w. Without loss of generality, ux ∈ L,
wx /∈ L. Then if vx ∈ L, we have v 6∼L w, and if vx /∈ L, we have u 6∼L v.
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An equivalence relation splits the set Σ∗ of all words into equivalence
classes:

Σ∗ = S0 ∪ S1 ∪ S2 ∪ · · · (3)

where u ∼L v if and only if u and v belong to the same class. As we noticed
in Example 4.2, if u ∼L v, then either u, v ∈ L or u, v /∈ L. It follows that
every class Si is either contained in L or disjoint from L.

Example 4.4. Let L consist of all binary words with the number of zeros
not divisible by 3. Then u ∼L v if and only if the number of zeros in u and
v has the same remainder under division by 3:

Σ∗ = S0 ∪ S1 ∪ S2, Si = {u | `0(u) ≡ i(mod 3)}.

One has L = S1 ∪ S2.

Example 4.5. Let L be the set of all binary words with equal numbers
of zeros and ones. Then u ∼L v if and only if the difference between the
numbers of zeros and ones in u and in v is the same:

Σ∗ = · · · ∪ S−2 ∪ S−1 ∪ S0 ∪ S1 ∪ S2 ∪ · · · , Si = {u | `0(u)− `1(u) = i}.

One has L = S0.

Lemma 4.6. If u ∼L v, then ux ∼L vx for all x ∈ Σ∗.

Proof. Assume that ux 6∼L vx, and let y be a distinguishing extension. Then
xy is a distinguishing extension for u and v.

4.2 The theorem

Theorem 4.7. A language L is regular if and only if the number of L-
equivalence classes is finite.

Proof. Assume that L is regular. Take a DFA that accepts L. Let q0, . . . , qn
be its states, and q0 be the initial state. Denote

Ti = {w ∈ Σ∗ | δ̂(q0, w) = qi}.

One has
Σ∗ = T0 ∪ T1 ∪ · · ·Tn.

We claim that every Ti is a subset of some Sj from the decomposition (3).
In other words, every Sj is the union of one or several Ti, which means that
the number of ∼L-equivalence classes is at most n+ 1 and implies the first
part of the theorem.

In order to prove the claim it suffices to show that if u and v belong to
the same Ti, then u ∼L v. Then for every x ∈ Σ∗ one has

δ̂(q0, ux) = δ̂(δ̂(q0, u), x) = δ̂(qi, x) = δ̂(δ̂(q0, v), x) = δ̂(q0, vx).
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Since both words ux and vx bring us to the same state, they either both
belong to L (if this state is final) or both not belong to L (if this state is
not final). Thus u ∼L v.

In the opposite direction, let Σ∗ = S0∪· · ·∪Sn, where ε ∈ S0. Construct
a DFA with states q0, . . . , qn, the initial state q0, and the transition function
defined as follows. To find δ(qi, a), take some u ∈ Si and look in which
class the word ua lies. If ua ∈ Sj , then put δ(qi, a) = qj . The result is
independent of the choice of a representative u ∈ Si. Indeed, by Lemma 4.6
u ∼L v ⇒ ua ∼L va. A state qi is designated as final if and only if Si ⊂ L.
It is easy to see that the language accepted by this automaton is L.

4.3 Minimization of a DFA

Myhill-Nerode theorem implies

Corollary 4.8. The minimum number of states in a DFA accepting a regu-
lar language L is equal to the number of L-equivalence classes. The minimal
DFA is unique up to renaming the states.

From any DFA one can construct the minimum DFA accepting the same
language by merging certain sets of states into one state. Two states qi, qj
must be merged if the corresponding sets Ti, Tj are contained in the same

equivalence class Sk. That is, qi ∼ qj if for all x ∈ Σ∗ either both δ̂(qi, x)

and δ̂(qj , x) belong to F or both do not.

One can certify non-equivalence of two states by finding a word x such
that δ̂(qi, x) ∈ F and δ̂(qj , x) /∈ F or vice versa. The algorithm marks pairs
of distinguishable states recursively.

At the very beginning one removes all inaccessible states. Obviously,
this does not change the accepted language.

Then one draws a table whose rows and columns are marked by the
remaining states. As initialization, one marks all pairs (qi, qj) such that
qi ∈ F and qj /∈ F or vice versa. At each of the following steps one goes
through all pairs (qi, qj), and for each of them one considers all alphabet
letters a. If the pair (δ(qi, a), δ(qj , a)) was marked at one of the previous
steps, then one marks the pair (qi, qj). If at some step no new pairs are
marked, then the algorithm stops. All pairs of states which are unmarked
are merged into a single state (it is also possible that several states are
merged into one state).

Example 4.9. Consider the DFA in Figure 15. It has one inaccessible
state q3.

We thus draw a 7× 7 table and fill it step by step. It suffices to fill only
a half of the table, on one side of the diagonal.
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Figure 15: A non-minimal DFA.

q0 q1 q2 q4 q5 q6 q7

q0

q1 ×1

q2 ×0 ×0

q4 ×1 ×0

q5 ×1 ×1 ×0 ×1

q6 ×2 ×1 ×0 ×2 ×1

q7 ×1 ×0 ×1 ×1 ×1

A pair of states is marked with ×n if these states were recognized as
non-equivalent at Step n. As initialization (Step 0) we mark all pairs (q2, qi)
because q2 is the only final state.

A lot of cells are marked at Step 1. These are all pairs (qi, qj) such
that either the 0-arrows or the 1-arrows lead from qi to a final and from qj
to a non-final state or vice versa. For example, we mark (q0, q1) because
δ(q0, 1) = q5 is non-final and δ(q1, 1) = q2 is final.

At Step 2 two cells are marked. For example, we mark (q4, q6) because
δ(q4, 0) = q7, δ(q6, 0) = q6, and the pair (q6, q7) is already marked (it was
marked at Step 1).

At Step 3 we check all pairs of unmarked cells, by looking where the 0-
and 1-arrows lead, but do not find anything that should be marked. Thus the
algorithm stops, and the minimal DFA is obtained from the one in Figure 15
by removing the state q3, merging q0 with q4 and merging q1 with q7. See
Figure 16.
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q5 q6q2q0,4 q1,7
00 1 1

0
1 0

0

1

1

Figure 16: The minimal DFA equivalent to one in Figure 15.

5 Context-free grammars and languages

5.1 Generating a language by a grammar

Consider the sentence

Colorless green ideas sleep furiously.

Although it does not make any sense, it is syntactically correct. One dis-
tinguishes a noun phrase “colorless green ideas” and a verb phrase “sleep
furiously”. The noun phrase itself consists of a noun preceeded by adjectives,
and the verb phrase consists of a verb followed by adverbs.

More generally, one can formulate the following rules of production of
simple English sentences:

S → NV a sentence consists of a noun phrase and a verb phrase

N → AdjN a noun phrase may start with one or more adjectives

V → V Adv a verb phrase may end with one or more adverbs

At any stage one can substitute for N , V , Adj, Adv a word from a dictionary:

N → list of nouns

V → list of verbs

Adj → list of adjectives

Adv → list of adverbs

The result is a syntactically correct (but mostly meaningless) sentence.
A production can be represented linearly:

S → NV → AdjNV → AdjAdjNV → colorless AdjNV

→ colorless AdjNV Adv → · · ·

or by a derivation tree or parse tree, see Figure 17.
The sentence at the beginning of this section is from a book of Noam

Chomsky. In mid-1950’s he proposed the above principles as description of
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Figure 17: Derivation tree for the Chomsky example.

the structure of human languages. (Of course one needs more production
rules in order to be able to generate more complicated sentences.) A couple
of years later John Backus, a programming language designer acquainted
with Chomsky’s ideas, described the syntax of the ALGOL programming
language in a similar way.

Let us now give an exact definition.

Definition 5.1. A context-free grammar (or CFG or just grammar) is a
quadruple G = (V, T, P, S), where

• V is a finite set of variables;

• T is a finite set of terminals;

• P is a finite set of productions, each production is of the form A→ α,
where α ∈ (V ∪ T )∗;

• S is a special variable (S ∈ V ) called the start symbol.

Example 5.2. In our introductory example V = {S,N, V,Adj,Adv}, T is
the set of words in a dictionary, and the productions P are as stated above.

Note that the alphabet V of variables and the alphabet T of terminals
must be disjoint. To avoid confusion, we will use different symbols in the
following way.

• The capital letters A,B,C, . . . are variables.

• The letters a, b, c and digits are terminals.

• The letters X,Y, Z denote symbols that may be variables or terminals.

• The letters u, v, w, x, y, z are used to denote strings of terminals, that
is elements of T ∗.
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• The letters α, β, γ are used to denote strings of variables and terminals,
that is elements of (V ∪ T )∗.

Definition 5.3. The language generated by a grammar is the set of all
words in the alphabet T that can be derived from the start symbol S according
to the production rules.

In order to describe formally what it means that a word can be derived
from the start symbol, let us fix some notations and terminology. If A→ β
is any production in P , and α, γ ∈ (V ∪T )∗, then we write αAγ =⇒

G
αβγ and

say that αAγ directly derives αβγ in grammar G. If α1, . . . , αn ∈ (V ∪ T )∗

are such that

α1 =⇒
G

α2, α2 =⇒
G

α3, . . . , αn−1 =⇒
G

αn,

then we write α1
∗

=⇒
G

αn and say that α1 derives αn in G. When it is clear

which grammar we use, then we omit G and write =⇒ and
∗
=⇒, respectively.

Now we can describe the language generated by G as

L(G) = {w ∈ T ∗ | S ∗
=⇒
G

w}.

A language is called a context-free language (CFL) if it is generated by some
context-free grammar.

Example 5.4. Let V = {S}, T = {0, 1}, P = {S → 0S1, S → ε}. From

S ⇒ 0S1⇒ 00S11⇒ · · · ⇒ 0n−1S1n−1 ⇒ 0n1n

we see that L(G) = {0n1n | n ≥ 0}.

Note that the language {0n1n | n ≥ 1} is not regular, as can be shown
with the help of the pumping lemma. We will later see that every regular
language is context-free.

Example 5.5. The language of all binary words with equal numbers of 0’s
and 1’s is context free. However, the generating grammar is more compli-
cated, see [7, Example 4.3].

5.2 Grammars in Chomsky form

A grammar is said to be in Chomsky form if all of its productions are of the
form A → BC and A → a. According to our notation convention, A,B,C
are variables and a is a terminal. Note that the “English grammar” from
the beginning of Section 5.1 is in Chomsky form.

Theorem 5.6. Any context-free language without ε is generated by a gram-
mar in Chomsky form.
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Two grammars are called equivalent if they generate the same language.
Thus the above theorem can also be stated as “for every grammar whose
language does not contain ε there is an equivalent grammar in Chomsky
form”.

Definition 5.7. An ε-production is a production of the form A → ε. A
unit production is a production of the form A→ B.

Without ε-productions it is impossible to produce the empty word, so
we cannot get rid of them if the language contains ε. On the other hand, if
a grammar contains ε-productions, this does not necessarily mean that the
generated language contains ε.

Unit productions can be helpful, they introduce sort of “branching”. For
example, the grammar

S → A | B, A→ AA | 0, B → BB | 1

is a simple grammar generating the language (0∗ ∪ 1∗) \ {ε}.

Lemma 5.8. Any context-free language without ε is generated by a grammar
without ε-productions and without unit productions.

Proof. Let G be a context-free grammar possibly containing ε- and unit
productions. We construct a grammar G′ without ε-productions such that
L(G′) = L(G) \ {ε}.

First, identify nullable variables, those which derive ε. This is done
recursively. Initialize the set of nullable variables by those A for which there
is a production (A→ ε) ∈ P . The recursion step adds to the set of nullable
variables those B for which (B → C1 · · ·Ck) ∈ P and all C1, . . . Ck are
nullable. As soon as this recursion does not find new nullable variables, the
algorithm stops.

Second, remove from P all ε-productions A → ε and add new produc-
tions in the following way. Let A→ X1 · · ·Xn be a production with some of
Xi nullable variables (recall that Xi can stand for a variable symbol as well
as for a terminal symbol). We add all productions of the form A→ X1 ·̂ · ·Xn,
where ·̂ · · means that we remove any subset of nullable variables (with one
exception: if all X1, . . . , Xn are nullable, then we do not add the production
A → ε obtained by removing all nullable variables). That is, if m symbols
among X1, . . . Xn are nullable variables, then the production A→ X1 · · ·Xn

gives rise to 2m productions if m < n and to 2n − 1 productions if m = n.
It can be checked that the new set of productions allows to derive all

words (except ε) which were derivable with the initial set of productions,
and only those words.

Now we construct a grammar G′′ equivalent to G′ but without unit
productions. Call a pair (A,B) unit pair, if A

∗
=⇒ B. The set of all unit

pairs can be found recursively.
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Remove all unit productions, and for each unit pair (A,B) and each non-
unit production B → α add the production A → α. Every word generated
by the grammar G′′ is also generated by G′: the new direct productions
A ==⇒

G′′
α are compositions of two old productions αAβ ==⇒

G′
αBβ ==⇒

G′
α.

Every word generated by G′ is generated by G′′: a series of unit productions
must always end with a non-unit production, so if we had αAγ

∗
==⇒
G′

αBγ ==⇒
G′

αβγ, then we have αAγ ==⇒
G′′

αβγ. Thus the new set of productions generates

the same language as before.

It is important to remove first the ε-productions and then the unit pro-
ductions. If first the unit, and then ε-productions are removed, then the
result might contain unit productions.

Example 5.9. Let us remove the ε-productions from the grammar

S → ABA

A→ aA | ε
B → bB | b.

Only the variable A is nullable. Remove the production A→ ε. The nullable
variable A appears on the right hand side of the productions S → ABA and
A → aA. Add new productions by removing any number of A’s from the
right hand sides of these productions:

S → ABA | AB | BA | B
A→ aA | a
B → bB | b.

Example 5.10. Let us remove the unit productions from the grammar

S → A | B
A→ AA | 0
B → BB | 1.

The unit pairs are (S,A) and (S,B). Remove the unit productions and
introduce all S → α for which A→ α or B → α:

S → AA | BB | 0 | 1
A→ AA | 0
B → BB | 1.

Proof of Theorem 5.6. Let L be a language without ε. By Lemma 5.8 there
is a grammar G without ε and unit productions such that L = L(G). If
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a production of G has a single symbol on the right, then this symbol is a
terminal, so the production is of the form A→ a.

Any other production of G has the form

A→ X1X2 · · ·Xn, n ≥ 2,

where every Xi is either a variable or a terminal. If Xi = a is a terminal,
then introduce a new variable Ca and a new production Ca → a. In the
“long” (n ≥ 2) right hand sides of all productions replace a by Ca. Clearly,
the new grammar G′ generates the same language as the old one.

In the grammar G′, all productions are of the form A → a or A →
B1 · · ·Bn, n ≥ 2. Create a new grammar G′′ by introducing for each pro-
duction of a “long” (n ≥ 3) word a new set of variables D1, . . . , Dn−2 and
replacing this production by a set of productions

A→ B1D1, D1 → B2D2, . . . , Dn−3 → Bn−2Dn−2, Dn−2 → Bn−1Bn.

Again, it is not hard to convince yourself that the new grammar generates
the same language.

Example 5.11. Let us find a Chomsky form of the grammar

S → aB | bA
A→ a | aS | bAA
B → b | bS | aBB

By introducing variables Ca and Cb we get rid of terminals in long words:

S → CaB | CbA
A→ a | CaS | CbAA
B → b | CbS | CaBB
Ca → a

Cb → b

There are two productions A→ CbAA and B → CaBB which have words of
length ≥ 3 on the right hand side. Replace them by two short productions
each:

S → CaB | CbA
A→ a | CaS | CbD1

B → b | CbS | CaD2

Ca → a

Cb → b

D1 → AA

D2 → BB
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6 Pushdown automata

6.1 Definition

A pushdown automaton is similar to a finite automaton: it has a finite
number of states and changes the state according to the input. But it has
additional memory, in the form of a stack of unbounded depth. At every
step the automaton reads the input symbol and the top symbol of the stack.
According to these data, the automaton changes its state and rewrites the
top of the stack.

We proceed to a formal definition.

Definition 6.1. A pushdown automaton or a PDA is a system (Q,Σ,Γ, δ, q0, Z0, F ),
where

• Q is a (finite) set of states, q0 ∈ Q the initial state, F ⊂ Q the set of
final states;

• Σ is the input alphabet, Γ is the stack alphabet, Z0 ∈ Γ is a special
symbol called the start symbol;

• δ is a map from Q× (Σ ∪ {ε})× Γ to finite subsets of Q× Γ∗.

At the beginning, the automaton is in the state q0, and the stack contains
the symbol Z0.

The transition function δ takes three arguments: the current state of the
automaton, an input symbol or ε, and the top symbol of the stack. The
value of the transition function

δ(q, a, Z) = {(p1, γ1), . . . , (pm, γm)}, γi ∈ Γ∗,

is interpreted as follows. If the automaton in the state q reads the input
symbol a and sees the symbol Z on the top of the stack, then, for a random
i, it enters the state pi and replaces the symbol Z by the string γi.

Example 6.2. The rule δ(q, a, Z) = {(p1, BZ), (p2, ε)} means that the au-
tomaton can either go to state p1 and put B into the stack or go to state p2

and take Z out of the stack.

By definition, ε-transitions are allowed:

δ(q, ε, Z) = {(p1, γ1), . . . , (pm, γm)}

means that from the state q and with Z on the top of the stack the automaton
can do a spontaneous transition to a state pi and replace Z with γi.

Example 6.3. The rule δ(q, ε, Z) = ∅ means that no spontaneous transi-
tion (from the state q with Z on the top) is allowed.
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There are two versions of acceptance criteria. In the first, a word w is
accepted if some sequence of moves corresponding to the input w leads to
an empty stack (which means that the start symbol Z0 on the bottom of
the stack should also be removed). In this case the set of final states is
irrelevant, one may put F = ∅.

In the second version, a word w is accepted if some sequence of moves
corresponding to the input w brings the automaton to a final state.

A PDA is deterministic if every set δ(q, a, Z) ∪ δ(q, ε, Z) contains at
most one element (from every state and every input symbol at most one
move is possible, taking ε-transitions into account). Note however that
δ(q, a, Z) = ∅ means that in the state q with top stack symbol Z the input
symbol a is rejected (or “breaks” the automaton).

Example 6.4. Consider the language of binary palindromes with a symbol
c (“center”) in the middle:

L = {wcw̄ | w ∈ {0, 1}∗}.

We describe a deterministic PDA accepting L by the empty stack. Put

M = ({q1, q2}, {0, 1, c}, {A,B,Z0}, δ, q1, Z0,∅).

While the automaton is in the state q1, it stores the input in the stack
encoding 0 with A and 1 with B:

δ(q1, 0, Z) = (q1, AZ) δ(q1, 1, Z) = (q1, BZ) for all Z ∈ Γ.

If the input symbol is c, then the automaton switches to the state q2:

δ(q1, c, Z) = (q2, Z) for all Z ∈ Γ.

While in the state q2, the automaton compares the input symbol with the top
symbol in the stack. If the symbols agree, then the top symbol is removed;
if they disagree, the automaton “breaks down”.

δ(q2, 0, A) = (q2, ε) δ(q2, 1, B) = (q2, ε)

Finally, when the automaton sees the start symbol at the bottom of the
stack, this symbol is removed, and the word is accepted:

δ(q2, ε, Z0) = (q2, ε).

Contrarily to DFA, non-deterministic PDAs are stronger than determin-
istic ones. The language of binary palindromes of even length cannot be
accepted by a deterministic PDA but is accepted by a non-deterministic one
as the next example shows.



150 CHAPTER VI. AUTOMATA THEORY

Example 6.5. A PDA accepting the language {ww̄ | w ∈ {0, 1}∗} by the
empty stack.

M = ({q1, q2}, {0, 1}, {A,B,Z0}, δ, q1, Z0,∅)

The principle is the same: while in the state q1, we encode the input by
putting into the stack A for the input symbol 0 and B for the input 1:

δ(q1, 0, Z0) = (q1, AZ0), δ(q1, 0, B) = (q1, AB)

δ(q1, 1, Z0) = (q1, BZ0), δ(q1, 1, A) = (q1, BA)

However, if the input symbol agrees with the top stack symbol, then this
might be the middle of the palindrome (but also might be not). So, we make
a guess and allow a multiple transition:

δ(q1, 0, A) = {(q1, AA), (q2, ε)}, δ(q1, 1, B) = {(q1, BB), (q2, ε)}.

While in the state q2, we compare the input with the content of the stack:

δ(q2, 0, A) = (q2, ε) δ(q2, 1, B) = (q2, ε)

Finally, we have the possibility to empty the stack spontaneously if its top
symbol is Z0, because this can happen only in the case if the input word
was a palindrome (including the empty input):

δ(q1, ε, Z0) = (q2, ε) δ(q2, ε, Z0) = (q2, ε)

Note that when the stack is empty, a PDA stops and does not accept
any more input.

6.2 Instantaneous description

The configuration of a PDA at any given moment can be represented as
follows.

Definition 6.6. An instantaneous description or ID of a PDA is a triple
(q, w, γ), where q ∈ Q is the current state, w ∈ Σ∗ is the not yet processed
suffix of the input word, and γ ∈ Γ∗ is the content of the stack.

The transition from one configuration to another is denoted by the sym-
bol M . By definition of the transition function one has

(q, aw, Zα) M (p, w, βα)⇔ (p, β) ∈ δ(q, a, Z),

where a ∈ Σ ∪ {ε}.
We write I M

∗ J if for some I1, . . . , In one has

I M I1 M I2 M · · · M In M J.

In these terms, the acceptance criteria by final state and by empty stack
are formulated as follows.
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Definition 6.7. For a PDA M the language accepted by final state is

L(M) = {w | (q0, w, Z0) M
∗ (p, ε, γ) for some p ∈ F and γ ∈ Γ∗},

and the language accepted by empty stack is

N(M) = {w | (q0, w, Z0) M
∗ (p, ε, ε) for some p ∈ Q}.

6.3 Equivalence of acceptance by final state and empty stack

Theorem 6.8. If L = L(M) for some PDA M , then there is a PDA M ′

such that L = N(M ′).

Idea of the proof. To replace acceptance by final states with acceptance by
empty stack, add a new state (erasure state), allow the automaton to go to
this state as soon as it enters a final state, and while in the erasure state
delete the top stack symbols spontaneously.

Theorem 6.9. If L = N(M) for some PDA M , then there is a PDA M ′

such that L = L(M ′).

Idea of the proof. Introduce two new states: a final state qf and a new initial
state q′0, and also a new start symbol X0. As the first step, the automaton
M ′ puts the old start symbol Z0 on the top of the new start symbol and
goes to the old initial state:

δ(q′0, ε,X0) = (q0, Z0X0).

Then one lets the old PDA M do its job. If one sees X0 on the top of the
stack, then it means that M has emptied its stack. One then goes to the
final state:

δ(q, ε,X0) = (qf , ε) for all q 6= q′0.

6.4 Equivalence of PDA’s and CFL’s

In this section we will show that the languages accepted by PDAs are exactly
those generated by context-free grammars. This can be compared to the
fact that the languages accepted by DFAs are those described by regular
expressions.

Theorem 6.10. For every context-free language L there is a PDA M such
that N(M) = L.

The proof uses the notion of a leftmost derivation of a word in a context-
free grammar. A leftmost derivation is characterized by the property that at
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each step a production rule is applied to the leftmost variable in the current
word. In other words, the derivation

S = α0 ⇒ α1 ⇒ · · · ⇒ αm ⇒ w

is leftmost if, when we represent αi as

αi = uiAiγi, ui ∈ T ∗, Ai ∈ V, γi ∈ (T ∪ V )∗,

then αi+1 comes from a production Ai → βi:

αi = uiAiγi ⇒ uiβiγi = ui+1γi+1 = αi+1. (4)

(This means in particular that ui is a prefix of ui+1.)
A leftmost derivation always exists: it can be obtained from a derivation

tree by the depth-first traversal.

Proof of Theorem 6.10. LetG = (V, T, P, S) be a context-free grammar such
that L = L(G). We construct a PDA that simulates leftmost derivations of
words in G and accepts them by the empty stack.

The PDA will have the following structure:

M = ({q}, T, T ∪ V, δ, q, S,∅).

( It has only one state, thus everything is about changing the stack content.
The transition rules are as follows:

δ(q, ε, A) = {(q, β) | (A→ β) ∈ P}, δ(q, a, a) = (q, ε).

In other words,

(q, w,Aγ) M (q, w, βγ) whenever (A→ β) ∈ P (5)

(q, aw, aβ) M (q, w, β) (6)

Let us show that M accepts all words generated by G. From the defini-
tion of a leftmost derivation of w it is clear that each ui is a prefix of w:
w = uivi. The transition rules allow to transform the ID (q, vi, Aiγi) to
(q, vi+1, Ai+1γi+1):

(q, vi, Aiγi) M (q, vi, βiγi) M
∗ (q, vi+1, Ai+1γi+1).

First, the rule (5) is applied, and then a sequence (maybe empty) of rules
(6). Going over i from 0 to m one transforms (q, w, S) to (q, ε, ε).

Conversely, emptying the stack with the help of the rules (5) and (6) can
be interpreted as a derivation of a word in the grammar G.

Theorem 6.11. For every PDA M the language N(M) is context-free.

We do not give a proof, but it is a sort of reversal of the above construc-
tion.
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7 Properties of context-free languages

7.1 Closure properties of CFLs

Theorem 7.1. Context-free languages are closed under union, concatena-
tion and Kleene closure.

Proof. Let L be a context-free language, and let G = (V, T, P, S) be a gram-
mar that generates L. We construct a grammar G′ by adding to V a new
symbol S′ (which will be the new start symbol) and a new production rule:

V ′ = V ∪ {S′}, P ′ = P ∪ {S′ → SS′ | ε}.

In G′ one can derive all words of the Kleene closure L∗:

S′ ==⇒
G′

SS′ ==⇒
G′

SSS′ ==⇒
G′
· · · ==⇒

G′
SS . . . S ==⇒

G′
w1w2 . . . wn.

Vice versa, every word derived from S′ belongs to L∗.
Let now L1 and L2 be languages generated by context-free grammars

G1 = (V1, T1, P1, S1), G2 = (V2, T2, P2, S2).

Put T = T1 ∪ T2. We want to show that the languages L1 ∪ L2 ⊂ T ∗

and L1L2 ⊂ T ∗ are context-free. In both cases rename the variables so
that V1 ∩ V2 = ∅ and construct a new grammar G′ = (V ′, T, P ′, S′) with
V ′ = V1 ∪ V2 ∪ {S′}. It is easy to see that the production rules

P ′ = P1 ∪ P2 ∪ {S′ → S1 | S2}

generate the language L1 ∪ L2, and the production rules

P ′ = P1 ∪ P2 ∪ {S′′ → S1S2}.

generate L1L2.

Corollary 7.2. Every regular language is context-free.

First proof. A regular language can be constructed from the basic languages
∅, {ε}, {a} by operations of union, concatenation and Kleene closure.
Therefore it suffices to show that the basic languages are context-free. Each
of them is generated by the grammars with a single variable S and the
following production sets:

P = ∅ for L = ∅, P = {S → ε} for L = {ε}, P = {S → a} for L = {a}.

Second proof. A regular language is accepted by some DFA. Every DFA can
be viewed as a PDA with stack playing no role and word acceptance by final
states.
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7.2 The pumping lemma for CFLs

For any finite alphabet Σ the set of all words Σ∗ is countably infinite. The
set of all languages over Σ is the set of all subsets of Σ∗ and therefore
uncountably infinite. On the other hand, the set of all pushdown automata
with the input language Σ is countably infinite (as is the set of all context-
free grammars). It follows that there are languages which are not context-
free.

The following theorem provides a tool to prove non-context-freeness of
some languages.

Theorem 7.3. Let L be a context-free language. Then there is a positive
integer n such that every z ∈ L of length |z| ≥ n can be split into subwords
z = uvwxy in such a way that

1. |vx| ≥ 1, that is the words v and x are not both empty;

2. |vwx| ≤ n;

3. for all i ≥ 0 we have uviwxiy ∈ L.

That is to say, every sufficiently long word contains two subwords within
a bounded region (the bound n depends on the language, but not on the
choice of a word from the language) that can be removed or repeated several
times.

Example 7.4. Let us prove that the language L = {aibici | i ≥ 1} is not
context-free. Assume it is, and let n be a constant from the pumping lemma
corresponding to this language. Take z = anbncn and write it as z = uvwxy
so that the properties of the pumping lemma are satisfied. We claim that
z′ = uwy = uv0wx0y /∈ L. Indeed, since |vwx| ≤ n, the subword vwx is
eiter contained in the prefix anbn or in the suffix bncn of z. In the first case
the word z′ has n letters c at the end, but less than 2n a’s and b’s in total,
so that z′ /∈ L. Similarly, in the second case z′ has n a’s, but not enough b’s
and c’s.

Recall that the language {aibi | i ≥ 1} is context-free (Example 5.4,
slightly modified to exclude the empty word). The language from the previ-
ous example does not look more complicated, however it is no more context-
free.

Similarly, we know from Example 6.5 that the set of even-length palin-
dromes {ww̄ | w ∈ {0, 1}∗} is a context-free language. The language of
the next example does not look much different, but it is not context-free.
(Althoug it could be accepted by an automaton with a queue memory.)

Example 7.5. The language L = {ww | w ∈ {0, 1}∗} is not context-free.
Assume it is, and let n be a pumping bound for this language. Take the
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word z = 0n1n0n1n ∈ L and write it as z = uvwxy according to the pumping
lemma. By the lemma, the word z′ = uwy is in L, we will however show
that this is impossible.

The subword vwx is contained within some two consecutive blocks (inside
0n1n or 1n0n). If vwx is contained in the first half, then while transforming
z to z′ we removed some symbols from the first half. It follows that uwy =
0k1l0n1n, where k, l ≤ n and at least one of them is < n. This word does
not belong to L. Similarly, for the other situations of vwx the depumped
word has the form 0n1k0l1n or 0n1n0k1l and does not belong to L either.

Recall that a derivation of a word in a context-free grammar can be
represented in the form of a derivation tree, see Figure 17. (Sometimes
different trees can derive the same word, but this is not a problem.) If the
grammar has Chomsky form, then its derivation trees are binary trees. More
exactly, a derivation tree of a Chomsky form grammar is a full binary tree
(variable nodes) together with an additional edge hanging down from every
leaf (terminal nodes).

Lemma 7.6. Let G be a grammar in Chomsky form, and T be a parse
tree for a word z ∈ G. If T contains no path of length greater than i, then
|z| ≤ 2i−1.

Proof. The length of z is the number of leaves of the derivation tree. Deleting
the terminal nodes does not change the number of leaves but decreases the
depth of the tree by one. A full binary tree of depth i− 1 has at most 2i−1

leaves.

Proof of Theorem 7.3. Let G be a grammar in Chomsky form generating the
language L \ {ε}. Put n = 2k−1 + 1, where k is the number of variables in
G. We will show that this n satisfies the conditions of the pumping lemma.

Let z ∈ L(G) be such that |z| ≥ n, and let T be any derivation tree for
z. By Lemma 7.6, T contains a path of length at least k + 1. This path
contains at least k + 2 vertices. The last vertex of the path is labeled by a
terminal, all of the other vertices are labeled by variables. Hence there is a
variable that appears on this path at least twice.

Take any of the longest paths in T and, ascending it from the leaf, find
the first repetition of variables. This gives us two vertices v1 and v2 such
that

1. v1 and v2 have the same label, say A;

2. v1 is closer to the root than v2;

3. the portion of the path from v1 to the leaf has length at most k + 1.

The subtree T1 with the root v1 represents a derivation from A of a word
z′ which is a subword of z and has length at most 2k. Indeed, the portion
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of our path from v1 down to the leaf has length at most k + 1, and there is
no longer path starting from v1 because we have chosen a longest path.

w x

S

A

A

z′

u v y

Figure 18: Proof of the pumping lemma for CFLs: structuring a word.

The tree T1 contains a subtree T2 growing from v2. This subtree derives
from A a word w which is a subword of z′:

z′ = vwx,

see Figure 18. The words v and x cannot both be ε, because v1 has two
children, only one of which is an ancestor of v2, so that the other child
generates a subword of z′ disjoint from w.

To summarize, we have

S
∗
=⇒ uAy,

∗
=⇒ vAx, A

∗
=⇒ w.

It follows that A
∗
=⇒ viwxi and S

∗
=⇒ uviwxiy for all i ≥ 0. A derivation tree

for uviwxiy can be obtained from the tree T by cut, copy, and paste, see
Figure 19.

7.3 Non-closure properties of CFLs

We have already proved that context-free languages are closed under union,
concatenation and Kleene closure.

Theorem 7.7. The set of context-free languages is not closed under inter-
section.



7. PROPERTIES OF CONTEXT-FREE LANGUAGES 157

Figure 19: Proof of the pumping lemma for CFLs: pumping a word. These
trees represent the words uv3wx3y and uwy respectively.

Proof. Consider the languages

L = {aibici | i ≥ 1},
L1 = {aibicj | i, j ≥ 1},
L2 = {aibjcj | i, j ≥ 1}.

We have L = L1 ∩ L2. As we know, L is not context-free. On the other
hand L1 is generated by the grammar

S → AB, A→ aAb | ab, B → cB | c.

The language L2 is generated by a similar grammar. Thus L1 and L2 are
context-free languages whose intersection is not context-free.

Theorem 7.8. The set of context-free languages is not closed under com-
plementation.

Proof. We know that CFL’s are closed under union. If they would be closed
under complementation, then due to

L1 ∩ L2 = L1 ∪ L2

they would also be closed under intersection, which is not the case.

The above argument is non-constructive. Applied to the languages L1,
L2, L from the proof of Theorem 7.7 it says that at least one of the following
is true:

1. L1 is context-free, but L1 is not;

2. L2 is context-free, but L2 is not;

3. L1 ∪ L2 is context free, but its complement is not.
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Remark 7.9. The situation is similar to the following proof of the existence

of two irrational numbers α and β such that αβ is rational. If
√

2
√

2
is

rational, then one may take α = β =
√

2. If
√

2
√

2
is irrational, then one

may take α =
√

2
√

2
, β =

√
2 because of(√

2

√
2
)√2

=
√

2

√
2·
√

2
=
√

2
2

= 2.

(In fact,
√

2
√

2
is rational, which follows from a more general (and more

complicated) theorem by Gelfond and Schneider from 1934.)

It is possible to give a concrete example of a context-free language with
a non-context-free complement. Namely, according to Example 7.5 the lan-
guage {x ∈ {0, 1}∗ | x = ww for some w ∈ {0, 1}∗} is not context-free. Its
complement is context-free (exercise).

8 Turing machines

8.1 Definition

Similarly to all automata we considered before, a Turing machine has a finite
number of states and changes its states according to the input. The input
is a finite word on an infinite tape, and there are two new aspects in how
the machine interacts with the input:

• the machine can move along the tape;

• the machine can write on the tape.

Any sort of input: a number, a list, a table, a combinatorial structure
such as a graph, can be encoded as a sequence of symbols on a tape (one just
needs to choose an encoding convention). For any algorithm: multiplication
of integers, search for a path between two vertices in a graph, there is a
Turing machine which applies this algorithm to any given input. The last
sentence is, in fact, a definition of the algorithm and a form of the Church
thesis: everything which “can be computed” can be done with some Turing
machine.

Definition 8.1. A Turing machine is

M = (Q,Σ,Γ, δ, q0, B, F ),

where

• Q is the set of states, q0 ∈ Q is the initial state, and F ⊂ Q is the set
of final states;
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• Γ is the set of tape symbols, Σ ⊂ Γ is the set of input symbols, and
B ∈ Γ \ Σ is the blank symbol;

• δ : Q×Γ→ Q×Γ×{L,R} is a partial map (that is, it can be undefined
for some arguments), called the move function.

At each moment of time, the machine is situated opposite to some cell of
the input tape. The input symbol X and the current state p of the machine
determine its move δ(p,X) = (q, Y,D) which consists in:

• changing the state to q,

• replacing the symbol X in the current cell by Y ,

• and moving in the direction D (one cell to the left if D = L or one cell
to the right if D = R).

See Figure 20.

X1 X2 X Xn B B

p

Figure 20: A Turing machine.

At the beginning, the machine is placed at the leftmost cell of the tape
and is in the state q0. The language accepted by M is the set of all input
words for which M enters a final state at some moment of time. After
entering a final state, the machine halts, that is q(f,X) is undefined for all
f ∈ F . If the input word is not accepted, then the machine either halts in a
non-final state or runs forever (in an infinite loop or by increasing the data
volume on the tape to infinity).

Example 8.2. Let us design a machine accepting the language {0n1n | n ≥
1}. The algorithm is as follows: check the first zero, move right until meet
the first one and check it, move left to the first unchecked one and check
it, move right... etc. The machine will have several states according to the
tasks: for example, a state for moving right until find the first (unchecked)
one. Checking the symbols will be done by replacing them: 0 with X, and
1 with Y . By carefully working out the details one may arrive at a machine
with

Q = {q0, q1, q2, q3, q4}, Γ = {0, 1, X, Y,B}, F = {q4}

and the move function described by the following table.
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0 1 X Y B

q0 (q1, X,R) − − (q3, Y, R) −
q1 (q1, 0, R) (q2, Y, L) − (q1, Y, R) −
q2 (q2, 0, L) − (q0, X,R) (q2, Y, L) −
q3 − − − (q3, Y, R) (q4, B,R)
q4 − − − − −

In a similar way one can construct a machine accepting the language
{0n1n2n | n ≥ 1} (recall that this language is not context-free).

Definition 8.3. A language is called recursively enumerable if it is accepted
by some Turing machine. A language is called recursive if it is accepted by
a Turing machine which halts on every input.

All context-free languages are recursively enumerable because every push-
down automaton can be simulated by a Turing machine. One can show that
context-free languages are also recursive.

If a language is recursively enumerable but not recursive, then every Tur-
ing machine accepting it will run forever on some input word not belonging
to the language. Later we will give an example of such a language.

Lemma 8.4. A language L is recursive if and only if both L and its com-
plement are recursively enumerable.

Proof. A recursive language is recursively enumerable by definition. Its com-
plement is also recursively enumerable: take the same machine and replace
F by Q \ F .

If L and Σ∗ \L are recursively enumerable, then one lets the correspond-
ing machine run on the same input word w. At least one of the machines
will halt and tell us whether w ∈ L or not.

We do not go into details how one can combine two Turing machines
into one, but this can be done with the techniques similar to those we used
to design new finite automata.

8.2 Modifications of Turing machines

There are several variations of Turing machines, e. g.:

• multi-tape: several tapes, each with its own head for reading and
writing;

• multidimensional: a square grid instead of a tape, the head can move
not only left and right, but also up and down;

• non-deterministic.

Although they seem more powerful, each of them can be simulated by an
ordinary Turing machine.
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8.3 Problems and languages

Consider a problem like “Is a given finite graph connected?” An instance
of a problem is any finite graph. Since graphs can be encoded as words
in an alphabet, this problem determines a language: the set of all words
encoding connected graphs. This holds for any question which depends on
some countable parameter and has a yes/no answer: encode the parameter
values by words, and consider the set of all words for which the answer to
the question is “yes”.

Definition 8.5. A problem is called decidable if the corresponding language
is recursive, that is if there is a Turing machine which halts on every input
and accepts exactly those words which correspond to problem instances with
the positive answer.

A problem is called semi-decidable if the corresponding language is re-
cursively enumerable.

8.4 The universal language

Definition 8.6. The universal language is the set

Lu = {(M,w) | Turing machine M accepts word w}.

A Turing machine can be encoded with a binary word (once an encoding
convention is chosen). Similarly, words in all finite alphabets can be encoded
by binary words (once a binary encoding of the alphabet symbols is chosen).
Therefore the universal language can be viewed as a language over a binary
alphabet.

Lemma 8.7. The universal language is recursively enumerable.

Proof. Receiving (M,w) as input, let M run on w. As soon as M halts
accepting w, accept the pair (M,w).

A Turing machine which implements the above algorithm can be de-
scribed in a multi-track architecture: the first tape holds the code of M , the
second tape holds the word w, the third tape is used to store the state of
M , the fourth tape stores the position in the tape of M .

8.5 Undecidability of the halting problem

The halting problem is “Does Turing machine M accept input w?” The
corresponding language is the universal language Lu.

Theorem 8.8. The halting problem is undecidable, that is, the universal
language is not recursive.

Construct a language Ld:

Ld = {wi | wi is not accepted by Mi}.
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Lemma 8.9. The language Ld is not recursively enumerable.

Proof. Assume the contrary. Then there is a Turing machine Mj which
accepts the language Ld. By inspection of the word wj we arrive to a
contradiction:

• if wj ∈ Ld, then by definition of Ld the word wj is not accepted by
Mj , which by the choice of Mj means that wj /∈ Ld;

• if wi /∈ Ld, then by definition of Ld the word wj is accepted by Mj ,
which by the choice of Mj means that wj ∈ Ld.

Proof of Theorem 8.8. If Lu is recursive, then there is a Turing machine A
which always halts and accepts only pairs (M,w) from Lu. Let us show
that then Ld is recursive, which contradicts Lemma 8.9. Given a word w
determine the integer i such that wi = w. Then determine the machine
Mi. Feed (Mi, wi) into A and accept w if and only if A does not accept
(Mi, wi). This gives an algorithm which always stops and recognizes the
language Ld.

Remark 8.10. The above argument together with Lemma 8.7 shows that
the complement of Ld is recursively enumerable (but not recursive).
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