Mathematical Methods for Computer Science II

Spring 2021

Series 10 - Hand in before Monday, 17.05.2021-12.00

1. Show that the following languages are not regular:
a) The set of all binary words of odd length with 1 in the middle: $\{u 1 v||u|=|v|\}$.
b) The set of all "words repeated twice": $\left\{w w \mid w \in\{0,1\}^{*}\right\}$.
2. Let L be the language of all binary words without two consecutive zeros.
a) Describe the equivalence classes of binary words with respect to L.
b) Construct a minimal DFA accepting L and indicate which state of this DFA corresponds to which equivalence class under \sim_{L}.
3. Let $L \subset \Sigma^{*}$ be a language, and let $a \in \Sigma$ be a letter of the alphabet. The quotient of L by a is the following language:

$$
L / a=\left\{w \in \Sigma^{*} \mid w a \in L\right\}
$$

a) Show that $L / a \cdot\{a\} \subset L$, but not necessarily $L / a \cdot\{a\}=L$. Here, \cdot stands for the concatenation of languages.
b) Show that $u \sim_{L} v \Rightarrow u \sim_{L / a} v$.
c) Show that if L is a regular language, then the language L / a is also regular.
4. Minimize the DFA given by the following table.

	0	1
q_{0}	q_{2}	q_{0}
q_{1}	q_{6}	q_{7}
q_{2}	q_{0}	q_{3}
q_{3}	q_{7}	q_{2}
q_{4}	q_{7}	q_{5}
q_{5}	q_{6}	q_{4}
q_{6}	q_{5}	q_{6}
q_{7}	q_{7}	q_{0}

Here, q_{0} is the initial state, and q_{7} is the only final state.
5. Let L be the language of all binary words of length ≥ 10 whose tenth symbol from the right is 1 . What is the minimum number of states in a DFA accepting L ?

