Mathematical Methods for Computer Science II

Spring 2021

Series 9 - Hand in before Monday, 10.05.2021 - 12.00

- 1. For a binary word w denote by $\ell_0(w)$ the number of 0's in w, and by $\ell_1(w)$ the number of 1's in w. Which of the following languages are regular? Justify your answer.
 - a) $\{w \in \{0,1\}^* \mid \ell_0(w) > \ell_1(w)\}$
 - b) $\{w \in \{0,1\}^* \mid \ell_0(w) \neq \ell_1(w)\}$
- 2. Which of the following languages are regular? Justify your answer.
 - a) All binary palindromes (words which read the same backwards as forwards).
 - b) All binary words of length at least two whose first symbol is the same as the second symbol from the end.
- 3. a) Prove the following extension of the pumping lemma. Let L be a regular language. Then there is a positive integer n such that for any words z_1 , z_2 , z_3 whose concatenation $z_1 z_2 z_3$ is in L and $|z_2| \ge n$ the middle word z_2 can be written as $z_2 = uvw$ with $|v| \ge 1$ so that $z_1 uv^k wz_3 \in L$ for all $i \ge 0$.
 - b) Prove that the language $\{a^i b^j c^j \mid i \ge 50, j \ge 0\}$ is not regular.
- 4. Let $\Sigma = \{a, b, c\}$ and $\Delta = \{0, 1\}$. Consider the homomorphism $h: \Sigma^* \to \Delta^*$ defined by h(a) = 0, h(b) = 01, h(c) = 10.
 - a) Describe the homomorphic image $h(\Sigma^*)$ in a human language.
 - b) Let $L \subset \Delta^*$ be the language described by the regular expression $0(10)^*$. Find a regular expression for $h^{-1}(L)$ and justify your answer.
- 5. Let rev: $\Sigma^* \to \Sigma^*$ be a map that reverses the words:

$$\operatorname{rev}(a_1 \ldots a_n) = a_n \ldots a_1.$$

Show that if $L \subset \Sigma^*$ is a regular language, then so is rev(L).