Mathematical Methods for Computer Science II

Spring 2021

Series 8 - Hand in before Monday, 03.05.2021-12.00

1. Let $M_{i}, i=1,2,3$, be ε-NFAs with a unique final state, and L_{i} be the language accepted by M_{i}. Using the algorithm given in the lecture, sketch an ε-NFA that accepts the language $\left(L_{1} \cup L_{2}\right) L_{3}$ and an automaton that accepts the language $\left(L_{1} L_{3}\right) \cup\left(L_{2} L_{3}\right)$.
2. Let M be an ε-NFA with n states accepting a language L. Sketch an ε-NFA M^{\prime} accepting the language $L\left(L^{*}\right)$ such that its number of states is also n. (In M^{\prime} transitions from the final state are allowed.)
3. Let $\left(Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right), i=1,2$, be two DFAs accepting the languages L_{1} and L_{2}, respectively. Let n_{1} and n_{2} be the number of states in the first and in the second automaton, respectively. Describe a DFA with $n_{1} n_{2}$ states that accepts the language $L_{1} \cup L_{2}$ and a DFA that accepts the language $L_{1} \cap L_{2}$. In both cases, give a formal description of the set of states, of the transition function, and of the set of final states.
4. Find a regular expression for the language accepted by the automaton shown below.

5. Construct a regular expression for the language of all binary words with an even number of zeros and an even number of ones.
