Mathematical Methods for Computer Science II

Spring 2021

Series 7 – Hand in before Monday, 26.04.2021 - 12.00

1. Construct a DFA equivalent to the ε -NFA given by the following table.

	ε	a	b	c
q_0	$\{q_1, q_2\}$	Ø	$\{q_1\}$	$\{q_2\}$
q_1	Ø	$\{q_0\}$	$\{q_2\}$	$\{q_0,q_1\}$
q_2	Ø	Ø	Ø	Ø

The initial state is q_0 , the only final state is q_2 .

- 2. a) Construct an ε -NFA for the set of binary words consisting either of repeating 01 or of repeating 010 (the empty word ε also belongs to this language).
 - b) Construct a finite automaton (DFA, or NFA, or ε -NFA) for the set of binary words which contain at least one symbol 1 in the last three positions. Try to minimize your construction.
- 3. Describe the following languages in a human language as briefly as possible. a) $(0^*1^*)^*$
 - b) $(0+1)^*0(0+1)^*0(0+1)^*$
 - c) $(1^*01^*01^*)^*$
 - d) $(1+01)^*$
- 4. Find regular expressions for the following languages.
 - a) Sequences of zeros of length n such that n dollars can be changed into bills of 17 and 31 dollars.
 - b) Binary words with two consecutive 1s at some place.
 - c) Binary words without two consecutive 1s.
 - d) Binary words whose number of 0s is odd.
- 5. Show that for every ε -NFA with *n* states and at least one ε -transition there is an equivalent DFA with at most $3 \cdot 2^{n-2}$ states.