Mathematical Methods for Computer Science II

Spring 2021

Series 4 - Hand in before Monday, 29.03.2021-12.00

1. Describe the combinatorial meaning of the coefficient at x^{n} in the formal power series

$$
\prod_{k=0}^{\infty}\left(1+x^{2 k+1}\right)
$$

2. Denote by $p(n, k)$ the number of partitions of n into exactly k parts, and by $p(n, \leq k)$ the number of partitions of n into at most k parts.
a) Show that $p(n-k, \leq k)=p(n, k)$.
b) Show that $p(n, k)=p(n-1, k-1)+p(n-k, k)$.
3. Show that

$$
\begin{aligned}
\sum_{n=0}^{\infty} p(n, \leq k) x^{n} & =\frac{1}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{k}\right)}, \\
\sum_{n=0}^{\infty} p(n, k) x^{n} & =\frac{x^{k}}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{k}\right)} .
\end{aligned}
$$

4. Show that the number of all partitions of n is even if and only if the number of partitions of n into distinct odd parts is even.
5. The Durfee square is the largest square that fits into the Ferrers diagram of a partition, see Figure below. Using the Durfee square (and a theorem from the course) show that the number of partitions of n into distinct odd parts is equal to

$$
\sum_{k=1}^{\infty} p\left(\frac{n-k^{2}}{2}, \leq k\right) .
$$

(If $\frac{n-k^{2}}{2}$ is not an integer, then the corresponding term is put to be zero. In other words, the sum goes over even k if n is even and over odd k if n is odd.)

