Mathematical Methods for Computer Science II

Spring 2021

Series 1 - Hand in before Monday, 08.03.2021-12.00

1. a) Expand $(1+\sqrt{5})^{n}$ and $(1-\sqrt{5})^{n}$ using the binomial theorem.
b) Prove the following formula for Fibonacci numbers:

$$
a_{n}=\frac{\binom{n}{1}+5\binom{n}{3}+5^{2}\binom{n}{5}+\cdots}{2^{n-1}} .
$$

2. Derive a closed formula for the n-th term of the recursive sequence

$$
a_{0}=0, \quad a_{1}=1, \quad a_{n}=5 a_{n-1}-6 a_{n-2}
$$

3. Derive a closed formula for the n-th term of the recursive sequence

$$
a_{0}=-1, \quad a_{1}=1, \quad a_{2}=2, \quad a_{n}=3 a_{n-2}-2 a_{n-3} .
$$

4. a) Let b_{n} be the number tilings of the rectangle of size $2 \times n$ with dominoes. The figure below shows an example of such a tiling for $n=7$. Show that $b_{n}=a_{n+1}$, where a_{n} is the Fibonacci sequence: $a_{1}=a_{2}=1, a_{n+1}=a_{n}+a_{n-1}$.

b) How many perfect matchings does the graph $P_{2, n}$ have? (Here, $P_{m, n}$ denotes the graph of the square grid on $m \times n$ vertices.)
5. Let a_{n} denote the sequence of Fibonacci numbers:

$$
a_{1}=1, \quad a_{2}=1, \quad a_{n}=a_{n-1}+a_{n-2} \text { for } n>2 .
$$

a) Prove that for any $1 \leq k \leq n-2$, we have the formula

$$
a_{n}=a_{k+1} a_{n-k}+a_{k} a_{n-k-1}
$$

b) Show that if m is divisible by n, then a_{m} is divisible by a_{n}.

