Mathematical Methods for Computer Science I Fall 2020

Series 12 – Hand in before Monday, 14.12.2020 - 12.00

- 1. Prove the validity of the following predicate formulas by constructing a proof tree for each of them.
 - a) $(\exists x \forall y P(x, y)) \rightarrow (\forall y \exists x P(x, y))$
 - b) $(\forall x P(x) \land \exists y Q(y)) \rightarrow (P(f(v)) \land \exists z Q(z))$
- 2. Construct finite counterexample trees for the following predicate formulas. Describe the corresponding structures (universe plus predicate interpretation) explicitly.
 a) ∃xP(x) → ∀xP(x)
 b) ∃xP(x) ∧ ∃xQ(x) → ∃x(P(x) ∧ Q(x))
- 3. Apply the algorithm from the lecture to construct an infinite deduction tree for the formula

$$(\forall x \exists y P(x, y)) \to (\exists y \forall x P(x, y)).$$

Describe explicitly the infinite counterexample generated by this tree.

- 4. Let A be a propositional formula with propositional symbols p_1, \ldots, p_n , and let ϕ_1, \ldots, ϕ_n be any closed predicate formulas. Define $A[\phi_1/p_1, \ldots, \phi_n/p_n]$ to be the result of substitution of ϕ_i for p_i in A. (Clearly, the result is a well-formed predicate formula.)
 - a) Prove that if A is a tautology, then $A[\phi_1/p_1, \ldots, \phi_n/p_n]$ is valid.
 - b) Prove that if A is not satisfiable, then so is $A[\phi_1/p_1, \ldots, \phi_n/p_n]$.
 - c) Show that if A is satisfiable, then $A[\phi_1/p_1, \ldots, \phi_n/p_n]$ is not necessarily satisfiable.
- 5. Consider a signature that consists of n unary predicates only (no functions, no k-ary predicates with k > 1). Show that if a formula in this signature is satisfiable, then it is satisfied by some structure with a finite universe of at most 2^n elements.