Mathematical Methods for Computer Science I

Fall 2020

Series 7 - Hand in before Monday, 9.11.2020-12.00

1. a) How many different maximal matchings does the complete bipartite graph $K_{m, n}$ have? (Without loss of generality, you can assume $m \leq n$.)
b) How many different perfect matchings does the complete graph $K_{2 n}$ have?
2. a) Find an augmenting path for the matching shown below. Use this path to modify the matching to one with more edges.

b) A graph G is called Hamiltonian if it has a Hamiltonian cycle, that is, a cycle that contains all vertices of G. Show that every Hamiltonian graph with an even number of vertices has a perfect matching.

The final three exercises deal with matchings of weighted graphs. Let $G=(V, E)$ be a graph, and let $w: E \rightarrow \mathbb{R}_{\geq 0}$ be a weight function on the edges. The goal is to find matchings $M \subset E$ so that the sum of the edge weights is large. We study the following greedy algorithm for finding an inclusion-maximal matching (similar to Kruskal's algorithm):
i) order the edges with decreasing weights: $\left(e_{1}, \ldots e_{m}\right)$ with $w\left(e_{1}\right) \geq \cdots \geq w\left(e_{m}\right)$,
ii) let M_{0} be the empty set,
iii) having defined M_{i}, let $M_{i+1}=M_{i} \cup\left\{e_{i+1}\right\}$ if e_{i+1} has no common vertex with the edges in M_{i}, and $M_{i+1}=M_{i}$ otherwise.
The output of this greedy algorithm is $M_{G}:=M_{m}$.
3. Choose any weight function $w: E \rightarrow \mathbb{R}_{\geq 0}$ on the edges of the Petersen graph, and carry out the above greedy algorithm.
4. Let $v_{w}(G)$ be the maximal possible value of the sum of edge weights of a matching in G. Show that the sum of edge weights of the matching M_{G} obtained by the greedy algorithm described above is at least $\frac{1}{2} v_{w}(G)$.
(Hint: Let M be any matching of G. To each edge $e \in M$, assign the first edge of M_{G} having a common endpoint. In this way, each edge $e \in M_{G}$ is assigned to at most two edges $e_{1}, e_{2} \in M$, with $w\left(e_{1}\right), w\left(e_{2}\right) \leq w(e)$.)
5. Show that the bound in Exercise 4 is optimal; that is, for any constant $\alpha>\frac{1}{2}$, there exists an input (G, w) for which the greedy algorithm described above finds a matching with sum of edge weights smaller than $\alpha v_{w}(G)$.

Remark: There exist algorithms that produce matchings of maximal combined edge weight $v_{w}(G)$. These are more elaborate than the greedy algorithm we have considered.

