Mathematical Methods for Computer Science I

Fall 2020

Series 4 - Hand in before Monday, 19.10.2020-12.00

1. The graph shown below is called the Petersen graph.

Show that it is isomorphic to the following graph:

$$
\begin{aligned}
V & =\{\text { all two-element subsets of }\{1,2,3,4,5\}\}, \\
E & =\{\{A, B\}: A \cap B=\varnothing\} .
\end{aligned}
$$

2. Can you give an example of
a) a 4 -regular graph with 7 vertices?
b) a 3 -regular graph with 8 vertices?
c) a 3 -regular graph with 7 vertices?
3. a) Let G be a graph with 15 vertices such that one of the vertices has degree 14 . Show that this graph is connected.
b) Let G be a graph with 15 vertices such that every vertex has degree at least 7 . Show that this graph is connected.
4. Show that if a connected graph $G=(V, E)$ contains no cycles of odd length, then it is bipartite.
(Hint: Fix a vertex $v \in V$ of the graph and consider the function $f: V \rightarrow\{0,1\}$ sending a vertex w to 0 if the shortest path from v to w is of even length, and to 1 if it is of odd length.)
5. Let A be the adjacency matrix of a graph $G=(V, E)$, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
a) Let $b_{i j}$ be the (i, j)-entry of the matrix A^{2}. Show that:
i) $b_{i i}$ is equal to the degree of the vertex v_{i},
ii) $b_{i j}$ equals the number of paths of length two from v_{i} to v_{j}, for $i \neq j$.
b) Let $a_{i j}^{(k)}$ be the (i, j)-entry of the matrix A^{k}, for a fixed $k \geq 1$. Show that $a_{i j}^{(k)}$ equals the number of walks of length k from v_{i} to v_{j}.
(Hint: Induction on k and the definition of matrix multiplication.)
