Mathematical Methods for Computer Science I

Fall 2020

Series 2 - Hand in before Monday, 05.10.2020-12.00

1. a) Let m, n, k be positive integers such that $k \leq m$ and $k \leq n$. Prove:

$$
\binom{m+n}{k}=\binom{m}{0}\binom{n}{k}+\binom{m}{1}\binom{n}{k-1}+\cdots+\binom{m}{k}\binom{n}{0}
$$

(Hint: think of taking k balls from a bag with m black and n white balls. In how many ways do you get i black and $k-i$ white balls?)
b) Prove the same identity by looking at the coefficient of x^{k} on the left hand side and on the right hand side of

$$
(1+x)^{m+n}=(1+x)^{m}(1+x)^{n}
$$

2. a) How many lattice paths are there that go from A to B moving only downwards and passing through the point C ?

b) Prove the identity

$$
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}
$$

using the fact that any path from A to B passes through one of the white points.
c) Prove the same identity using the result of Problem 1.
3. Draw a convex n-gon and all of its diagonals. How many intersection points between the diagonals are there, if no three of them pass through a common point? (For example, in a quadrilateral there is one intersection point, and in a pentagon there are five.)
4. Prove the identity

$$
\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{k}\binom{n}{k}=(-1)^{k}\binom{n-1}{k}
$$

(Hint: use induction on k.)
5. Recall that a composition of a positive integer n is a representation of n as the sum of positive integers, taking into account the order of summands. The number of summands can range between 1 and n, in particular the compositions

$$
n=n \quad \text { and } \quad n=\underbrace{1+\cdots+1}_{n}
$$

are possible. How many different compositions of n are there?

