Mathematical Methods for Computer Science I

Fall 2020
Series 1 - Hand in before Monday, 28.09.2020-12.00

1. In some course at the University of Fribourg this Fall, there are 12 exercise sheets with 5 exercises per sheet. In order to be allowed to the exam, students should solve at least 3 exercises on at least 9 exercise sheets.
a) How many different selections of exercises can a student make in order to be admitted to the exam with minimal effort (that is, by solving exactly three exercises of exactly nine exercise sheets each)?
b) A student randomly chooses 27 of the exercises and solves exactly those. What is their chance of getting admitted to the exam?
2. The chessboard has the size 8×8. Two rooks on a chessboard are called threatening each other if they are situated in the same vertical or horizontal row.
a) In how many different ways can one put two (undistinguishable) rooks on the chessboard so that they don't threaten each other?
b) In how many different ways can one put eight (undistinguishable) rooks on the chessboard so that they don't threaten each other?
c) In how many different ways can one put two white and two black rooks on the chessboard so that no two rooks of different colors are threatening each other?

3. Let p_{k} be the probability that among given k people there are two with the same birthday. (For simplicity, assume that all years have 365 days.)
a) Compute p_{k}.
b) Reformulate the problem in terms of sets and maps.
c) Express p_{k+1} in terms of p_{k}.
d) Find the smallest k such that p_{k} is bigger than 50%.
4. a) In how many different ways can one form two volleyball teams, the blue one and the red one, from the given 12 players?
b) In how many different ways can one form two volleyball teams from the given 12 players without yet deciding which team plays in which colors?
c) How many different bracelets can one make out of $n \geq 2$ different stones? The bracelet has no lock and must contain all n stones.
5. a) How many different natural divisors does the number 60 have? (Hint: $60=2^{2} \cdot 3 \cdot 5$. What can the prime factorization of a divisor of 60 look like?)
b) Let n be a natural number. Show that the number of different divisors of n is odd if and only if n is a complete square, that is, $n=k^{2}$ for some integer k.

- You can work in pairs.
- There will be a total of 12 exercise sheets for the fall Semester. In order to be allowed to the exam, students who take this course as Mathematical Methods for Computer Science I have to get their solution to 9 exercise sheets accepted. A solution gets accepted if it shows that you worked thoroughly on at least three problems on the sheet.
- Completed homework assignments are to be handed in before Monday noon, either via Moodle or in the appropriate box next to the room 2.52.
- Visit the website
https://homeweb.unifr.ch/liechtli/pub/mmcs/mmcs20-21.html for the information on the course and the exams.
- For questions concerning the lectures and the exam please contact Livio Liechti: livio.liechti@unifr.ch. For questions concerning the homework please contact Naomi Bredon: naomi.bredon@unifr.ch.

