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Introduction

Much of the theory of dynamical systems we know today originates from
attempts to understand celestial mechanics.

Figure 1: An illustration of the heliocentric solar system by Copernicus.

By Newton’s second law of motion,

ẍ =
∑

F,

the study of planetary motion of our solar system reduces to solving a dif-
ferential equation. Now a problem is that this differential equation is too
difficult to solve explicitly. Indeed, we cannot even solve the three-body
problem in general, even though certain explicit solutions are known.

Instead of solving the problem of planetary motion explicitly, one might
hope to show that our solar system is stable, that is, a slight change in the
initial conditions (for example due to an asteroid passing closeby) does only
slightly change the long-term behaviour of the system. However, Poincaré
has shown that the three-body problem is unstable: for every ε > 0 there
exist two initial points x1, x2 with distance < ε in the phase space R18 of the
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three-body problem, such that the solutions starting at x1 and x2 diverge
with exponential speed.

This means that in order to predict long-term behaviour, our lack of precise
measurement is an actual problem. However, one can still try to understand
a dynamical system qualitatively, without calculating an explicit solution.
For example, one can ask the following questions:

• are there periodic orbits?

• starting from a point in the phase space, which regions of the phase
space will the solution visit?

We will cover a result due to Poincaré and Bendixon that provides a qual-
itative understanding for ordinary differential equations in the plane R2,
such as the motion of a pendulum: every bounded orbit either converges or
is asymptotically periodic. Already in R3, this does not hold anymore: a
well-known example is given by the Lorenz flow, an orbit of which is shown
in Figure 2 below.

Figure 2: A bounded orbit of the Lorenz flow.

Since its beginnings, the theory of dynamical systems has developed con-
siderably and contributed to many other areas of pure mathematics, but
also real-world problems. The following is an example where the underly-
ing problem does not describe a dynamical situation per se, but a solution
can be found by adapting a dynamical view. Assume we want to rank the
popularity of twitter profiles1. For this, we start from the assumption that
everybody has popularity 1, and introduce the discrete-time dynamical sys-
tem where in each step, every twitter profile distributes all its popularity
evenly among the twitter profiles it is following. One can repeat this step
many times, with the hope that the solution will converge. By a result of
Perron and Frobenius, it actually does. The popularity in the limit gives the

1as of January 8 2021, it is not obvious anymore who is most popular
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ranking. With undisputable success, Google uses a slightly more elaborate
model of this scheme to rank the importance of webpages.

Course structure.

We will start out by covering basic notions of dynamical systems, both in
the discrete-time and in the continuous-time case, and see some first exam-
ples. We then deal with linear dynamical systems and in particular cover
the result by Perron–Frobenius evoked in this introduction. After covering
basic notions and results from topological dynamics and ergodic theory, we
will finally focus on low-dimensional dynamical systems: homeomorphisms
and diffeomorphisms of the circle, vector fields in the plane (including the
Poincaré–Bendixon theorem) and homeomorphisms of surfaces.

Further reading.

The books of Brin-Stuck [2] and Katok-Hasselblatt [3] contain most of what
is treated in this course, and much more. These two books are suggested as
basic references on the course materials and dynamical systems in general.
More specific references may be given as they become relevant.

Acknowledgments.

These lecture notes are strongly influenced by Pierre Dehornoy’s course on
Dynamical systems 2012 in Bern. I thank Lennart Harms and Florine Pier-
roz for correcting some inconsistencies and typos in the script.
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Chapter 1

First examples and basic
notions

In the introduction, we have already met the two types of dynamical sys-
tems we will consider: discrete-time and continuous-time dynamical systems.
Here, we start by giving a formal definition of these concepts.

Definition 1.1. A discrete-time dynamical system is given by a non-empty
set X and a map f : X → X.

Definition 1.2. A continuous-time dynamical system is given by a non-
empty set X and a one-parameter family of maps {ϕt : X → X} satis-
fying ϕs+t = ϕs ◦ ϕt and ϕ0 = idX , where the parameter t runs over R
or R≥0.

A continuous-time dynamical system is also called a flow in case the param-
eter t runs over R, or a semiflow in case the parameter t runs over R≥0.
In order to not give every basic definition in two flavours, we will just
start by considering discrete-time dynamical systems, and come back to
the continuous-time analogues later.

1.1 Discrete-time dynamical systems

Example 1.3. The following are basic examples of discrete-time dynamical
systems. We will study many of the concepts we encounter with the help of
these examples.

• permutations of finite sets,

• translations in R, tα : x 7→ x+ α,

• rotations on the circle R/Z, rα : x 7→ x+ α mod 1,

• expansions of the circle R/Z, Em : x 7→ mx mod 1.

5



6 CHAPTER 1. FIRST EXAMPLES AND BASIC NOTIONS

1.1.1 Orbits and conjugacy

Given a dynamical system, one of the key points of interest is the evolution
of points over time. This is captured by the notion of orbit.

Definition 1.4. Let (X, f) be a discrete-time dynamical system. The pos-
itive semiorbit O+

f (x) is the set {x, f(x), f2(x), . . . }. If f is invertible, the

negative semiorbit O−f (x) is the set {x, f−1(x), f−2(x), . . . }.

The orbit of a point x is then simply the union of the positive and the
negative semiorbit.

Definition 1.5. Let (X, f) be a discrete-time dynamical system. Some
point x ∈ X is a fixed point if f(x) = x and a periodic point if fn(x) = x for
some integer n ≥ 1. The number n is called a period of x and the smallest
such n is the minimal period. If fm(x) is periodic for some m, then x is
called eventually periodic.

Exercise 1.6. Study fixed, periodic and eventually periodic points for the
examples at the beginning of this section (Example 1.3).

Exercise 1.7. Show that for a circle rotation with α ∈ R \ Q, every orbit
is a dense subset of the circle.

As in many mathematical theories, there is a notion of equivalence of objects.
In the theory of dynamical systems, it goes by the name of conjugacy.

Definition 1.8. Let (X, f) and (Y, g) be two discrete-time dynamical sys-
tems. A semiconjugacy from (Y, g) to (X, f) is a surjective map π : Y → X
such that f ◦ π = π ◦ g.

Definition 1.9. A conjugacy is an invertible semiconjugacy.

Conjugate dynamical systems have the same properties. As an exercise, you
can show that if (X, f) and (Y, g) are conjugated by π, then x is periodic
with minimal period n if and only if π(x) is periodic with minimal period n.
Being presented with some unknown dynamical system to study, it is a
basic idea to find conjugacies or semiconjugacies to systems that are better
understood.

Exercise 1.10. When are two permutations conjugate or semiconjugate?

We now describe an nontrivial example of a conjugacy.

Proposition 1.11. Let f, g : [0, 1] → [0, 1] be two homeomorphisms, and
suppose f(0) = g(0) = 0 and f(x), g(x) > x for x ∈ (0, 1). Then there exists
a continuous conjugacy between f and g.
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Before we procede to the proof of Proposition 1.11, we note that in this case
the dynamical system we consider has additional structure: X = [0, 1] is a
topological space and f, g are continuous. In this case we speak of topolog-
ical dynamical systems. Also the conjugacy described in Proposition 1.11,
being continuous, is what we call a topological conjugacy. One could add
other structure to a dynamical system in a similar way with, for example,
differentiability: one could suppose X to be a smooth manifold, and f to be
of class C1, C2 or C∞.

Proof of Proposition 1.11. Choose an arbitrary point x in (0, 1).

We have limn→∞ f
n(x) = 1. Indeed, {fn(x)}n is an increasing sequence

in [0, 1] and hence must converge. But the limit point l satisfies f(l) = l,
so l = 1.

With the same argument, we get limn→∞ g
n(x) = 1, limn→−∞ f

n(x) = 0
and limn→−∞ g

n(x) = 0.

Define In =
[
fn(x), fn+1(x)

)
and Jn =

[
gn(x), gn+1(x)

)
for all n ∈ Z.

Clearly, the interval (0, 1) is the disjoint union of all the In, and also the
disjoint union of all the Jn.

Choose a homeomorphism π : I0 → J0, with π(x) = x.

In order to extend π to a homeomorphism of [0, 1], we note that for y ∈ (0, 1),
there exists a unique z ∈ I0 and a unique n ∈ Z such that y = fn(z). We
now define π(y) = gn(π(z)). Finally, we extend to the boundary of the unit
interval by π(0) = 0, π(1) = 1.

The map π is a topological conjugacy (checking the final details of this claim
is left as an exercise).

1.1.2 Shifts

Shifts are the principal examples of what is called symbolic dynamics, not
being related to functions on the real numbers, a priori. Given a finite set
of symbols A, define ΣA = AZ to be the set of bi-infinite sequences (xi)i∈Z
and Σ+

A = AN to be the set of infinite sequences (xi)i∈N with elements xi ∈ A.

Definition 1.12. The two-sided full shift σ : ΣA → ΣA is the map

(xi)i∈Z
σ7→ (xi+1)i∈Z

shifting the indices of the sequences by one. Similarly, the one-sided full
shift σ : Σ+

A → Σ+
A is the map

(xi)i∈N
σ7→ (xi+1)i∈N.

The fixed points and periodic points of a full shift are easy to determine: they
are simply the constant sequences and the periodic sequences, respectively.
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We will now construct a semiconjugacy from a one-sided full shift to the
expanding map E2, x 7→ 2x mod 1 on the circle R/Z.

We consider the alphabet A = {0, 1} and define the map

b2 : Σ+
{0,1} → R/Z

(x0, x1, . . . ) 7→
∑
i∈N

xi
2i+1

mod 1.

Proposition 1.13. The map b2 is a semiconjugacy (Σ+
{0,1}, σ)→ (R/Z, E2).

Proof. The map b2 is surjective as any number in [0, 1) can be written in
base 2. We note that b2 is injective outside the countable set of sequences
that are eventually constant, but we will not need this observation here.

It remains to show E2 ◦ b2 = b2 ◦ σ. For the left side, we have

E2 ◦ b2(x0, x1, . . . ) = E2

(∑
i∈N

xi
2i+1

)
mod 1

=
∑
i∈N

xi
2i

mod 1

=
∑
i∈N

xi+1

2i+1
mod 1.

The last equality follows from the fact that x0
1 = 0 mod 1. For the right

side, we have

b2 ◦ σ(x0, x1, . . . ) = b2(x1, x2, . . . ) =
∑
i∈N

xi+1

2i+1
,

which finishes the proof.

Exercise 1.14. Show that σ : Σ+
{0,1} → Σ+

{0,1} has 2k periodic points of

period k. Use this and the semiconjugacy b2 to deduce that E2 : R/Z→ R/Z
has 2k − 1 periodic points of period k.

1.2 Continuous-time dynamical systems

The notions of orbits, fixed points, periodic points, conjugacy, semiconju-
gacy, and so on are defined as in the discrete-time case. We repeat only one
of the definitions to illustrate the similarity.

Definition 1.15. Let (X,ϕt) be a continuous-time dynamical system. The
positive semiorbit O+

ϕ (x) is the set ∪t∈R≥0
ϕt(x). If ϕt is a flow, the negative

semiorbit O−ϕ (x) is the set ∪t∈R≤0
ϕt(x).
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1.2.1 Flows and vector fields

Flows or continuous-time dynamical systems naturally arise from ordinary
differential equations that do not depend on the time t. Suppose ẋ = F (x)
is a differential equation in Rn, where F : Rn → Rn is continuously differ-
entiable.

Definition 1.16. A solution of ẋ = F (x) with initial data x0 ∈ Rn is a
differentiable curve γ : J → Rn, where J ⊂ R is some interval containing
the origin, such that γ(0) = x0, and for all t ∈ J , we have γ̇(t) = F (γ(t)).

The result of Picard-Lindelöf1 tells us that for each x ∈ Rn, there exists a
unique solution γ(t) starting from x at time 0 and defined for all t ∈ J .

Example 1.17. For the differential equation ẋ = x2 in R, the curve

γ(t) =
x0

1− t
x0

is the solution with initial data x0. The maximal interval of definition J
is (−∞, x0). We note that solutions need not be defined on all R.

We are now ready to define the flow associated with a differential equation.
It can be thought of as the collection of all the local solutions, for all initial
data.

Definition 1.18. Let ẋ = F (x) be a differential equation in Rn, where
we assume F to be continuously differentiable. The associated flow is the
map ϕ : U → Rn, where U is an open subset of R×Rn containing {0}×Rn,
satisfying for x ∈ Rn that ϕ(·, x) is the maximally defined solution with
initial data x.

Proposition 1.19. The flow associated with a differential equation is a
continuous-time dynamical system.

Proof. Clearly, ϕ defines a one-parameter family of maps Rn → Rn (in order
to obtain the notation from our definition of continuous-time dynamical
systems, we write the first coordinate in superscript) with ϕ0 = idX . What
we have to show is that ϕs+t = ϕs ◦ ϕt. Specialised to a point x ∈ Rn, we
want to show ϕ(s+t, x) = ϕ(s, ϕ(t, x)). But this follows from the uniqueness
of the solution of the differential equation ẋ = F (x) at the point ϕ(t, x).

Example 1.20. For F (x, y) = (−y, x) in the real plane R2, we get the
flow ϕt(x, 0) = (x cos t, x sin t).

1or Cauchy-Lipschitz if we are francophone
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1.2.2 Flowboxes

The flowbox theorem is a structural result stating that in the neighbourhood
of a regular point, a flow is conjugate (via a diffeomorphism) to a flow in a
box that moves only the last coordinate. It is a structural theorem we will
use later when studying vector fields and flows in the plane. Before stating
the result, we recall how a diffeomorphism transports a vector field from its
domain to its range.

Definition 1.21. Let F be a vector field on some open set U ⊂ Rn, and
let h : U → V be a diffeomorphism. Recall that the pushforward G = h∗F
of the vector field F by h is defined to be G(y) = Dh−1(y)h(F (h−1(y))).

As an exercise, one directly verifies that if γ(t) is a solution of ẋ = F (x),
then h ◦ γ(t) is a solution of ẏ = h∗F (y).

Theorem 1.22 (Flowbox theorem). Let F be a continuously differentiable
vector field on some open set U ⊂ Rn. If F (x0) 6= 0 for some point x0 ∈ U ,
then there exists a diffeomorphism h from a neighbourhood U0 of x0 to a
neighbourhood V of 0 ∈ Rn such that h∗F = (0, . . . , 0, 1).

Proof. Take an affine hyperplane H centered at x0 which is transverse
to F (x0) at x0. Now take a neighbourhood H0 of x0 in H such that H
is transverse to F in all points of H0. Writing ϕ for the flow associated
with F , we consider for ε > 0 small enough

ψ : H0 × (−ε, ε)→ Rn

(x, t) 7→ ϕt(x).

One verifies directly that D(x0,0)ψ is invertible, recalling from the definitions

that ϕ0(x) = x and ∂
∂t |t=0ϕ

t(x0) = F (x0). This implies that ψ is a local
diffeomorphism. Note that for T = (0, . . . , 0, 1), we have ψ∗T = F . So we
may simply take h = ψ−1, suitably restricted.

1.2.3 Pendula and Lyapunov functions

Studying physical systems, one often considers a phase space of the problem
at hand and the energy of the system, which should stay constant in time
along the solutions. We will discuss pendula.

Example 1.23 (Phase space of a pendulum). Denoting by θ the angle of
the pendulum away from its equilibrium state, the motion of a frictionless
pendulum is gouverned by the differential equation

θ̈ = − sin θ.

We introduce the variable ξ = θ̇ and obtain θ̇ = ξ and ξ̇ = − sin θ. In partic-
ular, the solution must, in the (θ, ξ)-plane, satisfy the differential equation
given by F : R2 → R2, F (θ, ξ) = (ξ,− sin θ).
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At this point, it is an exercise to sketch the vector field F .

We now introduce the energy

E(θ, ξ) = 1 +
ξ2

2
− cos θ

and note, as an exercise, that if γ(t) = (θ(t), ξ(t)) is a solution to F , then

d

dt
E(θ(t), ξ(t)) = 0.

So, the solutions lie on the level sets of the function E.

As an exercise, draw the level sets of E and describe, using also your sketch
of the vector field F , the orbits of the flow associated with (θ̇, ξ̇) = F (θ, ξ).

In the example above, we have seen a function that is constant along the
orbits of the flow. Such a function is called first integral.

Example 1.24 (Damped pendulum). The differential equation for a damped
pendulum is θ̈ = −αθ̇ − sin θ, where α > 0 is a damping parameter. It can
be restated in the phase plane as in the example above, to become θ̇ = ξ
and ξ̇ = −αξ − sin θ. This time, it is an exercise to verify that the energy

E(θ, ξ) = 1 +
ξ2

2
− cos θ

is decreasing along non-constant solutions.

A continuous function that is decreasing along nontrivial forward orbits of a
flow is called Lyapunov function. Strict local minima of Lyapunov functions
have strong stability properties. We first give the definition and then a
stability result for Lyapunov functions.

Definition 1.25. A fixed point x0 of a flow ϕt on X ⊂ Rn is

• stable if for all ε > 0 there exists δ > 0 such that ||x−x0|| < δ implies,
for all t ≥ 0, that ||ϕt(x)− x0|| < ε.

• asymptotically stable if it is stable and there exists a neighbourhood U
of x0 such that for x ∈ U , ϕt(x) converges to x0 as t→∞.

Theorem 1.26. Suppose x0 is a fixed point of the flow ϕt on X ⊂ Rn. If
there exists a Lyapunov function L in a neighbourhood of x0 that has a strict
local minimum at x0, then x0 is asymptotically stable.

Proof. Let W be a compact neighbourhood of x0 such that L(x0) is the strict
minimum of L on W . Let B be an open ε-ball around x0, for ε small enough
such that B ⊂W . We further define m0 := minL|W\B > L(x0) and Vm0 to
be the connected component of L−1([L(x0),m0)) ∩W containing x0.
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Clearly, Vm0 contains an open neighbourhood of x0. We also note Vm0 ⊂ B.
Indeed, if there existed x ∈ Vm0 \B, then L(x) would have to be both < m0

and ≥ m0, a contradiction.

For any x ∈ Vm0 , the forward orbit ϕt(x), for t ≥ 0, stays inside Vm0 . Indeed,
by the definition of a Lyapunov function, we have L(ϕt(x)) < m0 for all t.
In order to prove stability of the fixed point x0, one can now simply choose δ
such that the δ-ball around x0 is contained in Vm0 .

Let us now prove asymptotic stability of x0. For an arbitrary x ∈ Vm0 ,
let a := limt→∞ L(ϕt(x)). Assume for a contradiction that the orbit ϕt(x)
does not converge to x0. Take x1 6= x0 to be an accumulation point of ϕt(x).
Such an accumulation point has to exist since ϕt(x) stays inside the compact
set W . Let t1, . . . , tn, · · · → ∞ be a sequence with limn→∞ ϕ

tn(x) = x1.

By the definition of L, we have L(x1) > L(x0) and L(ϕt(x1)) < L(x1) for
all t > 0. In particular, we get

a > L(ϕt(x1)) = lim
n→∞

L(ϕt(ϕtn(x))) = lim
n→∞

L(ϕt+tn(x)) = a,

a contradiction. We conclude that ϕt(x) must in fact converge to x0, proving
asymptotic stability of the fixed point x0.

Exercise 1.27. Fix ε > 0 and consider the flow ϕ associated with the planar
differential equation

ẋ = −y + εx(1− x2 − y2)
ẏ = x+ εy(1− x2 − y2).

a) Does ϕ have fixed points? Does ϕ have periodic orbits?

b) Find a Lyapunov function for ϕ on R2 \ {(x, y) : x2 + y2 = 1}.

c) For (x, y) 6= (0, 0), what is the set of accumulation points of the or-
bit ϕt(x, y)?

Exercise 1.28. Consider the first-order differential equation ẋ = λx − x3,
where λ ∈ R is a real parameter. Determine the fixed points of the associated
flow. Are they stable? Are they asymptotically stable? To illustrate this,
trace the graph of the multi-map that associates to every λ the fixed points
of the associated flow (and color the branches of the graph according to the
stability of the fixed points). Describe what happens around λ = 0.

1.3 Continuous-time vs. discrete-time systems

There are ways to go from discrete-time dynamical systems to continuous-
time dynamical systems and back. The easiest way to associate a discrete-
time system with a flow ϕt is to simply let f = ϕt0 , for any fixed time t0.
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This construction amounts to look at the effects of a flow in discrete time
intervals only. However, very few maps f arise in this way: assuming we
consider a topological flow on a topological manifold, every such map is
necessarily isotopic to the identity.

Definition 1.29. For a discrete-time dynamical system (X, f) and a so-
called ceiling function c : X → R≥0, we define the suspension of (X, f) to
be the continuous-time dynamical system given by the flow ϕt induced by
the constant vector field (0, 1) on Xc := {(x, t) : x ∈ X, t ∈ [0, c(x)]}/ ∼,
where (x, c(x)) ∼ (f(x), 0).

One can picture the suspension as follows: starting from a base point (x, 0),
it increases the second coordinate at unit speed until it hits the ceiling c(x).
The point (x, c(x)) ∈ Xc is identified with the point (f(x), 0), and so again
the flow increases the second coordinate at unit speed until it hits the ceil-
ing c(f(x)), and so on.

Exercise 1.30. Let (Xc, ϕ
t) be a suspension of (X, f). Show that the orbit

of x ∈ X under f is periodic if and only if the orbit of (x, 0) ∈ Xc under ϕt is
periodic. Find conditions on X and c such that the same equivalence holds
for density of orbits.

The reverse direction of the suspension construction does not always work;
it is captured by the notion of cross-section.

Definition 1.31. Given a semiflow ϕt : Y → Y , a cross-section is a sub-
set X ⊂ Y such that for all y ∈ Y , the set Ty = {t ∈ R≥0 : ϕt(y) ∈ X} is
nonempty and discrete.

Definition 1.32. Let X be a cross-section for ϕt : Y → Y . For x ∈ X, the
first return time is τ(x) := minTx. The first return map f : X → X is then
defined to be f(x) = ϕτ(x)(x).

Example 1.33. We consider the torus Σ1 = R2/Z2. For a, b ∈ R, let ϕt be
the linear flow defined by

ϕt(x, y) = (x+ ta, y + tb) mod 1.

If b 6= 0, then the circle {(x, 0) ∈ R2/Z2 : x ∈ [0, 1)} ' R/Z is a cross-
section for ϕt. The first return time is 1

|b| and the first return map is given

by x 7→ x+ a
b mod 1.

While a cross-section does not always exist, it does always do so for suspen-
sions.

Exercise 1.34. Let (X, f) be a discrete-time dynamical system and let c
be a ceiling function. Show that X × {0} is a cross-section for the suspen-
sion of (X, f) with ceiling function c, and that the discrete-time dynamical
system (X × {0},first return map) is conjugate to (X, f).
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We note that the existence of a cross-section for a continuous-time dynamical
system is a strong property, since the system can then be studied via a
discrete-time dynamical system of dimension one less.



Chapter 2

Linear dynamical systems

Linear dynamical systems are fairly well-understood and form an important
class of examples, also with respect to applications.

A discrete-time linear dynamical system on Rn is defined by the map

f(x) = Ax,

where A ∈ Matn(R). A continuous-time linear dynamical system is defined
by the solutions to the linear ordinary differential equation

ẋ = Ax,

where A ∈ Matn(R). Recall that the solution curves for this differential
equation are of the type

γ(t) = etAx0,

where x0 = γ(0).

2.1 Low-dimensional examples

Dimension 1. In dimension one, a discrete-time dynamical system is given
by multiplication with a scalar λ. In particular, we have fn(x) = λnx, and
we distinguish three cases. If |λ| < 1, then 0 is an attractive fixed point.
Here, attractive is used as a synonym for asymptotically stable. If |λ| = 1,
then 0 is a stable fixed point, but not asymptotically stable. If |λ| > 0, then 0
is still a fixed point, but it is neither stable nor asymptotically stable. In
fact, it is a repulsive fixed point. What we mean by this is that 0 is an
asymptotically stable fixed point for f−1.

For continuous-time dynamical systems, we can proceed in the same way.
Remember that a solution curve is given by γ(t) = ectx. Now, we get the
same behaviour for the fixed point at 0 by distinguishing between the three
cases c < 0, c = 0 and c > 0.

15
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Dimension 2. We distinguish multiple cases.

Case 1. Assume the matrix A ∈ Mat2(R) is conjugate to
(
λ 0
0 µ

)
, where λ, µ ∈

R. In this case, we have An =
(
λn 0
0 µn

)
. As an exercise, draw sketches of the

orbits for the following possibilities:

1) 0 < λ = µ < 1,

2) 0 < λ < µ < 1,

3) 0 < λ < 1 < µ,

4) 1 < λ, µ (this can be obtained by reversing previous cases),

5) µ < 1 = λ.

In the case of a continuous-time dynamical system defined by B ∼
(
p 0
0 q

)
,

we have etB =
(
etp 0
0 etq

)
, and we again get a similar case distinction. Orbits

of the continuous-time case can be thought of as interpolating between the
points of the orbits of the discrete-time case.

Exercise 2.1. Show that the dynamical system defined by multiplication

with the matrix

(
1
2

0

0 1
2

)
is topologically conjugate to the dynamical system

defined by multiplication with the matrix

(
1
2

0

0 1
4

)
. Show that no smooth

such conjugacy exists.

Case 2. Assume the matrix A ∈ Mat2(R) is conjugate to to Jordan block of
size two

(
λ 1
0 λ

)
, where λ ∈ R. In this case, we have An ∼

(
λn nλn−1

0 λn

)
, which

yields the formula

fn(x, y) = λn(x+
n

λ
y, y)

For the linear map f defined by multiplication with the matrix A. As an
exercise, draw a sketch of the orbits of this dynamical system, for the case
where 0 < λ < 1.

Exercise 2.2. Show that the dynamical system defined by multiplication
with the matrix

(
λ 1
0 λ

)
, where λ ∈ R, is topologically conjugate to the dy-

namical system defined by multiplication with the matrix
(
λ 0
0 λ

)
. Note again

that there can be no smooth conjugacy.

Case 3. The matrix A ∈ Mat2(R) has no real eigenvalues and

A ∼
(
r cos θ r sin θ
−r sin θ r cos θ

)
.

Again, one can make a qualitative case distinction between |r| < 1, |r| = 1
and |r| > 1, and show that there is a topological conjugacy to the the
dynamical system given by multiplication with the matrix ( r 0

0 r ).
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2.2 Contractions

Contractions provide examples of maps with the simplest possible asymp-
totic behaviour: every point converges to a unique fixed point under iterates
of the map.

Definition 2.3. Let X be a metric space. A map f : X → X is a contrac-
tion if there exists λ < 1 such that for all x, y ∈ X,

d(f(x), f(y)) ≤ λd(x, y).

The asymptotic behaviour of points under a contraction is described by
Banach’s fixed point theorem.

Theorem 2.4 (Banach fixed point theorem). Let X be a complete metric
space, and let f : X → X be a contraction. Then f has a unique fixed point
in X, and for every x ∈ X, the sequence fn(x) converges to the fixed point
of f with exponential speed.

If you do not recall the proof of Banach’s fixed point theorem, it is an
exercise in Cauchy sequence calculus to find it again.

For a matrix A, we let r(A) be its spectral radius, that is, the largest absolute
value among all eigenvalues of A. We will now show that matrices with
spectral radius < 1 are contractions. To show this, we need to define suitable
norms on Rn. Recall that if || · || is a norm on Rn, then we define the norm
of a linear map A by

||A|| := sup
||v||=1

||Av||.

Clearly, the norm ofA is equal to r(A) in caseA is diagonalisable. Otherwise,
we still have ||A|| ≥ r(A). The following proposition also includes the case
of matrices that cannot be diagonalised.

Proposition 2.5. For every δ > 0, there exists a norm || · || on Rn such
that ||A|| ≤ r(A) + δ.

Proof. Basically, what is left (after our discussion leading up to the proposi-
tion) is to deal with Jordan blocks of size greater than one. Let us consider
the example of a Jordan block

J =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 .

We want to find a norm || · || on R4 such that the norm of
λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ



x1
x2
x3
x4

 = λ


x1
x2
x3
x4

+


x2
x3
x4
0
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is bounded from above by (λ+δ)||(x1, x2, x3, x4)>||. By the triangle equality,
this is satisfied in case we have ||(x2, x3, x4, 0)>|| ≤ δ||(x1, x2, x3, x4)>||. For
the norm || · ||, we now simply choose

||(x1, x2, x3, x4)>|| := |x1|+
1

δ
|x2|+

1

δ2
|x3|+

1

δ3
|x4|.

and leave it as an exercise to finish the details and to give a proof of the
general case (see, for example, Proposition 1.2.2. in [3]).

In conclusion, Proposition 2.5 tells us that a matrix A with spectral ra-
dius r(A) < 1 is a contraction and therefore, by Banach’s fixed point theo-
rem, has very particular asymptotic behaviour.

2.3 Conjugacy to the linear part

In this section, we consider the question of when a differentiable discrete-
time dynamical system (Rn, f) is conjugate to its linearisation around a
neighbourhood of a fixed point.

2.3.1 Examples in dimension one

Example 2.6. Let f : R→ R be continuously differentiable, with f(0) = 0
and derivative 0 < f ′(0) < 1. Then on some open neighbourhood U of 0,
we have 0 < f ′(x) ≤ λ < 1, and by the mean value theorem f is a strictly
increasing function on U such that f(x) < x. In particular, by the argument
used in the proof of Proposition 1.11, we obtain that on U , the map f is
conjugate to its linearisation x 7→ f ′(0)x.

What is the important feature of the above example, admitting a conjugacy
to its linear part? Is it the fixed point being attractive?

Example 2.7. Let f : R→ R be defined by f(x) = x−x3. As in the above
example, 0 can be shown to be an attractive fixed point. Moreover, the
point 0 is the only fixed point of f . However, we have f ′(0) = 1, so that the
linearisation of f at 0 is the identity, the map for which every point is fixed.
We obtain that there is no neighbourhood of 0 on which f is conjugate to
its linearisation.

A similar counterexample can be made where 0 is a repulsive fixed point:
simply take f(x) = x+ x3. We see that the obstruction to conjugate a map
to its linearisation around a fixed point in dimension one occurs when the
linearisation is the identity (actually, ± the identity).
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2.3.2 The Hartman-Grobman theorem

Definition 2.8. A matrix A ∈ Matn(R) is called hyperbolic if none of its
eigenvalues is contained in S1 ⊂ C.

Theorem 2.9 (Hartman-Grobman, 1959). Let Ω ⊂ Rn be an open neigh-
bourhood of the origin, and let F : Ω → F (Ω) be a C1-diffeomorphism
with F (0) = 0. If d0F is hyperbolic and invertible, then there exists a neigh-
bourhood U of the origin, and a homeomorphism H : U → H(U) fixing the
origin, such that H ◦ d0F = F ◦H.

Let us fix some notation for the proof of Theorem 2.9. We set T := d0F
and let F = T + f . We will be looking for the map H = Id + h.

Proof of a contracting case. Assume that T is contracting, that is, for every
eigenvalue λ of T , we have |λ| ≤ r := r(T ) < 1. Choose ε > 0 such
that r + ε < 1, and let || · || be a norm on Rn such that ||T || ≤ r + ε.
Such a norm exists by Proposition 2.5. For the moment, we furthermore
assume F = T outside some neighbourhood of 0, and that f is δ-Lipschitz
for some constant δ < 1− r − ε. (We will justify these assumptions later in
the general proof of Hartman-Grobman.) We are looking for H = Id + h,
with h bounded and continuous.

Fact: The space of continuous bounded maps h : Rn → Rn is a Banach
space for the supremum norm ||h||∞ := sup ||h(x)||.
We now start from the equation that we would like to solve, and see that a
solution indeed exists. We want to find H such that H ◦T = F ◦H. This is
equivalent to the equation H = F ◦H ◦T−1. Inserting Id+h for H and T+f
for F , we obtain

Id + h = (T + f) ◦ (Id + h) ◦ T−1,

and singling out h on the left side, this is equivalent to

h = ((T + f) ◦ h+ f) ◦ T−1.

Now, we define a self-map of the Banach space of continuous bounded maps
by ϕ : h 7→ ((T + f) ◦ h+ f) ◦ T−1.
Claim. The map ϕ is a contraction.

Proof of the claim:

||ϕ(h)− ϕ(h′)||∞ = ||(T + f) ◦ h− (T + f) ◦ h′||∞
≤ ||T ◦ h− T ◦ h′||∞ + ||f ◦ h− f ◦ h′||∞
≤ ||T || · ||h− h′||∞ + δ||h− h′||∞
≤ (r + ε+ δ)||h− h′||∞.
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For the first equality, we used that T−1 is bijective and hence does not
change the supremum norm. By the Banach fixed point theorem, we now
know that a unique fixed point h of ϕ exists. This unique fixed point h
solves the equation h = ((T + f) ◦ h+ f) ◦ T−1 and hence also the initial
equation H ◦ T = F ◦H.

One final detail is left to show, namely that H is a homeomorphism. We
verify this as follows. Using the exact same argument, but exchanging F
and T , we obtain a unique map G = (Id + g) such that

G ◦ F = T ◦G.

In particular, we obtain that

(G ◦H) ◦ T = T ◦ (G ◦H).

We know there exists a unique map G ◦ H that solves this equation (for
example, by letting F = T in our argument). However, one solution is the
identity, and therefore we get G ◦H = Id. This implies that G and H are
inverses of each other and, in particular, H is a homeomorphism.

Proof of an expanding case. The expanding case can be proved in the same
way as the contracting case, replacing T with it’s inverse. Assume that for
every eigenvalue λ of T , we have |λ| ≥ R > 1. Choose some ε > 0 such
that 1

R +ε < 1, and choose a norm || · || on Rn such that ||T−1|| ≤ 1
R +ε. We

now write F−1 = T−1 + f and assume again (and justify later) that F = T
outside some neighbourhood of 0 and that f is δ-Lipschitz for δ < 1

R − ε.
We are done if we can find a solution h to

H ◦ T = F ◦H ⇐⇒ F−1 ◦H ◦ T = H

⇐⇒ (T−1 + f) ◦ (Id + h) ◦ T = Id + h

⇐⇒ (f + (T−1 + f) ◦ h) ◦ T = h,

and we can do so using the exact same Banach fixed point argument as in
the contracting case.

In order to prove Hartman-Grobman, we now decompose Rn according to
the contracting and the expanding directions of the linear part. We need
some definitions to make this precise.

Definition 2.10. For a hyperbolic matrix A ∈ Matn(R), we define

Es := generalised eigenspace associated to eigenvalues | · | < 1

=
⊕

n≥1, |λ|<1

ker(A− λId)n

Eu := generalised eigenspace associated to eigenvalues | · | > 1

=
⊕

n≥1, |λ|>1

ker(A− λId)n
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We note that hyperbolicity of a matrix A ∈ Matn(R) ensures Rn = Es⊕Eu.

Definition 2.11. For a hyperbolic matrix A ∈ Matn(R), a norm || · || on Rn
is called adapted to A if

i) ||A|Es || < 1,

ii) ||(A|Eu)−1|| < 1,

iii) if x = xs+xu, where xs ∈ Es and xu ∈ Eu, then ||x|| = max{||xs||, ||xu||}.

The existence of adapted norms follows from Proposition 2.5. We are now
ready for the general proof of Hartman-Grobman.

Proof of Hartman-Grobman. The rough idea is to split Rn into an expand-
ing and a contracting subspace for T , and to adapt our argument to this
splitting. Our first step is to justify the assumptions we left open in the
contracting and the expanding cases. For this, let bα be a bump function
on Rn that equals 1 on Bα(0) and 0 outside B2α(0), such that ||dvbα|| ≤ 2

α
for v ∈ Rn. We will soon choose the number α so that it suits our purpose.

We write F = T+f on Ω, and consider Fα = T+bαf on Rn. Then, on Bα(0)
we have Fα = F , and outside B2α(0), we have Fα = T .

Claim: For δ > 0, there exists an α such that bαf is δ-Lipschitz.

Proof of the claim: By the mean value theorem, we know

Lip(bαf) ≤ max
v∈Rn

||dvbαf || = max
v∈B2α(0)

||dvbαf ||.

In order to verify the claim, we now calculate

dv(bαf) = f(v) · dvbα + bα(v)dvf.

Since ||dvbα|| ≤ 2
α and bα(v) ≤ 1, this implies

||dv(bαf)|| ≤ 2

α
sup

v∈B2α(0)
||f(v)||+ sup

v∈B2α(0)
||dvf ||,

which tends to 0 as α → 0. Indeed, recall that F = d0F + f , so dvf is
continuous in v and d0f is the zero map, and ||f(v)|| tends to zero quicker
than ||v|| by the definition of differentiability. This proves the claim.

By assumption, the linear map T is hyperbolic. We decompose along the
expanding and contracting generalised eigenspaces of T : Rn = Es ⊕ Eu,
and T = Tss ⊕ Tuu. Furthermore, let || · || be a norm on Rn adapted to T .
We now choose a δ such that 0 < δ < 1−max{||Tss||, ||Tuu||−1} and use the
above claim to choose α such that bαf is δ-Lipschitz.
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We again consider the equation

H ◦ T = F ◦H ⇐⇒ (Id + h) ◦ T = (T + f) ◦ (Id + h)

⇐⇒ h ◦ T = T ◦ h+ f ◦ (Id + h)

and split it according to Rn = Es ⊕ Eu (a single subscript denotes the
corresponding coordinate in the splitting):

hs ◦ T = Tss ◦ hs + fs ◦ (Id + h),

hu ◦ T = Tuu ◦ hu + fu ◦ (Id + h).

Solving for hs (on the left side), and hu (on the right side), these two equa-
tions are equivalent to:

hs = (Tss ◦ hs + fs ◦ (Id + h)) ◦ T−1,
hu = T−1uu ◦ (hu ◦ T − fu ◦ (Id + h)).

We now define the operator ϕ = (ϕs, ϕu) on the Banach space of continuous
bounded functions h = (hs, hu) : Rn → Rn = Es ⊕ Eu by the equations:

ϕs(h) = (Tss ◦ hs + fs ◦ (Id + h)) ◦ T−1,
ϕu(h) = T−1uu ◦ (hu ◦ T − fu ◦ (Id + h)).

The norm || · || on Rn is adapted to the splitting Rn = Es ⊕Eu, so in order
to show that ϕ is a contraction, it suffices to estimate ||ϕs(h) − ϕs(h′)||∞
and ||ϕu(h)− ϕu(h′)||∞. We have

||ϕs(h)− ϕs(h′)||∞ = ||Tss ◦ (hs − h′s) + fs ◦ (hs − h′s)||∞
≤ ||Tss|| · ||hs − h′s||∞ + ||fs ◦ (hs − h′s)||∞
≤ (||Tss||+ δ)||h− h′||∞.

Similarly, we obtain

||ϕu(h)− ϕu(h′)||∞ = ||T−1uu || · ||(hu − h′u) ◦ T − fu ◦ (h− h′)||∞
≤ ||T−1uu ||(||(hu − h′u) ◦ T ||∞ + ||fu ◦ (h− h′)||∞)

≤ ||T−1uu ||(1 + δ)||(h− h′)||∞
≤ (||T−1uu ||+ δ)||(h− h′)||∞.

Since we chose δ such that 0 < δ < 1−max{||Tss||, ||Tuu||−1}, the operator ϕ
is indeed a contraction, so there exists a unique fixed point h = (hs, hu)
solving our equation H ◦ T = F ◦H.

One can show that H is a homeomorphism exactly as in the expanding case
we already dealt with.
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Remark 2.12. There is also a continuous-time version of the theorem of
Hartman-Grobman: let X : Ω → Rn be a C1 vector field with X(0) = 0
such that flow is defined on (−ε, ε). If d0X has no eigenvalue with real
part = 0, then there exists a neighbourhood U of the origin, as well as a
homeomorphism H : U → H(U) fixing the origin such that H conjugates
the flow of X with the flow of d0X.

2.4 Nonnegative matrices

This section closely follows the exposition of the appendix in Bogopolski’s
book [1]. A matrix A ∈ Matn(R) is called nonnegative or positive if all
its coefficients are nonnegative or positive, respectively. We denote this
by A ≥ 0 or A > 0, respectively.

Definition 2.13. A matrix A ∈ Matn(R) is called reducible if there exists
a permutation matrix P such that

P−1AP =

(
X Y
0 Z

)
,

where X and Z are square matrices. A matrix A ∈ Matn(R) is called
irreducible if it is not reducible.

Exercise 2.14. Show that if A ∈ Matn(R) is irreducible, then so is A>.

With every matrixA ∈ Matn(R),A ≥ 0, we associate an oriented graph Γ(A)
in the following way: the vertices are numbered 1, . . . , n and there is an ori-
ented edge from vertex i to vertex j if and only if Aij > 0. The following
exercise reformulates irreducibility of a matrix in terms of the graph Γ(A).

Exercise 2.15. Let A ∈ Matn(R), A ≥ 0. Show that the following state-
ments are equivalent:

a) A is irreducible,

b) for all 0 ≤ i, j ≤ n, there exists N(i, j) ∈ N such that (AN(i,j))ij > 0,

c) for each pair of vertices i and j of Γ(A), there exists a path of oriented
edges from i to j.

Lemma 2.16. Let A ∈ Matn(R), 0 6= A ≥ 0 be irreducible. Then the
matrix B =

∑n−1
i=0 A

i is positive.

Proof. From A0 = In, we know Bii > 0. Let us now show that Bij > 0
for i 6= j. By Exercise 2.15, there exists an oriented path in Γ(A) from
vertex i to vertex j. We can assume that this path visits each vertex at most
once, and hence is of length l ≤ n− 1. If this path is given by the sequence
of vertices vi0 , vi1 , . . . , vil , then this implies Ai0i1Ai1i2 · · ·Ail−1il > 0. This
gives us (Al)ij > 0 and hence Bij > 0.
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Theorem 2.17 (Perron-Frobenius). Let A ∈ Matn(R), 0 6= A ≥ 0 be ir-
reducible. Then A has a unique positive eigenvector up to scaling, and the
corresponding eigenvalue is positive.

Proof. Let A ∈ Matn(R), 0 6= A ≥ 0 be irreducible. We denote by

∆ = {x ∈ Rn : 0 ≤ x, ||x|| = 1}

the set of non-negative unit vectors in Rn, and we let u = (1, . . . , 1) the
row vector of size n with constant coefficients 1. Here, we use the one-
norm: ||x|| = ||x||1 =

∑n
i=1 |xi|, where x ∈ Rn. The number

λ = sup{ρ : there exists x ∈ ∆ such that Ax ≥ ρx}

must be finite. Indeed, a number ρ satisfying the condition in the definition
of λ is bounded by the sum of the coefficients of A: the inequality Ax ≥ ρx
for x ∈ ∆ implies uAu> ≥ uAx ≥ ρux = ρ. Using the compactness of ∆,
one can show that the supremum is attained, that is, there exists y ∈ ∆
such that Ay ≥ λy.

We now want to show Ay = λy. For a contradiction, assume Ay 6= λy.
Then we have BAy > λBy, where B is the matrix of Lemma 2.16, which
is positive and has diagonal entries ≥ 1. Since AB = BA, this allows us to
deduce Ax > λx for x = By/||By|| ∈ ∆. This contradicts the maximality
of λ and hence we must have Ay = λy. This proves existence of a non-
negative eigenvector. From 0 < By =

∑n−1
k=0 λ

ky we further deduce y > 0,
which proves the existence of a positive eigenvector. Furthermore, Ay = λy
now directly implies λ > 0.

What is left to show is the uniqueness of y. We first note that the exact same
argument can be used to produce a row vector z > 0 and a number µ > 0
such that zA = µz. Then we have µzy = zAy = λzy and zy > 0, which
implies µ = λ. Now, let y′ be a positive eigenvector of A and let λ′ be the
corresponding eigenvalue. As above, we argue that λ′ = µ and hence λ′ = λ.
We now assume for a contradiction that y′ is not a multiple of y. If this is the
case, then the points y′/||y′||, y/||y|| ∈ ∆ are distinct. The line containing
these two points consists of eigenvectors to λ and intersects the boundary
of {x ∈ Rn : 0 ≤ x} in some point v. In particular, v/||v|| ∈ ∆ is an
eigenvector of A for the eigenvalue λ, and hence also an eigenvector of B. In
particular, Bv is a multiple of v and at least one coordinate must be zero.
This is a contradiction, since for all vectors x ≥ 0 we have Bx > 0. We have
shown that y′ must be a multiple of y.

The eigenvector and the eigenvalue obtained via Theorem 2.17 are called the
Perron-Frobenius eigenvector and Perron-Frobenius eigenvalue, respectively.
They enjoy the following properties.
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Proposition 2.18. Let A ∈ Matn(R), 0 6= A ≥ 0 be a irreducible, and let λ
be its Perron-Frobenius eigenvalue. Then we have the following:

a) the Perron-Frobenius eigenvalue of A> also equals λ,

b) for each eigenvalue τ of A, we have |τ | ≤ λ,

c) up to real multiples, the eigenvector for λ is unique.

Proof. The statement a) follows directly from the proof of Theorem 2.17.

As for b), assume we are given τ ∈ C, and 0 6= x ∈ Cn with Ax = τx.
Let x′ = (|x1|, . . . , |xn|)>. From

|τ |x′i = |ai1x1 + · · ·+ ainxn| ≤ |ai1x1|+ · · ·+ |ainxn|

it follows that Ax′ ≥ |τ |x′. For a row vector z > 0 with zA = λz, we now
get λzx′ = zAx′ ≥ |τ |zx′. From zx′ > 0 we conclude λ ≥ |τ |.
As for c), we let y be a positive and v be an arbitrary real eigenvector for the
eigenvalue λ. For r ∈ R large enough, v+ ry is a positive eigenvector for A.
By Theorem 2.17, v + ry and hence v must be a real multiple of y.

Exercise 2.19. Strengthen the assertion b) of Proposition 2.18 in case of a
positive matrix A ∈ Matn(R), that is, A > 0. In this case, show that |τ | < λ
holds for every eigenvalue τ 6= λ of A.

Exercise 2.20. Formulate a problem about the evolution of a population
over time, and find an equilibrium state using Perron-Frobenius theory.

Exercise 2.21. Make the example of ranking the popularity of twitter pro-
files from the introduction rigorous using Perron-Frobenius theory.

2.4.1 Convergence to the positive eigendirection

The following set of exercises give a way to obtain the theorem of Perron-
Frobenius from a more dynamical perspective, using the Banach fixed point
theorem. As a result, we will see that the iterates of any positive vector will
converge to the unique positive eigendirection of a positive matrix.

Exercise 2.22. Let ∆+ = {x ∈ Rn : 0 < x, ||x|| = 1} be the set of positive
unit vectors in Rn. Show that

d(x, y) := log

max
i

xi
yi

min
i

xi
yi


defines a metric on ∆+, where we use the notation x = (x1, . . . , xn).
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Exercise 2.23. For a positive matrix A ∈ Matn(R>0), show that

f : ∆+ → ∆+, x 7→ Ax

||Ax||

is a contraction with respect to the metric d.

Exercise 2.24. Using the Banach fixed point theorem, show that a positive
matrix A ∈ Matn(R>0) has a unique eigenvector v ∈ ∆+, and fn(x) → v
as n→∞, for every x ∈ ∆+.



Chapter 3

Topological dynamics

In this chapter, the underlying set X of the dynamical system is supposed to
be a topological space, and the map1 is supposed to be continuous. We will
use topological properties that are invariant under topological conjugacy.
Having a dense orbit is one example of such a property.

3.1 Limits and minimal sets

Definition 3.1. Let (X, f) be a disctrete-time topological dynamical system.
The ω-limit of x ∈ X is defined to be

Lfω(x) := { lim
i→∞

fni(x) : ni →∞, fni(x) converges}.

Similarly, the α-limit of x ∈ X is defined to be

Lfα(x) := { lim
i→∞

fni(x) : ni → −∞, fni(x) converges}.

For the example of rotations rα : R/Z → R/Z, we have two cases. If α is
rational, then both the ω-limit and the α-limit of any point x ∈ R/Z consist
of the orbit of x under rα. If α is irrational, then both limits consist of the
entire unit circle R/Z.

Exercise 3.2. Show that Lfω(x) and Lfα(x) are closed and f -invariant sets
(that is, closed sets A satisfying f(A) ⊂ A).

Definition 3.3. A nonempty closed f -invariant subset Y ⊂ X is called
minimal set if there exists no proper nonempty closed f -invariant subset
of Y . If X itself is a minimal set, then we say f is minimal.

1or the flow–but we will mainly focus on discrete time-systems, the definitions being
similar in the continuous-time case
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A simple example of a minimal set is given by a periodic orbit. Not every
map has a periodic orbit, but nevertheless, if we assume X to be compact,
then it must contain a minimal set for any continuous map f : X → X. We
will state the result without giving the proof, which is based on a combina-
tion of Zorn’s lemma and the compactness of X.

Proposition 3.4. Let f : X → X be a topological dynamical system. If X
is compact, then X contains a minimal set for f .

Exercise 3.5. Let X be a compact topological space and let f : X → X
be a continuous map. Show that

a) Y ⊂ X is minimal if and only if Lfω(y) = Y for all y ∈ Y ,

b) Y ⊂ X is minimal if and only if the forward orbit of every y ∈ Y is
dense in Y .

3.2 Topological transitivity

Definition 3.6. We say that a topological dynamical system f : X → X is
topologically transitive if there exists a point x ∈ X whose forward orbit is
dense in X.

Irrational rotations of the unit circle are examples of topological transitive
dynamical systems. Density of every forward orbit is shown in Exercise 1.7.

Exercise 3.7. Show that if X has no isolated points, then some forward
orbit O+

f (x) is dense in X if and only if the ω-limit Lfω(x) is dense in X.
Give a counterexample to this equivalence for a topological space X that
has isolated points.

The following lemma can be used to produce plenty of non-examples of
topological transitivity.

Lemma 3.8. Let X be a normal Hausdorff space. If f : X → X has an
attractive periodic orbit γ and at least one other orbit disjoint from γ, then f
is not topologically transitive.

Proof. Let γ = {fn(x)} be the periodic attractive orbit. There exists an
open neighbourhood U of γ such that f(U) ⊂ U . For y ∈ X, if fk(y) ∈ U
for some k ∈ N , then the forward orbit of y is not dense inX\U . If fk(y) 6∈ U
for all k, then the orbit is not dense in U .

The following proposition gives a condition for topological transitivity.

Proposition 3.9. Let X be locally-compact and Hausdorff, and f : X → X
be continuous. If for all nonempty open subsets U, V ⊂ X there exists an
integer n ≥ 0 such that fn(U) ∩ V 6= ∅, then f is topologically transitive.
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Proof. By hypothesis, for each nonempty open subset V ⊂ X, we have that⋃
n∈N f

−n(V ) is dense in X. Let {Vi} be a countable basis for the topology
of X, and define

Y :=
⋂
i

⋃
n∈N

f−n(Vi).

As a countable intersection of open and dense subsets, Y is itself dense in X
by Baire’s category theorem. In particular, Y is nonempty, so now let y ∈ Y .
By definition, the forward orbit of y visits every basis set Vi of the topology,
and hence is dense in X.

Example 3.10. The matrix A = ( 2 1
1 1 ) defines a linear map R2 → R2 that

preserves the integer lattice Z2 ⊂ R2. In particular there is a well-defined
quotient map TA : R2/Z2 → R2/Z2. Since the determinant of the matrix A
is 1, we can also define an inverse map. This implies that the map TA is a
homeomorphism of the torus R2/Z2.

The matrix A = ( 2 1
1 1 ) has Perron-Frobenius eigenvector v = (ϕ, 1)> to

the eigenvalue ϕ2, where ϕ = 1+
√
5

2 is the golden ratio. The vector v has
irrational slope, and one can show that Rv is dense in R2/Z2. We know
from Perron-Frobenius theory that an orbit will get “projectively close” to
the direction v, so it seems reasonable to assume that TA : R2/Z2 → R2/Z2

is topologically transitive.

In the next section, we will give a proof of an even stronger property: topo-
logical mixing.

3.3 Topological mixing

Definition 3.11. We say that a topological dynamical system f : X → X is
topologically mixing if for all nonempty open subsets U, V ⊂ X, there exists
an integer n0 ≥ 0 such that for all n ≥ n0, we have fn(U) ∩ V 6= ∅.

We remark that for nice enough topological spaces (certainly if X is a mani-
fold), topological mixing implies topological transitivity by Proposition 3.9.
The converse, however, does not hold.

Exercise 3.12. Show that rα : R/Z→ R/Z is not topological mixing.

More generally:

Exercise 3.13. Show that an isometry of a metric space (X, d) with at least
two points is not topologically mixing.

We now get back to the homeomorphism T( 2 1
1 1 ) : R2/Z2 → R2/Z2.

Proposition 3.14. The homeomorphism T( 2 1
1 1 ) : R2/Z2 → R2/Z2 is topo-

logically mixing.
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Proof. Recall that Rv is dense in R2/Z2, where v = (ϕ, 1)> is the Perron-
Frobenius eigenvector of the matrix A = ( 2 1

1 1 ), and where ϕ is the golden
ratio.

For each ε > 0, there exists a collection of ε-balls centered on Rv that covers
the torus R2/Z2. By compactness, there exists a finite subcollection of such
balls that also covers the torus. We deduce that there exists a bounded
segment S0 ⊂ Rv whose ε-neighbourhood covers the torus R2/Z2.

Translations in R2 are isometries. We deduce that for any w ∈ R2 fixed,
the ε-neighbourhood of the segment S0 + w ⊂ w + Rv also covers the
torus R2/Z2.

In summary, we have shown that for each ε > 0, there exists L(ε) > 0 such
that every segment S of length ≥ L(ε) that is parallel to Rv is ε-dense in
the torus R2/Z2, that is, d(y, S) ≤ ε for all y ∈ R2/Z2.

Now, let U, V ⊂ R2/Z2 be two nonempty open subsets of the torus. Take a
point y ∈ V and let ε > 0 such that Bε(y) ⊂ V . The subset U contains a
segment of length δ > 0 in some translate of Rv.

Let λ = ϕ2 be the Perron-Frobenius eigenvalue of A, and choose N such
that λNδ > L(ε). Now, for all n ≥ N , we have that An(U) contains a seg-
ment of length λNδ > L(ε) in some translate of Rv. This implies that An(U)
is ε-dense in the torus, and in particular must intersect V .

Exercise 3.15. Generalise Proposition 3.14 to any matrix A ∈ GL2(Z)
with |trace(A)| > 2.

Exercise 3.16. Show that topological transitivity and topological mixing
are invariants of topological conjugacy.



Chapter 4

Vector fields in the plane

The goal of this chapter is to study flows induced by vector fields in the
real plane R2. In particular, we want to prove the structural theorem by
Poincaré–Bendixson mentioned in the introduction.

Throughout the chapter, the notion of ω- and α-limits will play a prominent
role. We therefore quickly repeat the definition, this time for flows.

Definition 4.1. Let ϕt be a continuous flow on a topological space X, and
let x ∈ X The ω-limit of x is defined to be

Lϕω(x) = { lim
i→∞

ϕti(x) : ti →∞, ϕti(x) converges}.

Similarly, the α-limit is defined to be

Lϕα(x) = { lim
i→∞

ϕti(x) : ti → −∞, ϕti(x) converges}.

4.1 Vector fields on the line

Before approaching the statement of the theorem of Poincaré–Bendixson,
we take a step back and consider, for one moment, vector fields and their
associated flows one dimension lower, that is, on the real line R. We leave
the qualitative study of the limits in this case as an exercise.

Exercise 4.2. Let F : R → R be a continuously differentiable vector field
on R and let ϕt be the associated flow. Show that the ω- and the α-limit of
every point x ∈ R is determined by the following data:

• the zero set of the vector field F , which is a closed set A ⊂ R,

• the sign of F on the connected component x ∈ R \A.
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4.2 Limits in R2

In the case of vector fields on the line, every ω- or α-limit is either empty
or a single point. For the plane, we have encountered a more intriguing
limit set in Exercise 1.27: in this exercise, for all points except the origin
the ω-limit is a whole periodic orbit.

There is more that can happen in the plane: instead of being a single periodic
orbit, some ω-limit could be a union of orbits connecting zeros of the vector
field F . To create an example for this, you can take the vector field from
Exercise 1.27 and change it slightly so that it has zeros on the unit circle
(which in the exercise is the period orbit), but still the unit circle is the ω-
limit of all points except the origin.

It is the content of the theorem of Poincaré–Bendixson that basically nothing
else can happen1.

Theorem 4.3 (Poincaré–Bendixson 1901). Let F : R2 → R2 be a continu-
ously differentiable vector field, and let ϕt be its associated flow. Let x ∈ R2

be such that the flow ϕt(x) is defined for all t > 0 and stays bounded. Then
either

a) Lϕω(x) is a periodic orbit, or

b) for all y ∈ Lϕω(x), the limits Lϕω(y) and Lϕα(y) consist of zeroes of F .

In particular, it follows directly that if the ω-limit of a point x contains
no fixed point of the flow, that is, a zero of F , then it consists of a single
periodic orbit. This happens for example if an orbit stays within a bounded
domain of the plane that does not contain any zero of the vector field.

Exercise 4.4. In the setting of Theorem 4.3, show that

a) the limit set Lϕω(x) is compact,

b) the limit sets Lϕω(y) and Lϕα(y) are connected,

c) if F has finitely many zeros, then Lϕω(x) consists of one of the following:
one fixed point, one periodic orbit, or a finite number of fixed points
and a set of orbits γi such that Lϕω(γi) and Lϕα(γi) consist of one fixed
point each.

Exercise 4.5. Find a closed surface Σ of genus > 0 and a vector field F
on Σ such that the statement of Theorem 4.3 fails.

1We state the theorem of Poincaré–Bendixson for continuously differentiable vector
fields. However, all we need, again and again, in the proof is the continuity of the flow
and the uniqueness of local solutions. It would therefore be sufficient to choose the vector
field locally Lipschitz.
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4.3 Transversals and first-return maps

Our proof of Theorem 4.3 relies heavily on the notion of a transversal to the
flow. As always, we let F : R2 → R2 be continuously differentiable.

Definition 4.6. A transversal to F through x ∈ R2 is a continuously differ-
entiable embedded segment S ⊂ R2 containing x and transverse to the vector
field F .

The existence of transversal at nonsingular point of F follows directly from
Theorem 1.22. We record this fact as the following lemma.

Lemma 4.7. If F (x) 6= 0, then there exists a transversal through x.

Definition 4.8. A periodic orbit γ of the flow ϕ is called attractive if there
exists an open neighbourhood U of γ such that for all y ∈ U , Lϕω(y) = γ. A
periodic orbit γ is called repulsive if there exists an open neighbourhood U
of γ such that for all y ∈ U , Lϕα(y) = γ.

The definition of repulsiveness of a periodic orbit γ given here is only to be
used like this for vector fields in the plane.

Definition 4.9 (First-return map for a transversal). Let x0 be a peri-
odic point of period T , which simply means that ϕT (x0) = x0, and let S
be a transversal through x0. Choose a neighbourhood U ⊂ S of x0 such
that ϕt(x0) ∩ U = {x0}. Let

W := {ϕt(x) : x ∈ S,−ε < t < ε}

with ε > 0 small enough such that ϕt(y) = ϕt
′
(y) for −ε < t, t′ < ε im-

plies t = t′. Further, define

N := {x ∈ U : ϕT (x) ∈W}.

By the continuity of the flow ϕ, N is an open neighbourhood of x0 in S. We
finally define the first-return map P : N → S by

x 7→ P (x) = ϕT+s(x)(x),

where s(x) is the unique number such that |s(x)| < ε and ϕT+s(x)(x) ∈ S.

Lemma 4.10. A periodic orbit γ through x0 is attractive if and only if x0
is attractive for the first-return map P .

Proof. We first deal with the only if direction. For any point x ∈ N , the
sequence {P i(x)}i∈N equals some sequence {ϕti(x)}i∈N. Since γ is compact,
the latter sequence has an accumulation point y on γ. We have y ∈ N which
implies y = x0, since x0 is the only point of intersection of the periodic
orbit γ and the transversal N . This implies P i(x)→ x0, i→∞.
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For the if direction, we note that by hypothesis, there exsists some open
neighbourhood U of x0 in N such that for every x ∈ U,P i(x) → x0 for
i → ∞. We want to show that Lϕω(x) = γ. This then implies that some
neighbourhood U ′ of γ, obtained by taking the forward image of U under
the flow, satisfies the condition for attractivity.

Lϕω(x) ⊂ γ: suppose y 6∈ γ and {ϕti(x)} accumulates on y. Pick a sub-

sequence such that ϕti → y. There exist si → s such that ϕti+si ∈ N .
Then ϕti+si must converge to x0 by our assumption on P . But it also
converges, by definition, to ϕs(y). Hence ϕs(y) = x0, so y ∈ γ.

γ ⊂ Lϕω(x): If y ∈ γ, then y = ϕt(x0) for some t. Now if ϕti(x) → x0,

then ϕt+ti(x)→ y, so y ∈ Lϕω(x).

Exercise 4.11. For the following planar vector fields, determine their limit
cycles, and discuss whether they are attracting, repelling, or neither of the
two:

a) F (x, y) = α(x2 + y2 − 1)(x, y) + (y,−x), for α ∈ R,

b) F (x, y) = (x2 + y2 − 1)2(x, y) + (y,−x),

c) F (x, y) = sin(x2+y2)
x2+y2

(x, y) + (y,−x).

4.4 The proof of Poincaré–Bendixson

As always, we take F : R2 → R2 be continuously differentiable and we let ϕt

be the associated flow. We furthermore place ourselves in the assumptions
for Theorem 4.3. We need two more lemmas for the proof of Theorem 4.3.

Lemma 4.12. Let γ be the orbit of y ∈ R2. If y ∈ Lϕω(x), then γ ⊂ Lϕω(x),
and further Lϕω(y) ∪ Lϕα(y) ⊂ Lϕω(x).

Proof. By assumption, there exists a sequence ti → ∞ with ϕti(x) → y. It
follows that ϕti+T → ϕT (y) for all T . In particular, ϕT (y) ∈ Lϕω(x) for all T ,
and in particular γ ⊂ Lϕω(x). This proves the first statement. For the second
statement, we note that Lϕω(x) is a closed subset of the plane containing γ.
This means that any set contained in the topological closure of γ is also
a subset of Lϕω(x). In particular, Lϕω(y) and Lϕα(y), being contained in the
closure of γ, are subsets of Lϕω(x).

Lemma 4.13 (Key lemma). Let I be a transversal to F . If there exist real
numbers t1 < t2 < t3 such that ϕt1(x), ϕt2(x), ϕt3(x) ∈ I, then ϕt2(x) lies
between ϕt1(x) and ϕt3(x) on I.

It is recommended to accompany the following proof with at least one sketch.
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Proof. Consider the simple closed curve c defined by ϕ[t1,t2](x) and the por-
tion of I between ϕt1(x) and ϕt2(x). By the Jordan curve theorem, the
complement of c in the plane has two connected components and the or-
bit ϕt(x) must stay inside one of them for t > t2, namely the connected
component reached by following the flow a little bit at ϕt2(x). In particu-
lar, ϕt2(x) must lie between ϕt1(x) and ϕt3(x) on I.

We are finally ready to proof Theorem 4.3.

Proof of Theorem 4.3. Assume we have x ∈ R2 with bounded positive semi-
orbit. Let y ∈ Lϕω(x), and let z ∈ Lϕω(y)∪Lϕα(y). (As an exercise, prove that
such a z must exist).

We assume that F (z) 6= 0. We want to show that in this case y is periodic
with orbit γ, and Lϕω(x) = γ.

Let Iz be a transversal through z, and let V be a product neighbourhood
of Iz such that

ϕt : (−ε, ε)× Iz → V

is an embedding.

Claim 1 : ϕt>0(y) ∩ Iz = {z}.
In order to prove this claim, we suppose there exist y1 6= y2 ∈ Iz and there
exist sequences si →∞ and ti →∞ such that ϕsi(x)→ y1 and ϕti(x)→ y2.
By changing si and ti by at most ε, we may and do assume that ϕsi(x)
and ϕti(x) are in Iz.

For i, j large enough, we now have that d(ϕsi(x), y1), d(ϕtj (x), y2) < η,
where η = 1

2d(y1, y2). In particular, we can find real numbers a < b < c such
that ϕa(x), ϕb(x), ϕc(x) ∈ Iz contradict Lemma 4.13. This means that the
positive semi-orbit ϕt>0(x) accumulates on at most one point in Iz, which
must be the point z. (Recall that the point z is an accumulation point for
ϕt>0(x) by Lemma 4.12).

Now, since ϕt>0(y) ⊂ Lϕω(x), this implies that ϕt>0(y)∩Iz = {z} and proves
the claim.

Claim 2 : z is periodic. To prove this claim, take a sequence ti → ∞ such

that ϕti(x)→ z. Without loss of generality, we may assume that ϕti(x) ∈ Iz.
Every point ϕti(x) comes back to the product neighbourhood V within
time (T − ε, T + ε) for some time T ∈ R. By continuity, there exists some
time Tz such that ϕTz(z) ∈ Iz. Furthermore, the point ϕTz(z) is an accu-
mulation point of ϕt>0(x). Since the latter orbit only has one accumulation
point on Iz, namely, z, this implies ϕTz(z) = z. So z is periodic, which
proves the claim.

Note that since z is periodic, also y must be periodic by Claim 1. We denote
by Ty its minimal period. The third and last claim will finish the proof.

Claim 3 : ϕ[0,Ty ](y) = Lϕω(x).
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We first note that the inclusion ϕ[0,Ty ](y) ⊂ Lϕω(x) is given by Lemma 4.12.
For the other inclusion, let Iy be a transversal through y. There exists a
sequence ti →∞ such that ϕti(x)→ y and ϕti(x) ∈ Iy.
Let Ai be the annulus bounded by ϕ[0,Ty ](y) and ϕ[ti,Ti]∪ some part of Iy,
where Ti is the first-return time for ϕti(x) to come back to the transversal Iy.
Since ϕti(x) is monotone on the transversal Iy by Lemma 4.13, we have the
infinite chain of inclusions

· · · ⊂ Ai+1 ⊂ Ai ⊂ · · · .

For i0 large enough, the annulus Ai0 contains no zero of the vector field F .
By continuity of the flow and compactness of Ai0 , there exists some T > 0
such that for all p ∈ Ai0 , the forward orbit of p intersects Iy before time T .
In particular, for all j ≥ i0 and for all p ∈ Aj there exists a time Tp such
that ϕTp(p) ∈ Aj+1. This implies that

Lϕω(x) ⊂
⋂
i≥i0

Ai = ϕ[0,Ty ](y),

which yields ϕ[0,Ty ](y) = Lϕω(x) and thus finishes the proof.

Exercise 4.14. Let F : R2 → R2 be a continuously differentiable vector
field in the plane. Prove that a simply connected region of the plane that is
closed and contains a positive semi-orbit also contains a fixed point of the
flow.

Give a counterexample after replacing the plane R2 by the space R3.

Exercise 4.15. Construct a continuously differentiable vector field on the
torus Σ1 that contains exactly one periodic orbit γ, and such that for every
point x ∈ Σ1, the ω- and α-limit equals γ.

Is such a construction possible in the plane R2?



Chapter 5

Homeomorphisms of the
circle

The goal of this chapter is to understand conjugacy classes of homeomor-
phisms and diffeomorphisms of the circle S1.

We first set up some notation and recall some basics from topology. We
let S1 := R/Z, and we let π : R → S1 be the natural projection (in terms
of covering theory, this is the universal covering map). For each continuous
map f : S1 → S1 and each x ∈ π−1(f(0)), there exists a unique F : R→ R
with π ◦ F = f ◦ π, such that F (0) = x. Such a map F is called a lift of f .

Definition 5.1. We let Homeo+(S1) be the group of orientation-preserving
homeomorphisms f : S1 → S1.

Note that f preserving the orientation of S1 is equivalent to any lift F of f
being an increasing function. We will use the following lemma from covering
theory using the fact that any two lifts F must differ by an orientation-
preserving deck transformation of the universal covering π : R→ S1. These
deck transformations are given by integer translations.

Lemma 5.2. Let f ∈ Homeo+(S1), and let F1, F2 : R→ R be two lifts of f .
Then there exists k ∈ Z such that F1(x) = F2(x) + k for all x ∈ R.

In particular, there must exist a unique lift F of f such that F (0) ∈ [0, 1).
We call this lift the canonical lift of f .

Remark 5.3. A lift F of a homeomorphism f : S1 → S1 commutes with
integer translations: F (x+ k) = F (x) + k.

Finally, we define the set of all homeomoprhisms of R that are obtained by
lifting orientation-preserving homeomorphisms of the circle.

Definition 5.4. We define H̃omeo
+

(S1) to be the group of homeomor-
phisms F : R→ R such that F (x+ 1) = F (x) + 1 for all x ∈ R.
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5.1 The rotation number

We now look at the slope of the lines obtained by connecting x with Fn(x).
It turns out that these slopes stabilise for n→∞. Using this, we will obtain
a conjugacy invariant for homeomorphisms of the circle.

Proposition 5.5. Let F ∈ H̃omeo
+

(S1). Then for all x ∈ R, the limit

lim
n→∞

Fn(x)

n

exists, and it does not depend on x ∈ R.

This limit for a lift F of f does, however, depend on choice of lift. However,
the following exercise shows that the residue modulo 1 is independent of the
choice of lift.

Exercise 5.6. Let F1 and F2 be two lifts of f ∈ Homeo+(S1) that differ
by k, that is, F1(x) = F2(x) + k. Show that also the corresponding limits
differ by k, that is,

lim
n→∞

Fn1 (x)

n
= lim

n→∞

Fn2 (x)

n
+ k.

Proof of Proposition 5.5. Let F ∈ H̃omeo
+

(S1). We define the auxiliary
function un(x) = Fn(x)− x.
Caim: for all x, y ∈ R : |un(x)− un(y)| < 1.

Proof of Claim: There exists p ∈ Z such that y ∈ [x + p, x + p + 1).
Since F commutes with integer translations, so does Fn. In particular,
we obtain Fn(x+ p) = Fn(x) + p. This gives us

Fn(y) ∈ [Fn(x+ p), Fn(x+ p+ 1)) = [Fn(x) + p, Fn(x) + p+ 1),

and hence

|un(x)− un(y)| = |Fn(x)− Fn(y) + y − x| < 1,

which proves the claim.

We note that the claim implies that if the limit exists, then it does not
depend on x ∈ R. Indeed, we have

|Fn(x)− Fn(y)| = |un(x)− un(y) + x− y| < 1 + |x− y|,

a difference which converges to zero when dividing by n, as n→∞.
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It remains to show that the limit exists. For this, we calculate

un+m(x)− un(x)− um(x) =

= (Fnm(x)− Fn(x) + Fn(x)− x)− (Fn(x)− x)− (Fm(x)− x)

= (Fnm(x)− Fn(x))− (Fm(x)− x)

= um(Fn(x))− um(x) < 1.

This implies that the sequence {un(x) + 1}n∈N is subadditive, that is

un+m(x) + 1 ≤ un(x) + 1 + um(x) + 1.

Fekete’s lemma states that for every subadditive sequence rn in the real
numbers, the sequence rn

n has a limit in R ∪ {−∞}, as n → ∞. The proof
of Fekete’s lemma is an exercise in Analysis. In particular, we obtain that
the sequence un(x)+1

n has a limit in R ∪ {−∞}, as n→∞.

Similarly, we have that {un(x) − 1}n∈N is a superadditive sequence and

therefore the sequence un(x)−1
n has a limit in R ∪ {+∞}, as n→∞.

This implies that the sequence un(x)
n has a limit in R as n→∞, and hence

the sequence Fn(x)
n = un(x)+x

n has a limit in R as n→∞.

Definition 5.7. For F ∈ H̃omeo
+

(S1), the translation number τ(F ) is
defined to be limn→∞

Fn

n .

Definition 5.8. For f ∈ Homeo+(S1), the rotation number ρ(f) is defined
to be τ(F ) mod 1 for any lift F of f .

The translation number and the rotation number are well-defined thanks to
Proposition 5.5 and Exercise 5.6.

Example 5.9. We can calculate the following translation and rotation num-
bers.

1. Let F : R→ R, x 7→ x+ α for α ∈ R. Then τ(F ) = α.

2. Let rα : S1 → S1, x 7→ x+ α mod 1 for α ∈ R. Then ρ(f) = α mod 1.

3. If f : S1 → S1 has a fixed point, then ρ(f) = 0.

For the rotation number, we often omit writing mod 1 and simply give a
representative ∈ [0, 1).

Exercise 5.10. Show the equality ρ(fp) = p · ρ(f). Use this equality to
prove that if f has a periodic point of period q, then ρ(f) = p

q for some p ∈ Z.

Exercise 5.11. Show that the rotation number is not additive in general.
More precisely, find two homeomorphisms f1 and f2 of S1 such that

ρ(f1 ◦ f2) 6= ρ(f1) + ρ(f2).
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Proposition 5.12. If f, g ∈ Homeo+(S1) are semiconjugate, then they have
the same rotation number: ρ(f) = ρ(g).

Proof. Suppose there exist a continuous and surjective map h : S1 → S1

such that f ◦ h = h ◦ g. Choose lifts F,G,H : R → R. Replacing F by an
integer translate, that is F (x) by F (x) + k, we can assume that

F ◦H = H ◦G.

By induction, we extend this equality to powers of F and G, yielding

Fn ◦H = H ◦Gn.

In particular, we have

τ(F ) = lim
n→∞

Fn(H(x))

n
= lim

n→∞

H(Gn(x))

n
.

We note that H(y)− y is bounded for y ∈ R, so

lim
n→∞

H(Gn(x))

n
= lim

n→∞

Gn(x)

n
= τ(G).

This finally yields ρ(f) = ρ(g).

Corollary 5.13. A rotation rα is conjugate to a rotation rβ if and only
if α = β mod 1.

Exercise 5.14. Find f, g ∈ Homeo+(S1) with ρ(f) = ρ(g) but f and g not
conjugate.

We will divide the circle homeomorphisms into two classes: those with ratio-
nal rotation number and those with irrational rotation number, and study
them separately. We start with rational rotation numbers.

5.2 Rational rotation numbers

In the whole section, we assume f ∈ Homeo+(S1).

Lemma 5.15. If ρ(f) = 0, then f has a fixed point.

Proof. Suppose f has no fixed point. We can write f(x) = x+ g(x) mod 1
where g is continuous and g(x) ∈ (0, 1) for all x ∈ S1. Compactness of the
unit circle implies that g(x) has a minimum and a maximum, that is, there
exists some large N ∈ N such that

1

N
≤ g(x) ≤ 1− 1

N
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for all x ∈ S1. Take the canonical lift F : R → R of f . It is defined
by F (x) = x+ g(π(x)) for x ∈ R. Taking x = 0, this implies

x+ 1 ≤ FN (x) ≤ x+ (N − 1).

Taking limits, we obtain τ(F ) ∈ ( 1
N , 1 −

1
N ) and hence ρ(f) 6= 0, a contra-

diction.

Lemma 5.16. If ρ(f) = p
q with gcd(p, q) = 1, then f has a periodic point

of period q. Furthermore, for every lift x of a periodic point, and for the
lift F : R→ R of f with τ(F ) = ρ(f), we have F q(x) = x+ p.

Proof. By Exercise 5.10, we have ρ(f q) = qρ(f) = 0 mod 1. By the previous
lemma, f q has a fixed point, implying that f has a point of period q.

Now let x ∈ R be a lift of a periodic point for f . There exist natural
numbers n,m ∈ N such that Fn(x) = x+m. This gives

lim
k→∞

Fnk(x)

nk
= lim

k→∞

(Fn)k(x)

kn
= lim

k→∞

x+ km

kn
=
m

n
.

This implies that m
n = p

q or, in other words, there exists some l > 0 such
that (m,n) = (lp, lq). Assume now that F q(x) < x + p. This implies
that F 2q(x) < x + 2p, and so on: we obtain F lq(x) < x + lp, which
contradicts Fn(x) = x + m. We obtain a similar contradiction if we as-
sume F q(x) > x+ p. Hence, we must have F q(x) = x+ p.

We note that the previous proof in particular shows that if ρ(f) = p
q

with gcd(p, q) = 1, then every periodic point for f has minimal period q.
We summarise and finalise our study by the following result.

Theorem 5.17. If ρ(f) = p
q with gcd(p, q) = 1, then f has a periodic point

and all its periodic points are of minimal period q. Furthermore, the order
of the points (x, f(x), f2(x), . . . , f q−1(x)) on S1 is the same as the order

of (0, pq ,
2p
q , . . . ,

(q−1)p
q ).

We note that the points (0, pq ,
2p
q , . . . ,

(q−1)p
q ) equal the orbit of 0 under the

rational rotation rα with angle α = p
q .

Proof. Let i ∈ N be the minimal natural number such that (x, f i(x)) con-
tains no point of the orbit of x under f . If we define I := [x, f i(x)), we
obtain that S1 is the disjoint union of the intervals I, f(I), . . . , f q−1(I). In
particular, the order of the images of x on S1 is the following:

x < f i(x) < f2i(x) < · · · < f (q−1)i(x) < x.

We claim that we have ip = 1 mod q. Indeed, consider a lift x̃ ∈ R of the
periodic point x. Let F̄ be the lift of f i such that F̄ q(x̃) = x̃+ 1, and let F
be the lift of f such that F q(x̃) = x̃+ p.
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There exists a number k ∈ Z such that F̄ = F i + k. In particular, we have
both F qi(x̃) = x̃+ ip and F qi(x̃) = (F̄ + k)q(x̃) = F̄ q(x̃) + qk = x̃+ 1 + qk.
This implies that ip = 1 + qk, proving the claim.

To finish the proof, we note that ip = 1 mod q implies that the order
of {0, pq , . . . } mod 1, which is the order of {0, p, 2p, . . . } mod q, is the fol-
lowing: 0 < ip mod q < 2ip mod q < . . . .

5.3 Irrational rotation numbers

In the whole section, we assume f ∈ Homeo+(S1). The goal of this section is
to show the following classification result for surface homeomorphisms with
irrational rotation number.

Theorem 5.18 (Poincaré classification). If ρ(f) 6∈ Q, then there exists a
map h : S1 → S1 that is monotone and continuous and h ◦ f = rρ(f) ◦ h.
Moreover, if f is topologically transitive, then h is invertible. If f is not
topologically transitive, then h is not injective.

We note that Theorem 5.18 shows that a circle homeomorphism f with
irrational rotation number is semiconjugate to the rotation with the same
(irrational) rotation number. Furthermore, if f has a dense orbit, then the
semiconjugacy is in fact a conjugacy.

5.3.1 Denjoy examples

The first thing we do is to verify that there exist f with irrational rotation
number that are not topologically transitive. This shows that the second
part of Theorem 5.18 is indeed necessary, as such a map cannot be conjugate
to an irrational rotation. Such f go by the name of Denjoy examples.

Figure 5.1: An illustration of the Denjoy example.
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Example 5.19 (Denjoy examples). Let (ln)n∈Z be real numbers ln > 0 such
that

∑
n∈Z ln = 1. We start with the irrational rotation rα but modify it in

the following way. Choose x0 ∈ S1. For each n ∈ Z, insert an interval In of
length ln at xn = fn(x0) and choose any homeomorphism hn : In → In+1.
Define fα(x) to be hn(x) on In, for each n ∈ Z, and rα(x) on all other points,
see Figure 5.1. We note that since we leave many orbits of rα untouched,
the rotation number of fα must be the same as the rotation number rα,
which equals α. Furthermore, no orbit of fα is dense, as every orbit visits
each interval In at most once.

Exercise 5.20. Read in [2] how continuously differentiable Denjoy examples
can be constructed. We will show later that no such examples exist that are
twice continuously differentiable.

5.3.2 Proof of the Poincaré classification

As always, let f ∈ Homeo+(S1). Before we start with the proof of the
Poincaré classification, we ponder the density of orbits.

Lemma 5.21. If ρ(f) 6∈ Q, then for all x ∈ S1 and for all integers n 6= m,
every forward orbit of x under f intersects the interval I := [fm(x), fn(x)].

Proof. We assume that m > n, the other case being treated similarly. We
want to show that

S1 =
∞⋃
k=1

f−k(I).

If this was not the case, then we would have

S1 6⊂
∞⋃
k=1

f−k(m−n)(I) =
∞⋃
k=1

[f−(k−1)m+kn(x), f−km+(k+1)n(x)].

The endpoints of the intervals f−k(m−n) match, which implies that the se-
quence of endpoints f−k(m−n)(fn(x)) converges monotonically to a p ∈ S1,
as k →∞. This point p must therefore be a fixed point of fm−n and hence
a periodic point for f , contradicting ρ(f) 6∈ Q.

Proposition 5.22. If ρ(f) 6∈ Q, then for all x, y ∈ S1: Lfω(x) = Lfω(y).

Proof. Suppose x0 ∈ Lfω(x). There exists a sequence an with fan(x) → x0
for n→∞. By Lemma 5.21, there exists a sequence bn such that

f bn(y) ∈ [fan(x), fan+1(x)].

But this implies that f bn(y) → x0, as n → ∞. This proves the inclu-

sion Lfω(x) ⊂ Lfω(y), and the reverse inclusion is obtained simply by ex-
changing x and y.
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This implies the following result.

Corollary 5.23. If one orbit of f with ρ(f) 6∈ Q is dense, then every orbit
of f is dense.

The following Lemma is a key ingredient to the proof of the Poincaré clas-
sification.

Lemma 5.24. Let F ∈ H̃omeo
+

(S1) with τ(F ) 6∈ Q. Then for all x ∈ R:

Fn1(x) +m1 < Fn2(x) +m2 ⇐⇒ n1τ(F ) +m1 < n2τ(F ) +m2.

Proof. We first note that there exists no x ∈ R such that

Fn1(x) +m1 = Fn2(x) +m2

for n1 6= n2. Indeed, we would have

Fn1−n2(x) = F−n2(Fn2(x) +m2 −m1) = x+m2 −m1

and in particular, π(x) is a periodic point for f , a contradiction.

We have shown that either Fn1(x) + m1 < Fn2(x) + m2 for all x ∈ R
or Fn1(x) +m1 > Fn2(x) +m2 for all x ∈ R.

We now prove “ =⇒ ”. Note that Fn1(x)+m1 < Fn2(x)+m2 is equivalent
to Fn1−n2(x) < x + m2 −m1. By the above remark, it suffices to consider
the inequality for x = 0, in which case it reads Fn1−n2(0) < m2 −m1. By
an inductive argument, we get F k(n1−n2)(0) < k(m2 −m1).

This implies τ(F ) ≤ m2−m1
n1−n2

. The inequality is strict since τ(F ) 6∈ Q, which
proves the direction “ =⇒ ”.

The reverse implication is obtained by logical contraposition, repeating the
same proof with switched inequality signs.

We are now ready to prove the Poincaré classification.

Proof of Theorem 5.18. Our goal is to construct a semiconjugacyH : R→ R
for the lifts that descends to a semiconjugacy h : S1 → S1.

Let F be a lift of f . We first construct H on one orbit. Let x ∈ R and
define B := {Fn(x) +m : n,m ∈ Z} ⊂ R. We now define H on B as follows:

H : B → R, Fn(x) +m 7→ nτ(F ) +m

By Lemma 5.24, H is monotone. Furthermore, we have

H ◦ F = Tτ(F ) ◦H.

We note that H(B) is dense in R.
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We now prove that H extends continuously to H : B → R. Let y ∈ B. Then
at least one of the two limits

lim
xn↗y, xn∈B

H(xn)

and
lim

xn↘y, xn∈B
H(xn)

exists, since H is monotone. If both limits exist, then they must agree.
Indeed, if not, then R \H(B) contains an open interval, which contradicts
the density of H(B) in R. We have therefore have H : B → R continuous
and monotone.

The compement R \ B is an open set; it is the union of open intervals.
On such an open interval I, the limit values H(I−) and H(I+) on the two
endpoints ∈ B must agree. Otherwise we would get that H(B) is not dense
in R. So for each such interval I, we define

H|I = H(I+) = H(I−) = const.

This finally yields a continuous and monotone function H : R→ R with

H ◦ F = Tτ(F ) ◦H.

Furthermore, the function H is invertible if and only if B = R, which is the
case if and only if the orbit of every point is dense under f : S1 → S1.

The induced map h : S1 → S1 is a semiconjugacy satisfying all propoerties
of the theorem.

5.4 Arnold tongues

In this section, we present a series of exercises exploring how the rotation
number ρ(f) depends on the homeomorphism f . For inspiration on the
exercises, you can consult the second half of the Section 11.1 in the book of
Katok and Hasselblatt [3].

Exercise 5.25. Show that the rotation number ρ(f) depends continuously
on the function f , in the C0-topology.

Exercise 5.26. Assume that ρ(f) = p
q . Show that if for a periodic point x

of f , we have (f q)′(x) 6= 1, then all sufficiently close perturbations of f have
rotation number p

q . Give a counterexample for the statement if all periodic

points x satisfy (f q)′(x) = 1.

Exercise 5.27. Let F1 ∈ H̃omeo
+

(S1) such that τ(F ) 6∈ Q. Further-

more, let F2 ∈ H̃omeo
+

(S1) be a sufficiently small perturbation of F1 such
that F2(x) > F1(x) for all x ∈ R. Show that τ(F2) > τ(F1).
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Exercise 5.28 (Arnold tongues). For (a, b) ∈ [0, 1] × [0, 1
2π ], define the

map fa,b : S1 → S1 by

fa,b(x) = x+ a+ b sin(2πx) mod 1.

a) Show that fa,b is a homeomorphism of S1.

b) For p/q ∈ Q ∩ [0, 1], define the Arnold tongue Ap/q to be the set

Ap/q = {(a, b) ∈ [0, 1]× [0,
1

2π
] : ρ(fa,b) = p/q}.

Show that each tongue Ap/q is closed and intersects the line b = 0
exactly at the point a = p/q.

c) Show that each tongue Ap/q intersects every line b = const. in a closed
interval of positive length, except for b = 0.

d) Show that the union of the tongues Ap/q is dense in [0, 1]× [0, 1
2π ].

e) Show that for b ∈ [0, 1
2π ) fixed, the function a 7→ ρ(fa,b) is a devil’s

staircase.

5.5 Diffeomorphisms of the circle

Definition 5.29. For a map f : S1 → R we define its variation to be

Var(f) := sup
0≤x1≤···≤xn≤1

n∑
k=1

|f(xk)− f(xk+1)|,

where the supremum is taken over all n ∈ N. We say such a map f has
bounded variation if Var(f) < +∞.

We will prove the following theorem due to Denjoy.

Theorem 5.30 (Denjoy). Let f ∈ Homeo+(S1) with ρ(f) 6∈ Q. If f ′ has
bounded variation, then f is topologically transitive.

We note that every C1 map S1 → R is Lipschitz and hence has bounded
variation. As a consequence of Denjoy’s theorem and the Poincaré classifi-
cation of surface homeomorphisms with irrational rotation number, we get
that Denjoy examples are not possible in the class of twice continuously
differentiable homeomorphisms of S1.

Corollary 5.31. If f ∈ Homeo+(S1) with ρ(f) 6∈ Q is of class C2, then f
is conjugate to the rotation rρ(f).
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Proof of Theorem 5.30. We assume f is not topologically transitive and aim
to arrive at a contradiction. In this case, the ω-limit Lfω(0) is a closed and

nowhere dense subset of the unit circle. In particular, S1 \ Lfω(0) is a union
of open intervals. Let I = (a, b) be one of them.

We note that the intervals fn(I), n ∈ Z, must be pairwise disjoint, as
otherwise we could produce a periodic point of the map f , which would
contradict ρ(f) 6∈ Q. This implies∑

n∈Z
l(fn(I)) ≤ 1,

where l(fn(I)) =
∫ b
a (fn)′(t)dt is the length of the interval fn(I).

Before stating a lemma we will need in the proof, we note that for an
orientation-preserving diffeomorphism f : S1 → S1, we must have f ′(x) > 0
for all x ∈ S1.

Lemma 5.32. Let J ⊂ S1 be such that the interiors of J, f(J), . . . , fn−1(J)
are pairwise disjoint. Let g = log(f ′), and fix x, y ∈ J . Then for all n ∈ Z,
we have

Var(g) ≥ | log((fn)′(x))− log((fn)′(y))|.

Proof. Using that all interiors of the intervals J, f(J), . . . , fn−1(J) are pair-
wise disjoint, we get

Var(g) ≥
n−1∑
k=0

∣∣∣g(fk(y))− g(fk(x))
∣∣∣ ≥ ∣∣∣∣∣

n−1∑
k=0

g(fk(y))− g(fk(x))

∣∣∣∣∣ =

=

∣∣∣∣∣log

n−1∏
k=0

f ′(fk(y))− log

n−1∏
k=0

f ′(fk(x))

∣∣∣∣∣
=
∣∣log((fn)′(y))− log((fn)′(x))

∣∣ ,
which is what we wanted to show.

Take x ∈ S1 and n such that fk(x) 6∈ [x, fn(x)] for 0 < |k| < n. Such an n,
and in fact infinitely many of them, exists. Indeed, the irrational rotation
number of f implies that the orbit of any point x is ordered in the same way
as the orbit of x under the irrational rotation rρ(f), by Lemma 5.24, and the
orbit of x under the irrational rotation is dense.

Now let J := f−n[x, fn(x)] = [f−n(x), x]. Then fk(J) = [f−n+k, fk(x)] and
the intervals J, f(J), . . . fn−1(J) are pairwise disjoint. We now apply the
lemma to the interval J with y = f−n(x). This yields

Var(g) ≥
∣∣log

(
(fn)′(x))− log((fn)′(y)

)∣∣
=

∣∣∣∣log

(
(fn)′(x)

(fn)′(f−n(x))

)∣∣∣∣
=
∣∣log

(
(fn)′(x)(f−n)′(x)

)∣∣ .
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So for infinitely many n ∈ N, we obtain

l(fn(I)) + l(f−n(I)) =

∫
I
(fn)′(x)dx+

∫
I
(f−n)′(x)dx

=

∫
I
(fn)′(x) + (f−n)′(x)dx

≥ 2

∫
I

√
(fn)′(x)(f−n)′(x)dx

≥ 2

∫
I

√
exp(−Var(g))dx

= 2 · l(I) exp

(
−Var(g)

2

)
= const. > 0,

since we assume that the variation of f ′ is bounded and hence so is the
variation of g = log(f ′). This contradicts the fact that

∑
n∈Z l(f

n(I)) ≤ 1,
and finishes the proof.



Chapter 6

Ergodic theory

Ergodic theory is the study of statistical properties of dynamical systems.
The name originates from statistical mechanics, where the “ergodic hypoth-
esis” asserts that observables satisfy an asymptotic equality of their average
over time and of their average over the space, in short:

time average = space average.

Before proving such an equality via Birkhoff’s ergodic theorem, we consider
basic definitions and a first recurrence theorem, the Poincaré recurrence.

6.1 Poincaré recurrence

Let µ be a measure on the space X. We do not recall the basic definitions
from measure theory. For a minimal refresher on the notions we encounter,
read the first pages of the chapter on ergodic theory in [2].

Definition 6.1. The triple (X,µ, f) is a measure-preserving discrete-time
dynamical system if f is measurable and f∗µ = µ, that is, for all measurable
sets A ⊂ X, we have µ(f−1(A)) = µ(A).

While we will only deal with discrete-time dynamical systems, an analogue
definition can be given for continuous-time ones.

Example 6.2. The rotation rα of the circle S1 is measure-preserving with
respect to the Lebesgue measure L1.

Exercise 6.3. Show that (S1,L1, x 7→ 2x mod 1) is measure-preserving.

Example 6.4. The rotation (S1, r p
q
) admits many invariant measures: take

any measure on the interval [0, pq ) and transport it to a measure on S1 by
the rotation.

49
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Theorem 6.5 (Poincaré recurrence). Let (X,µ, f) be a measure-preserving
dynamical system with µ(X) < ∞. If A ⊂ X is measurable, then for µ-
almost every x ∈ A, the orbit O+

f (x) visits A infinitely many times.

Proof. Define the measurable sets

En =
∞⋃
k=n

f−k(A),

E =
∞⋂
n=0

En.

Let A∗ = A ∩ E be the set of points x ∈ A whose orbit returns to A
infinitely many times. That is, the points x ∈ A for which there exists an
infinite sequence

0 < k1 < k2 < . . .

with fki(x) ∈ A for all i. In fact, by definition, we obtain fki(x) ∈ A∗ for
all i.

We now want to show that µ(A∗) = µ(A). For all m ≥ n and by the defini-
tion of the sets Ei, we have Em = fn−m(En). As f is measure-preserving,
this implies that all sets En have the same measure: µ(En) = µ(E0) for
all n ≥ 0. Since En ⊂ En−1 for all n, we obtain that µ(E) = µ(E0) as well.
This finally implies

µ(A∗) = µ(A ∩ E) = µ(A ∩ E0) = µ(A),

where the last inequality follows from the fact that A ⊂ E0.

Exercise 6.6. Find a counterexample to the Poincaré recurrence theorem
with µ(X) =∞.

Example 6.7 (Zermelo’s paradox). Assume there is a box with a wall in
its middle, and the half to the left of the box is filled with some perfect gas,
while the right half is in a vacuum. Then remove the wall so the gas can
move freely in the box. Will all the gas once again be contained in the left
half of the box?

Let X is the space of all positions and velocities of all particles, and let A
is the subspace of points that position all gas particles on the left half of
the box. There is an invariant measure µ for this dynamical system, the
Maxwell-Boltzmann measure. So by the Poincaré recurrence theorem, after
some time, all particles of the gas will actually be back in the left half of the
box.

This is called a paradox because is seemingly contradicts the second law of
thermodynamics, which asserts that natural processes run in one sense and
are not reversible.

Exercise 6.8. Discuss a solution of Zermelo’s paradox.
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6.2 Birkhoff’s Ergodic Theorem

Given a measure-preserving dynamical system (X,µ, f), where does the or-
bit O+

f (x) dwell? More precisely, for any subset A ⊂ X, how much time
does the orbit spend in A? More formally, we look at the proportion of time
spent in A after n steps,

1

n

(
χA + χA ◦ f + · · ·+ χA ◦ fn−1

)
(x),

and wonder what happens if we let n→∞. If this limit exists, it tells us the
asymptotic proportion of time the orbits spends in A, the “time average”.

Example 6.9. For (S1,L1, x 7→ 2x mod 1) and A = [0, 12), the limit equals
the proportion of 0s in the binary expansion of x ∈ [0, 1).

Example 6.10. Consider the circle rotation (S1,L1, rα) together with the
subset A = [0, λ) ⊂ S1.

If α 6∈ Q, then we might guess that the orbit equidistributes in some sense,
so that the limit equals λ, which also equals L1(A).

If α = p
q ∈ Q, then the limit equals

#{k ∈ N : k < q, x+ k
q ∈ [0, λ)}

q
.

In order to state the Birkhoff Ergodic Theorem, we need the following defi-
nition generalising the indicator sums we consideret up to now.

Definition 6.11. Let (X, f) be a dynamical system and let ϕ : X → C. We
define

Sn(ϕ, f) :=
1

n

n−1∑
k=0

ϕ ◦ fk,

the Birkhoff sums of ϕ with respect to f .

Theorem 6.12 (Birkhoff Ergodic Theorem, 1931). Let (X,µ, f) be a measure-
preserving dynamical system, and let ϕ ∈ L1(X,µ). Then

i) the limit ϕ̃(x) := limn→∞ Sn(ϕ, f)(x) exists for µ-almost every x ∈ X,

ii) ϕ̃(x) = ϕ̃ ◦ f(x) for µ-almost every x ∈ X,

iii) ||ϕ̃||L1 ≤ ||ϕ||L1,

iv) if µ(X) <∞, then the convergence is in L1(X,µ):

||Sn(ϕ, f)− ϕ̃||L1 → 0,

v) for every f -invariant measurable subset A ⊂ X with µ(A) < ∞, we
have ∫

A
ϕdµ =

∫
A
ϕ̃dµ.
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6.3 Ergodic dynamical systems

In the context of measure-preserving dynamical systems, a subset A ⊂ X is
called invariant if f−1(A) = A.

Definition 6.13. Let (X,µ, f) be a measure-preserving dynamical system
with µ(X) = 1. The system is called ergodic if for every invariant measurable
subset A ⊂ X, either µ(A) = 0 or µ(A) = 1.

We will deduce from the Birkhoff Ergodic Theorem 6.12 that the time av-
erage and the space average agree for ergodic dynamical systems.

Corollary 6.14 (Time average = space average). If (X,µ, f) is ergodic
and ϕ ∈ L1(X,µ), then for µ-almost every x ∈ X, the time average equals
the space average:

ϕ̃(x) =

∫
X
ϕdµ.

In particular, for ϕ = χA, we get Sn(χA, f)→ µ(A).

Example 6.15. The dynamical system (S1, µqx, r p
q
) is ergodic, where

µqx =
1

q

(
δx + δx+ 1

q
+ · · ·+ δx+ q−1

q

)
,

and δy is the Dirac measure with atom y.

Example 6.16. More generally, given (X, f) and a periodic point x ∈ X of
period n, the measure

µ =
1

n

(
δx + δf(x) + · · ·+ δfn−1(x)

)
gives an ergodic dynamical system (X,µ, f).

Example 6.17. (S1,L1, rα) is not ergodic if α ∈ Q. This can be checked
by finding an rα-invariant set A of measure > 0 but < 1.

The following proposition together with Birkhoff’s Ergodic Theorem 6.12
will allow us to prove Corollary 6.14. It characterises ergodicity via functions
that are invariant under f µ-almost everywhere.

Proposition 6.18. Let (X,µ, f) with µ(X) = 1 be a measure-preserving
dynamical system. Then the following are equivalent.

i) (X,µ, f) is ergodic,

ii) for all ϕ : X → C measurable with ϕ ◦ f = ϕ µ-almost everywhere, it
holds that ϕ is constant µ-almost everywhere,
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iii) for all ϕ ∈ L1(X,µ) with with ϕ ◦ f = ϕ µ-almost everywhere, it holds
that ϕ is constant µ-almost everywhere,

iv) for all ϕ ∈ L2(X,µ) with with ϕ ◦ f = ϕ µ-almost everywhere, it holds
that ϕ is constant µ-almost everywhere.

Proof. We first note that ii) =⇒ iii) =⇒ iv) follows from the inclusion
of spaces of functions.

To prove iv) =⇒ i), we take A ⊂ X measurable and f -invariant. The
indicator function χA in in L2(X,µ) and χA◦f = χA, so by iv), the indicator
function χA ist constant except on a set of measure zero. As it can only
take the values 0 or 1, we have µ(A) = 1 or µ(A) = 0, proving ergodicity.

For the implication i) =⇒ ii), suppose there exists ϕ : X → C measurable
such that ϕ ◦ f = ϕ µ-almost everywhere, but with ϕ not constant µ-
almost everywhere. Splitting into real and imaginary parts, we may actually
assume ϕ : X → R.

There exists x ∈ R such that µ(ϕ−1([x,+∞))) 6= 0 or 1. Define

A′ := ϕ−1([x,+∞)).

We have µ(A′ \f−1(A′)∪f−1(A′)\A′) = 0, since any point x in the set does
not satisfy ϕ ◦ f(x) = ϕ(x).

As f is measure-preserving, we also get

µ(f−k(A′) \ f−k−1(A′) ∪ f−k−1(A′) \ f−k(A′)) = 0 (6.1)

for all k ≥ 0. We now define

A :=
⋂
p∈N

⋃
n≥p

f−n(A′),

which is measurable and f -invariant. Furthermore, by 6.1 we obtain

µ

⋃
n≥p

f−n(A′)

 = µ(A′)

for all p ∈ N, and finally µ(A) = µ(A′), which does not equal 0 or 1,
contradicting ergodicity.

We are now ready to prove Corollary 6.14.

Proof of Corollary 6.14. By ii) of Birkhoff’s ergodic theorem 6.12, we have

ϕ̃(x) = ϕ̃ ◦ f(x)
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for µ-almost every x ∈ X. By the above proposition, ergodicity implies
that ϕ̃ is constant on a full measure set. Applying v) of Birkhoff’s Ergodic
Theorem 6.12 to A = X implies∫

X
ϕdµ =

∫
X
ϕ̃dµ = ϕ̃(x)

for µ-almost every point x ∈ X.

Let us now turn to more examples.

Example 6.19. We want to show that (S1,L1, rα) is ergodic assuming the
rotation parameter is irrational: α 6∈ Q.

Take ϕ ∈ L2(X,µ) and suppose ϕ ◦ rα = ϕ almost everywhere. Fourier
analysis tells us that the Fourier series

+∞∑
n=−∞

cn(ϕ)e2πinx

converges to ϕ in L2, where

cn(ϕ) =

∫
S1

e−2πintϕ(t)dt.

Since ϕ ◦ rα = ϕ almost everywhere, the Fourier coefficients of ϕ ◦ rα and ϕ
must agree. We calculate

cn(ϕ) = cn(ϕ ◦ rα) =

∫
S1

e−2πintϕ(t+ α)dt

=

∫
S1

e−2πin(t−α)ϕ(t)dt

= e2πinαcn(ϕ).

As α is irrational, e2πinα 6= 1 for n 6= 0. This implies cn = 0 for n 6= 0. So the
function ϕ has only one nontrivial Fourier coefficient and so is constant on a
full measure set. The function ϕ was chosen arbitrarily, so Proposition 6.18
implies ergodicity.

Exercise 6.20. Show that (S1,L1, x 7→ 2x mod 1) is ergodic.

Example 6.21. We want to show that (R2/Z2,L2, T( 2 1
1 1 )) is ergodic.

Let ϕ : R2/Z2 → C measurable with ϕ◦T( 2 1
1 1 ) = ϕ on a full measure subset.

By Fourier analysis, the Fourier series

+∞∑
m,n=−∞

cmne
2πi(mx+ny)
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converges to ϕ in L2. Similarly, the Fourier series

+∞∑
m,n=−∞

cmne
2πi(m(2x+y)+n(x+y))

converges to ϕ◦T( 2 1
1 1 ) in L2. As ϕ◦T( 2 1

1 1 ) = ϕ on a full measure subset, we

obtain that cmn = c(2m+n)(m+n) for all m and n. In particular, if cmn 6= 0
for some (m,n) 6= (0, 0), then there exist i, j with |i| + |j| arbitrarily large
and cij = cmn. But this would mean that the Fourier series diverges, a
contradiction. So we have that cmn = 0 for all (m,n) 6= (0, 0). In particu-
lar, ϕ is constant on a full measure subset of the torus. Since ϕ was chosen
arbitrarily, Proposition 6.18 implies ergodicity.

Exercise 6.22. Show that (R2/Z2,L2, TA) is ergodic for any Anosov map TA.

6.4 Proof of Birkhoff’s Ergodic Theorem

We will need the following lemma for our proof.

Lemma 6.23 (Maximal Ergodic Theorem). Let (Y, ν, g) be a measure-
preserving dynamical system, and let ψ ∈ L1(Y, ν) be real-valued. Further-
more, define

ψ∗(y) = sup
n≥0

Sn(ψ, g)(y).

Then we have ∫
{ψ∗(y)>0}

ψdν ≥ 0.

Proof. Define

ψn(y) := sup{0, ψ(y), ψ(y) + ψ ◦ g(y), . . . , ψ(y) + · · ·+ ψ ◦ gn−1(y)},
Yn := {y ∈ Y : ψn(y) > 0}.

We directly observe that {ψ∗(y) > 0} = ∪n∈NYn and that for all n ∈ N, we
have Yn ⊂ Yn+1. Furthermore, we have the following equalities:

ψn = ψ + ψn−1 ◦ g on Yn,

ψn = 0 on Y \ Yn.

We now obtain ∫
Yn

ψdν =

∫
Yn

ψndν −
∫
Yn

ψn−1 ◦ gdν

≥
∫
Y
ψdν −

∫
Y
ψn−1dν

=

∫
Y

(ψn − ψn−1)dν ≥ 0,



56 CHAPTER 6. ERGODIC THEORY

where we use ψn−1 ≥ 0 for the inequality in the middle. Finally, this implies∫
{ψ∗(y)>0}

ψdν =

∫
∪n∈NYn

ψdν ≥ 0

by the dominated convergence theorem.

We are now ready to prove Birkhoff’s Ergodic Theorem.

Proof of Theorem 6.12. Without loss of generality, we assume ϕ : X → R.
Otherwise, we can split into the real and the imaginary part.

Proof of i): For a < b ∈ R, we define the sets

X(a, b) := {x ∈ X : lim inf
n→∞

Sn(ϕ, f)(x) < a < b < lim sup
n→∞

Sn(ϕ, f)(x)},

which are f -invariant. We can therefore apply Lemma 6.23 to the measure-
preserving dynamical system (X(a, b), µ|X(a,b), f |X(a,b)) and to the func-
tion ϕ(x) − b. We note that (ϕ − b)∗ > 0 on X(a, b), so Lemma 6.23
implies ∫

X(a,b)
(ϕ(x)− b)dµ ≥ 0.

Similarly, we apply Lemma 6.23 to the function a− ϕ(x) and get∫
X(a,b)

(a− ϕ(x))dµ ≥ 0.

This implies ∫
X(a,b)

(a− b)dµ ≥ 0.

Since a − b < 0, this can only hold if µ(X(a, b)) = 0. We have shown that
there can be no set of positive measure on which the lim sup and the lim inf
of the Birkhoff sums disagree.

Proof of ii): If the Birkhoff sums converge, then the limit does not depend
on the first term:

lim
n→∞

Sn(ϕ, f)(x) = lim
n→∞

1

n

n−1∑
k=0

ϕ ◦ fk(x)

= lim
n→∞

1

n

(
ϕ(x) +

n∑
k=1

ϕ ◦ fk(x)

)

= lim
n→∞

1

n

n−1∑
k=0

(ϕ ◦ f) ◦ fk(x)

= lim
n→∞

Sn(ϕ ◦ f, f)(x).
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Proof of iii): We assume ϕ ≥ 0. Otherwise we split ϕ into the positive and
the negative part: ϕ = ϕ+ − ϕ−, and do the argument separately for ϕ+

and ϕ−. By Fatou’s Lemma, we have∫
X
ϕdµ =

∫
X
Sn(ϕ, f)dµ = lim inf

n→∞

∫
X
Sn(ϕ, f)dµ ≥

≥
∫
X

lim inf
n→∞

Sn(ϕ, f)dµ =

∫
X
ϕ̃dµ.

Proof of iv): If the function ϕ is bounded, note that all the terms of the
sequence Sn(ϕ, f)(x) are bounded by ||ϕ||∞ and use the dominated con-
vergence theorem. Here, we need that µ(X) < ∞ so that the constant
function ||ϕ||∞ is integrable.

If the function ϕ is not bounded, one can approximate it by bounded ones.

Proof of v): We apply iv) to the measure-preserving dynamical system
obtained by restriction: (A,µ|A, f |A) and the map ϕ|A. As in iv), we again
assume that ϕ|A ≥ 0.

We obtain ∫
A
ϕdµ =

∫
A
Sn(ϕ|A, f |A)dµ −→

∫
A
ϕ̃dµ,

as n→∞. Since the left side is constant, this implies∫
A
ϕdµ =

∫
A
ϕ̃dµ,

and finishes the proof.

Exercise 6.24. Deduce topological transitivity of Anosov maps of the torus
using their ergodicity.
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Chapter 7

Surface homeomorphisms

The goal of this chapter is to generalise the Anosov maps of the torus to so-
called pseudo-Anosov maps on surfaces of higher genus. Strikingly, Anosov
maps are topologically mixing and hence have a dense orbit, yet their peri-
odic points are dense in the torus as well.

Exercise 7.1. Show that the periodic points for an Anosov map

TA : R2/Z2 → R2/Z2

form a dense subset of the torus.

It is our goal to construct maps of surfaces of higher genus in such a way
that they have, except in finitely many points, a similar stretching and
contracting behaviour as Anosov maps of the torus, and to see that the
properties of topological transitivity and density of periodic points is shared
by these maps.

7.1 Basic surface topology

Definition 7.2. A surface Σ is a two-dimensional topological manifold, pos-
sibly with boundary. A surface Σ is closed if it is compact and does not have
boundary.

Example 7.3. Surfaces can be defined in many different ways. Here are
some examples.

a) The preimage f−1(y) of a regular value y for f : Rn → Rn−2 is a surface
without boundary, by the implicit function theorem. An example is
the 2-sphere, defined as the preimage of 1 of the function x2 + y2 + z2.

b) One can parametrise surfaces as surfaces of revolution in R3: rotating
some parametrised one-manifold in the xz-plane around the z-axis.

59
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c) Take a polygon in the plane R2 and identify its edges pairwise. To
make this precise, one has the use the notion of the quotient topology.
The most common example of such a kind is the unit square with
opposite sides identified: the torus.

Definition 7.4. Let Σ0 be the 2-sphere. For g ≥ 1, let Σg be the surface
obtained by taking a regular 4g-gon in the plane and identifying opposite
sides via translations. The surface Σg is called the surface of genus g.

Exercise 7.5. Visualise the surface Σg and show that it is homeomorphic
to a sphere with g handles attached.

Example 7.6. The surface with boundary obtained by taking a unit square
and identifying its top and bottom edge via a reflection in the midpoint of
the square is called a Moebius strip.

Definition 7.7. A surface is orientable if it does not contain a Moebius
strip as a subsurface.

The following theorem provides a classification of closed orientable surfaces
up to homeomorphisms.

Theorem 7.8 (Classification of surfaces). Every closed orientable surface Σ
is homeomorphic to a surface Σg.

For a slick proof of this classification result, we recommend Putman’s note [6]
based on a proof of Zeeman.

Exercise 7.9. Describe a closed orientable surface in a way that is com-
plicated enough so that it is not immediately obvious to which of the sur-
faces Σg it is homeomorphic.

By the classification of surfaces, one only has to identify the genus of a closed
orientable surface in order to determine its homeomorphism type. A fairly
practical way to do this is by triangulations. We give a slightly informal
definition.

Definition 7.10. A triangulation of a surface Σ is a subdivision of Σ into
triangles such that each pair of triangles either has exactly one edge in com-
mon, or exaclty one vertex in common, or is disjoint.

Given a closed surface Σ that is triangulated, the Euler characteristic χ(Σ)
is equal to v − e+ f , where v, e and f are equal to the number of vertices,
edges and faces, respectively, of the triangulation. It is a theorem that the
Euler characteristic does not depend on the triangulation, and an exercise
to show that it is invariant under homeomorphisms.

Exercise 7.11. Verify that the Euler characteristic of Σg equals 2− 2g.

In particular, via the equality g = 2−χ
2 , we can directly read off the genus,

and hence the homeomorphism type, of a closed orientable surface as soon
as we have any triangulation.



7.2. THURSTON’S CONSTRUCTION OF PSEUDO-ANOSOV MAPS61

7.2 Thurston’s construction of pseudo-Anosov maps

This section closely follows parts of [5].

7.2.1 An example

Consider the closed surface Σ depicted in Figure 7.1.

p

Figure 7.1: A closed surface Σ built from rectangles. The vertex p and all
the other vertices which get identified with p are highlighted.

It consists of rectangles with parallel identifications of horizontal and vertical
sides. We consider the horizontal and the vertical annuli Hi and Vi into
which our decomposition into rectangles divides the surface. In our example,
there are four vertical and two horizontal annuli. We claim (and show later
in Proposition 7.13) that there exists a choice of the side lengths of the
rectangles such that the ratio between the length and the width of every

annulus Hi and Vi is equal to r =

√
5+
√
13

2 ≈ 2.074. Furthermore, we will
see that this choice is unique up to a global scaling factor, so that the ratio r
is unique.

Figure 7.2 shows two homeomorphisms f and g of Σ.

f

g

Figure 7.2: The action of two affine homeomorphisms f and g on Σ.

The homeomorphism f pointwise fixes vertical sides of the rectangles, pre-
serves all other vertical lines and sends horizontal lines to lines with slope−r.
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In particular, away from the point p we can write f as an affine map with
linear part ( 1 0

−r 1 ). Analogously, g pointwise fixes the horizontal sides of the
rectangles, preserves horizontal lines and sends vertical lines to lines with
slope 1/r. In particular, away from the point p, also g is an affine map with
linear part ( 1 r

0 1 ).

The composition g ◦ f must, away from the point p, also be an affine map
with linear part

D =

(
1 r
0 1

)(
1 0
−r 1

)
=

(
1− r2 r
−r 1

)
.

The linear part D of g ◦f has two real eigenvalues λ ≈ −1.722 and 1/λ, and
corresponding eigendirections (at every point except p). See Figure 7.3 for
an illustration of how these eigendirections cover the surface Σ.

Figure 7.3: Eigendirections for (g ◦ f).

The map (g ◦ f) stretches by |λ| and |1/λ|, respectively, along these direc-
tions. The number |λ| is called the dilatation of g ◦ f and is an algebraic
integer. It’s minimal polynomial can be shown to be t4 − t3 − t2 − t+ 1.

So what about the point p? Arount the point p, the total angle in our rep-
resentation of the surface Σ as a polygon in the real plane is 6π. This means
that around p, the eigendirections “wind” similar to a 6-saddle, as depicted
in Figure 7.4. The presence of such “singularities” for the eigendirections

Figure 7.4: The eigendirections for λ in a neighbourhood of the point p.

of the map (g ◦ f) is necessary for surfaces of genus g ≥ 2, which is why we
call such maps pseudo-Anosov instead of Anosov.

Exercise 7.12. What is the genus of the surface Σ treated in this section?
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7.2.2 Thurston’s construction

Let Σ be a surface that is represented by a union rectangles in the real
plane whose sides are parallel to the vertical and the horizontal direction.
Furthermore, fix some identification of the sides via translations in the plane,
so that no side remains unidentified. In particular, horizontal sides get
identified with horizontal sides and vertical sides get identified with vertical
sides, and identified sides must be of the same length. As in Section 7.2.1, we
decompose Σ into its horizontal and vertical annuli Hi and Vi, respectively.

Proposition 7.13. It is possible to change the width of each annulus Hi

and Vj so that the ratio between the length and the width is a fixed num-
ber r ≥ 1 for each horizontal and each vertical annulus. Furthermore, this
ratio r is unique.

Proof. Let Ω = ( 0 X
X> 0

) ≥ 0 be the geometric intersection matrix of the
annuli Hi and Vj , that is, each entry of Ω is given by the number of rectangles
in which the corresponding annuli overlap. Furthermore, let r be its Perron-
Frobenius eigenvalue and let v > 0 be the corresponding eigenvector, so we
have Ωv = rv. We resize each horizontal and vertical annulus to have width
equal to the corresponding entry of the vector v, thus changing also the
length of the annuli overlapping it.

Now, the length of a horizontal annulus equals the sum of all the widths
of the vertical annuli it overlaps, counted with multiplicity. This number
equals (Ωv)i, where the i-th entry corresponds to the horizontal annulus
under consideration. Furthermore, the width of a horizontal annulus is
simply vi. Then, the claim follows directly from Ωv = rv, which implies the
coordinate-wise equality (Ωv)i = rvi. The same argument applies to vertical
annuli.

Finally, v is the unique eigenvector of Ω with strictly positive entries by the
Perron-Frobenius theorem 2.17. From this it follows that r ≥ 1 is uniquely
determined by the matrix Ω.

The following way of constructing maps on surfaces is called Thurston’s
construction of pseudo-Anosov maps:

One starts with a surface Σ as above, and applies Proposition 7.13. Then
one defines the maps f and g, analogously to what we did in Section 7.2.1
as affine maps outside of the points p around which the angle does not add
to 2π. If one takes any product of the maps f and g such that the linear part
is a hyperbolic matrix, then there exist eigenvalues λ with |λ| > 1 and 1/λ
with corresponding eigendirections along which the map stretches by |λ| or
|1/λ|, respectively.

Exercise 7.14. Show that Thurston’s construction is general enough to
yield infinitely many examples of maps with hyperbolic linear part on every
surface of genus g, for g ≥ 1.
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Hint: Start from a staircase of squares in the plane, then apply Thurston’s
construction.

7.3 Pseudo-Anosov maps

We finally give a definition of pseudo-Anosov maps. While the maps ob-
tained via Thurston’s construction are pseudo-Anosov by definition, we note
without proof that many more pseudo-Anosov maps exist than just the ones
obtained in this way.

Definition 7.15. A homeomorphism f of a closed surface Σ is pseudo-
Anosov if the map f : Σ → Σ is topologically conjugate to f̂ : Σ̂ → Σ̂,
where Σ̂ is a surface represented by rectangles in the plane, as defined at the
beginning of Section 7.2.2, and the map f̂ is affine with hyperbolic linear part
outside the finite set of points around which the total angle in our planar
representation of Σ̂ does not equal 2π. The larger absolute value |λ| > 1
among the eigenvalues of the linear part is called the dilatation.

The following is a landmark result in the study of isotopy classes of homeo-
morphisms of surfaces. For much more on pseudo-Anosov homeomorphisms
and their ramifications, we recommend the book of Farb and Margalit [4].

Theorem 7.16 (Thurston classification of surface homeomorphisms, 1970s).
Let f : Σ → Σ be a homeomorphism of a closed surface that is not isotopic
to a map which preserves a system of simple closed curves on Σ. Then f is
either isotopic to a periodic map or to a pseudo-Anosov map.

To finish, we content ourselves with the following result on the orbits of
pseudo-Anosov maps, showing that their dynamical properties are very sim-
ilar to those of Anosov maps.

Theorem 7.17. Let f : Σ→ Σ be a pseudo-Anosov map. Then

a) the map f is topologically mixing,

b) the periodic points for f form a dense subset of Σ.

Proof. We work with the topologically conjugate map f̂ : Σ̂→ Σ̂.

For a), we only give a sketch of the proof. We note that a pseudo-Anosov
map must permute the members of the finite set of points around which the
total angle in our planar representation of Σ̂ does not equal 2π. We assume
that one of these points p is fixed (the proof of a permutation moving every
point can be reduced to this case). Now consider the curve γ on Σ̂ defined
by following an eigendirection for λ starting at p. One can show that this
curve is not closed, otherwise we get a contradiction: mapping γ by f must
give back γ, but it should also stretch by a factor of |λ|. In fact, we claim
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that γ is dense in Σ̂, and refer to [4] for a proof. To finish the proof, we
may now copy the argument we used to show topological mixing for Anosov
maps of the torus in Proposition 3.14.

For b), let S be a square in Σ̂, parametrised in such a way that

i) S does not contain any of the points around which the total angle in
our planar representation of Σ̂ does not equal 2π,

ii) the vertical lines of the rectangle are parallel to the eigendirection
for 1/λ, and

iii) the horizontal lines are parallel to the eigendirection for λ.

Our goal is to show that S contains a periodic point, which suffices to finish
the proof.

We first note that the map f̂ , as it is affine with hyperbolic linear part of
determinant ±1, preserves the Lebesgue measure L2 on Σ̂. We can therefore
use Poincaré recurrence 6.5 on the set S and obtain that for any N there
exists n > N such that f̂n(S) ∩ S is nonempty.

Let x1 ∈ S such that f̂n(x1) ∈ S. Let J be be the vertical segment of S
containing x1. Since f̂ contracts arcs parallel to the eigendirection for 1/λ,
we can assume to have chosen N large enough such that f̂n(J) ⊂ S.

There is a natural map from f̂n(J) to J , obtained by moving the arc f̂n(J)
horizontally in S until it hits the arc J . Composing this map with f̂n yields
a map J → J . This map is a contraction with respect to the metric of the
segment J ⊂ S induced by the standard metric on the square S, and so it
has a fixed point x2 ∈ J , by the Banach fixed point theorem 2.4.

Let L be the horizontal segment of S containing x2. Assuming to have
chosen N large enough, we have L ⊂ f̂n(L). Here, we need that the vertical
coordinate of x2 equals the vertical coordinate of f̂n(x2), and the fact that f̂
stretches arcs parallel to the eigendirection for λ by a factor > 1.

We now look at the map (f̂n)−1 : f̂n(L) ∩ S → f̂n(L) ∩ S. Again, this map
is a contraction with respect to the metric on the segment f̂n(L) ∩ S, and
so it has a fixed point x by the Banach fixed point theorem 2.4. We have
shown that x ∈ S is a periodic point for f̂ with period n.
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