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Abstract. For n−dimensional hyperbolic manifolds of finite vol-

ume with m ≥ 1 cusps a new lower volume bound is presented

which is sharp for n = 2, 3 . The estimate depends upon m and

the ideal regular simplex volume. The proof makes essential use of

a density argument for ball packings in Euclidean and hyperbolic

spaces and explicit formulae for the simplicial density function.

Examples, consequences for the Gromov invariant, and – for n

even – the maximal number of cusps are discussed.

0. Introduction

Let M be a hyperbolic manifold of dimension n ≥ 2 , that is, a complete Riemannian

n−manifold of constant sectional curvature −1. Assume that M is non-compact but of

finite volume. Then, M has finitely many disjoint unbounded ends of finite volume, the

cusps of M . Each cusp is diffeomorphic to N × (0,∞) , where N is a compact Euclidean

(n − 1)−manifold. This comparatively simple geometric structure at infinity allows to

investigate the size of M , as expressed by the volume for example, with much more success

than in the compact manifold case (cf. [K3]).

For n = 3 , a first lower volume bound for oriented cusped 3−manifolds was obtained

by R. Meyerhoff [M1]. His methods consist in measuring the size of each individual cusp

C ⊂ M . To this end, by making use of Jørgensen’s trace inequality for discrete non-

elementary subgroups of PSL(2,C) , a particular horoball in the universal cover H3 can

be associated to C. In a second step, the volume left out by the cusp C is estimated by

means of a density argument with respect to the induced horoball packing in H3.
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Subsequently, C. C. Adams [A2] refined and extended these ideas by taking into account

the tangency between the cusps of M . In this way, he obtained a clearly improved volume

bound for cusped hyperbolic 3−manifolds M of the form

vol3(M) ≥ m · ν3 , (0.1)

where ν3 denotes the ideal regular simplex volume. Moreover, the estimate (0.1) is sharp

for m = 1, 2 . For example, the non-orientable 1–cusped Gieseking manifold is the unique

hyperbolic 3−manifold of minimal volume (cf. [A1]).

Inspired by Adams’ approach [A2], we are able to generalize (0.1) for m−cusped hyperbolic

manifolds of arbitrary dimension n ≥ 2 such that the result is sharp for n = 2, 3 . In its

most accessible, yet weaker form our volume bound is expressed by (cf. §3, Theorem 3.5,

Corollary 3.6)

voln(M) ≥ m · 2n

n(n+ 1)
· νn , (0.2)

where, again, νn equals the ideal regular simplex volume in Hn. Our results considerably

improve previous work of S. Hersonsky [He] whose methods imitate Meyerhoff’s procedure

in n dimensions. For completeness, we review the results [He] by introducing the notion

of canonical cusp in 3.1.

An important but in (0.2) hidden role is played by the geometry of ball and horoball pack-

ings in Euclidean and hyperbolic spaces (cf. §2). More precisely, the notion of simplicial

density function and an explicit formula for it are essential (cf. 2.2). Some preliminaries

about hyperbolic geometry are summarized in §1.

As an immediate consequence of (0.2), in 4.1, we obtain a simple lower bound for the Gro-

mov invariant of M . Another application deals with cusped hyperbolic manifolds of even

dimensions. In 4.2, we present an upper bound for the number of cusps in terms of the

Euler–Poincaré characteristic by making use of the generalized Gauss–Bonnet–Chern theo-

rem. This estimate is sharp for n = 2 while, for n ≥ 4 , this problem is unresolved since up

to now we do not have sufficiently many different constructions of cusped n−manifolds at

hand. Finally, in 4.3, we discuss examples and further results about the volume spectrum

of non-compact hyperbolic n−manifolds.
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1. Preliminaries

1.1. The hyperbolic space Hn

Let Hn denote the hyperbolic n−space, that is, the simply connected, complete Rieman-

nian n−manifold of constant sectional curvature −1 . As realization for Hn we choose the

conformal model of Poincaré,

Hn =

(
En

+ , ds
2 =

dx2
1 + · · ·+ dx2

n

x2
n

)
, (1.1)

in the upper half space En
+ = { x = (x1, . . . , xn) ∈ En | xn > 0 } of Euclidean n−space

En. The compactification Hn = Hn ∪ ∂Hn consists of Hn together with the set ∂Hn =

Ên−1 := En−1 ∪ {∞} of its points at infinity.

Hyperbolic r−spheres Sr(p) centered at ordinary points p = (p1, . . . , pn) ∈ Hn are Eu-

clidean (pn · sinh r)−spheres centered at (p1, . . . , pn−1, pn · cosh r) and contained in En
+ .

They bound r−balls Br(p) with center p of volume

voln(Br(p)) = Ωn−1

r∫

0

sinhn−1 t dt ,

where Ωn−1 = 2π
n
2 /Γ(n

2 ) denotes the volume of the standard unit (n− 1)−sphere Sn−1 .

Horospheres S∞(q) based at infinite points q ∈ ∂Hn are either Euclidean spheres in En
+

internally tangent to En−1 at q 6= ∞, or Euclidean hyperplanes in En
+ parallel to En−1

for q = ∞ . Horospheres are all congruent and carry a Euclidean metric in a natural way.

For example, by (1.1), the horosphere S∞(∞) at distance ρ > 0 from the ground space

En−1 becomes a Euclidean (n− 1)−space with respect to the metric

ds2
∣∣
S∞(∞)

= ρ−2 ( dx2
1 + · · ·+ dx2

n−1 ) .

Horospheres S∞(q) bound horoballs B∞(q) of infinite volume.

1.2. Isometries of Hn

Let I(Hn) be the group of isometries of Hn. The subgroup of orientation preserving

isometries of Hn is denoted by I+(Hn) . Each element of I(Hn) can be written as a

finite product of reflections in spheres or hyperplanes of Ên leaving the upper half space

En
+ invariant. More precisely, the group I(Hn) is isomorphic to the subgroup M(En

+) ⊂
M(Ên) of Möbius transformations of Ên that leave En

+ invariant. By means of Poincaré

extension, we obtain the isomorphisms

I(Hn) ≃M(En
+) ≃M(Ên−1) .
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According to the Brouwer fixed point theorem every Möbius transformation of Ên has at

least one fixed point. This leads to the well-known characterization of conjugacy classes

of elements ϕ ∈M(En
+) , ϕ 6= id

∣∣
En

+

:

(a) ϕ has a fixed point in En
+, and ϕ is elliptic ;

(b) ϕ has precisely one fixed point in Ên−1, say q, and ϕ is parabolic ;

(c) ϕ has precisely two fixed points in Ên−1, and ϕ is loxodromic .

Parabolic Möbius transformations are of particular interest. Every parabolic element ϕ ∈
M(En

+) is conjugate to the Poincaré extension of a fixed point free isometry of En−1 (cf.

[Ra, Theorem 4.7.2]). Among them, there are parabolic translations of the form ϕ(x) =

x+ b for some vector b ∈ En . Geometrically, every parabolic Möbius transformation ϕ ∈
M(En

+) with fixed point q ∈ Ên−1 gives rise to a pencil Pq of all (asymptotically) parallel

geodesics in Hn with limiting point q ∈ ∂Hn . The mapping ϕ leaves the complementary

set Cq consisting of all horospheres based at q invariant and acts isometrically on each

horosphere S∞(q) ∈ Cq with respect to its intrinsic Euclidean geometry.

Finally, a subgroup G ⊂ M(En
+) is elementary if G has a finite orbit Gp for some point

p ∈ Hn . In particular, an elementary subgroup G ⊂ M(En
+) is of parabolic type if G

fixes one point q ∈ ∂Hn and has no further finite orbits in Hn . It is known [Ra, Theorem

5.5.5] that G is discrete and of parabolic type if and only if G is conjugate to an infinite

discrete subgroup of the isometry group I(En−1) of En−1. Moreover, if ϕ, ψ ∈ M(En
+)

are such that ψ is loxodromic with one fixed point in common with ϕ, then the subgroup

< ϕ, ψ > generated by ϕ, ψ is not discrete (cf. [Ra, Theorem 5.5.4]). Hence, a discrete

torsion-free elementary group G containing a parabolic (loxodromic) element, consists of

parabolic (loxodromic) elements, only, and they all have the same fixed point(s).

2. The density of a ball packing

2.1. Ball packings in the standard geometries

Let n ≥ 2 , and denote by Xn either the Euclidean space En, or hyperbolic space Hn. A

ball packing B = BXn(r) of Xn is an arrangement of non-overlapping balls B = B(r) of

radius r. In the sequel, we summarize the most important definitions and results about

ball packings in Xn. For more details and proofs, we refer to [Bö], [K4], [K5] and [Ro].

There are different notions of packing density. For later purposes, the local density measure

is best suited. Consider the Dirichlet–Voronŏı cell of B

D = D(B,B) := { p ∈ Xn | dist(p, B) ≤ dist(p, B′) , ∀B′ ∈ B } ,
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where dist(p, B) is assumed to be negative for p ∈ B . Since D is the intersection of a

locally finite collection of half spaces in Xn, it is a convex polyhedron, eventually of infinite

volume. The family {D(B,B) | B ∈ B } covers Xn without overlappings or gaps. The

local density ldn(B,B) of B with respect to B is given by the density of B with respect to

its Dirichlet–Voronŏı cell D, that is,

ldn(B,B) :=
voln(B)

voln(D)
.

It follows that ldn(B,B) < 1 . More precisely, the local density can be estimated from

above by the simplicial density function dn(r). For its definition, consider n + 1 balls

B = B(r) of radius r mutually touching one another. Their centers give rise to a regular

n−simplex Sreg = Sreg(2r) ⊂ Xn of edge length 2r. The simplicial density function dn(r)

on Xn is now given by

dn(r) = (n+ 1)
voln(B ∩ Sreg)

voln(Sreg)
, (2.1)

which satisfies d1(r) = 1 .

For Xn = En , the simplicial density function dn(r) does not depend on r, and we write

dn = dn(r) . Indeed, one can interpret dn as limiting density dn = limr→0 dn(r) on Hn

by looking at the curvature dependence of the volume element for Hn. As an example,

one easily computes

d2 =
π

2
√

3
≃ 0.90690 . (2.2)

By a result of A. Thue, this value is the maximal density for disc packings of E2, and it is

attained by the density δ2 of the lattice packing associated to the root lattice A2 (cf. [FT,

p. 94−95]).

For ball packings of En , n > 2 , the simplicial density function dn remains an upper density

bound. This was shown by C. A. Rogers [Ro, Theorem 7.1]. Even more generally, for a

packing B of Xn with balls B of radius r, K. Böröczky [Bö, Theorem 1] proved that

ldn(B,B) ≤ dn(r) , ∀ B ∈ B . (2.3)

The estimate (2.3) is sharp if the Dirichlet–Voronŏı cell D of a ball B ∈ B forms a regular

polytope in Xn. If this holds for each cell D of the packing B, then the balls B are the

in-balls (inscribed balls) of a regular honeycomb, and B is a regular ball packing of Xn.

The regular honeycombs of Xn are all classified. A list of them in terms of their Schläfli

symbols {r, 3, . . . , 3} with r ∈ N ( r ≥ 3 ) can be found in [Co].

A horoball packing B∞ of Hn is an arrangement of non-overlapping horoballs B∞ in

Hn. The notion of local density can be extended for horoball packings B∞ of Hn. Let

B∞ ∈ B∞ , and p ∈ Hn arbitrary. Then, dist(p, B∞) is defined to be the length of the

unique perpendicular from p to the horosphere S∞ bounding B∞, where again dist(p, B∞)
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is taken negative for p ∈ B∞ . The Dirichlet–Voronŏı cell D(B∞) of B∞ is defined to be

the convex body

D∞ = D(B∞) = { p ∈ Hn | dist(p, B∞) ≤ dist(p, B′
∞) , ∀B′

∞ ∈ B∞ } .

Since both, B∞ and D∞, are of infinite volume, the concept of local density has to be

modified. Let q ∈ ∂Hn denote the base point of B∞, and interpret S∞ as Euclidean

(n − 1)−space (cf. 1.1). Let Bn−1(R) ⊂ S∞ be a ball with center c ∈ S∞ . Then,

q ∈ ∂Hn and Bn−1(R) determine a convex cone Cn(R) :=coneq(Bn−1(R)) ⊂ Hn with

apex q consisting of all hyperbolic geodesics through Bn−1(R) with limiting point q. With

these preparations, the local density ldn(B∞,B∞) of B∞ with respect to B∞ is defined

by

ldn(B∞,B∞) := lim
R→∞

voln(B∞ ∩ Cn(R))

voln(D∞ ∩ Cn(R))
,

and it is independent of the choice of the center c of Bn−1(R) . By analytical continuation,

the simplicial density function dn(r) on Hn can be extended easily for the case r = ∞ ,

too. Consider n + 1 horoballs B∞ which are mutually tangent. The convex hull of their

base points at infinity is a totally asymptotic or ideal regular simplex S∞
reg ⊂ Hn of finite

volume. Hence, it is legitimate to write

dn(∞) = (n+ 1)
voln(B∞ ∩ S∞

reg)

voln(S∞
reg)

. (2.4)

For a horoball packing B∞ of Hn, there is an analogue of (2.3), namely (cf. [Bö, Theorem

4])

ldn(B∞,B∞) ≤ dn(∞) , ∀ B∞ ∈ B∞ . (2.5)

The upper bound dn(∞) in (2.5) is attained for a regular horoball packing, that is, a

packing by horoballs which are inscribable in the cells of a regular honeycomb of Hn. For

n = 2, there is only one such packing. It belongs to the regular tesselation {∞, 3 } . Its dual

{ 3,∞} is the regular tesselation by ideal triangles all of whose vertices are surrounded

by infinitely many triangles. This packing has in-circle density d2(∞) = π
3 . For n > 2,

there is precisely one horoball packing left whose Dirichlet–Voronŏı cells give rise to a

regular honeycomb. This honeycomb is described by the Schläfli symbol { 6, 3, 3 } . Its

dual consists of ideal regular simplices S∞
reg ⊂ H3 with dihedral angle π

3 building up a

6−cycle around each edge of the tesselation.
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2.2. A formula for the simplicial horoball density

First, we present a formula for the simplicial density function dn on En in terms of the

regular simplex volume (cf. [K4], [K5]). Let S0 ⊂ Sn−1 denote a spherical regular simplex

of dihedral angle 2α0 = arccos
(

1
n

)
(note that a regular simplex Sreg(2α) exists in Sn−1

if its dihedral angle 2α satisfies −1 < cos(2α) < 1
n−1

). Then,

dn =
1

n
·

n∏

k=2

(
k + 1

k − 1

)n−k+1

2

· voln−1(S0) . (2.6)

For n ≤ 7 , the expression (2.6) for dn can be evaluated by using the existing volume

formulae for voln−1(S0) in terms of its dihedral angle (cf. [K2]). For n > 7, voln−1(S0)

can be at least estimated in an elementary way (cf. [K3, Lemma 4]).

n dn ≃
2 0.90690

3 0.77964

4 0.64782

5 0.52571

6 0.41924

7 0.32999

Table 1. The Euclidean simplicial density dn

Asymptotically, dn behaves according to (cf. [Ro, (11), p. 90])

dn ∼ (n+ 1)! e
n
2
−1

√
2 · Γ(n

2
+ 1) · (4n)

n
2

∼ n

e
· 1

2
n
2

.

Let us turn to horoball packings of Hn (cf. K4], [K5]). We already know that d2(∞) = 3
π

.

THEOREM 2.1.

Let n ≥ 3 , and denote by νn = voln(S∞
reg) the ideal regular simplex volume in Hn . Then,

the simplicial horoball density dn(∞) is given by

dn(∞) =
n+ 1

n− 1
· n

2n−1
·

n−1∏

k=2

(
k − 1

k + 1

)n−k
2

· 1

νn

. (2.7)
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For hyperbolic simplicial n−volumes, there are explicit formulas in terms of dihedral angles

only for n ≤ 6 (cf. [K1], [K2]). For the volume νn of an ideal regular simplex S∞
reg ,

however, there is a representation of νn as power series for all n ≥ 2, which is due to J.

Milnor [Mi, How to compute volume in hyperbolic space, §4].

COROLLARY 2.2.

The simplicial horoball density dn(∞) is given by

dn(∞) =
n+ 1

n− 1
·
√
n

2n−1
·

n−1∏
k=2

(
k−1
k+1

)n−k
2

∞∑
k=0

β(β+1)···(β+k−1)
(n+2k)! An,k

, (2.8)

where β = 1
2

(n+ 1) and An,k =
∑

i0+···+in=k
iµ≥0

(2i0)! · · · (2in)!

i0! · · · in!
.

n dn(∞) ≃
2 0.95493

3 0.85328

4 0.73046

5 0.60695

6 0.49339

7 0.39441

8 0.31114

Table 2. The simplicial horoball density dn(∞)

3. A lower volume bound for cusped hyperbolic manifolds

3.1. Structure of hyperbolic manifolds

Let n ≥ 2 , and denote by M a hyperbolic n−manifold, that is, a complete Riemannian

n−manifold of constant sectional curvature −1. Equivalently, M is a Clifford-Klein space

form
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M = Hn/Γ ,

where Γ ⊂ I(Hn) is a discrete, torsion-free subgroup. In the sequel, we assume M to be

of finite volume. The Margulis lemma yields informations about the global structure of M

(cf. [BGS, §10], [Ra, §12]). In particular, there is a compact n−manifold M0 with (possibly

empty) boundary such that M −M0 consists of at most finitely many disjoint unbounded

ends of finite volume, the cusps of M . Each cusp is diffeomorphic to N × (0,∞) , where

N is a compact Euclidean (n−1)−manifold. By a more detailed analysis of Γ [BGS, 10.3],

[Ra, proof of Theorem 12.6.6], a cusp C can be identified with

C = Cq = Vq/Γq

for some point q ∈ ∂Hn , where Γq < Γ is of parabolic type with fixed point q, and where

Vq ⊂ Hn is some precisely invariant unbounded region in Hn with Vq ∋ q . Actually, Vq is

a horoball based at q: Since C is of finite volume, Γq – as discrete subgroup of I(En−1) –

acts cocompactly on En−1 and is therefore crystallographic. By a theorem of Bieberbach

(cf. [Bu]), the free abelian group Λ = Λ(Γq) of parabolic translations in Γq is of finite

index and of rank n − 1. Therefore, by [Ra, p. 594 and Theorem 5.4.6], Vq is a horoball

based at q. The point q is called a cusped point of M .

By expanding a cusp C until it intersects itself or another cusp of M in a finite number of

points on its boundary but such that C is still covered by horoballs, we continue to call C

a cusp.

Finally, there is a universal constant vn > 0 such that for each hyperbolic n−manifold M

voln(M) ≥ vn . (3.1)

3.2. Canonical cusps

Let M = Hn/Γ be an oriented hyperbolic manifold, that is, Γ < I+(Hn) . Assume thatM

is non-compact but of finite volume. Therefore, M has at least one cusp C = Cq = Vq/Γq .

Following [He, 36], by interpreting I+(Hn) as group of Clifford matrices, one can associate

to Γq a particular horoball Bq ⊂ Hn based at q such that Bq/Γq embeds in M . Let

S ∈ I+(Hn) with S(∞) = q . Consider in (S−1ΓS)∞ the subgroup Λ = Λ((S−1ΓS)∞)

of all parabolic translations. As above, Λ is of finite index and free abelian of rank n− 1.

Interpret Λ as lattice of vectors in En−1 and denote by µ ∈ Λ − {0} a shortest vector.

Then, the canonical horoball Bq based at the cusped point q is defined to be the horoball

S(B∞(µ)) based at q, where B∞(µ) = { x ∈ En
+ | xn+1 > |µ| } . By results of [He],

S(B∞(µ)) is well defined and precisely invariant with respect to Γ. Therefore, Bq/Γq

embeds in M .



10 Ruth Kellerhals

The region U = Bq/Γq ⊂ M is called the canonical cusp associated to q. Let U =

{U | U canonical cusp of M } . By [He, Proposition 3.3], the elements of U are pairwise

disjoint. Write voln(U) =
∑

U∈U voln(U) . Then,

voln(M) ≥ voln(U) . (3.2)

Our next aim is to estimate voln(U) universally from below. We do this by first considering

a single element of U . Let U = Bq/Γq ∈ U be a canonical cusp for some cusped point q

of M . We know that Γq is a crystallographic subgroup of I+(En−1). Denote by

in−1 := max { [ Γ : Λ(Γ) ] | Γ < I+(En−1) crystallographic } ,

which is a finite number by the theorems of Bieberbach (cf. [Bu]). In particular, one has

(cf. [BBNWZ, Table 8C, p. 408], [Sz])

i2 = 1 ; i3 ≤ 6 ; i4 ≤ 12 , i5 ≤ 24 , (3.3)

and, for arbitrary k ≥ 6 (cf. [Bu]),

ik ≤ 3k2

. (3.4)

LEMMA 3.1.

Let U ∈ U denote a canonical cusp. Then,

voln(U) ≥ c(n)

in−1 · dn−1
, (3.5)

where dn−1 is the Euclidean simplicial density, and the constant c(n) is given by

c(n) =
Ωn−2

2n−1 · (n− 1)2
.

Proof. Our proof is very similar to [He, proof of Proposition 3.4]. Let U = Bq/Γq for

some cusped point q ∈ ∂Hn . Assume without loss of generality that q = ∞ . Associate

to the stabilizer Γ∞ its translational lattice Λ with shortest vector µ 6= 0 . As usually,

let B∞ = B∞(µ) be the canonical horoball in En
+ based at ∞. A fundamental domain of

the translation group Λ acting on En−1 is a Dirichlet domain P ⊂ En−1 which contains

a ball B0 := B( |µ|
2

) of radius |µ|
2

. Therefore, we obtain a lattice packing

B = { γB0 | γ ∈ Λ }



Volumes of cusped hyperbolic manifolds 11

of En−1 with balls of radius |µ|
2

and Dirichlet–Voronŏı cells { γP | γ ∈ Λ } . It follows (cf.

2.1) that

voln−1(P ) =
voln−1(B0)

dΛ
=

Ωn−2 · |µ|n−1

2n−1 · (n− 1) · dΛ
, (3.6)

where dΛ is the Euclidean (n−1)-dimensional packing density for Λ. By (2.3), dΛ ≤ dn−1 ,

where dn−1 is the Euclidean simplicial density (cf. (2.2)).

For the action of the Poincaré extension of Λ on B∞(µ) , a fundamental domain is obviously

of the form

G = { x = (x1, . . . , xn) ∈ Hn | (x1, . . . , xn−1) ∈ P ; xn > |µ| } ,

whose volume is given by

voln(G) =

∫

G

dx1 · · ·dxn

xn
n

= voln−1(P ) ·
∞∫

|µ|

dxn

xn
n

=
voln−1(P )

(n− 1) · |µ|n−1
. (3.7)

By (3.6) and (3.7), we obtain

voln(G) =
Ωn−2

2n−1 · (n− 1)2 · dΛ
≥ Ωn−2

2n−1 · (n− 1)2 · dn−1
.

For the canonical cusp neighborhood U = B∞(µ)/Γ∞ , we deduce

voln(U) =
voln(G)

[ Γ∞ : Λ ]
=

Ωn−2

2n−1 · (n− 1)2 · dn−1 · [ Γ∞ : Λ ]

≥ Ωn−2

2n−1 · (n− 1)2 · dn−1 · in−1
.

⊓⊔
Remark.

(a) According to the proof of Lemma 3.1, we derived an even better lower volume bound,

namely,

voln(U) ≥ c(n)

in−1 · δn−1
,

where δn−1 denotes the density of an optimal lattice packing in En−1. The values of δn−1

are known for 1 ≤ n ≤ 8; for 10 ≤ n ≤ 13, there are still explicit lower bound for δn−1 (cf.

[K4], [K5]).

3.3. A universal lower volume bound

Let M be a hyperbolic n−manifold of finite volume with m ≥ 1 cusps. Denote by C =

{C1, . . . , Cm } a set of cusps of M . Write voln(C) =
∑m

i=1 voln(Ci) . Then,



12 Ruth Kellerhals

voln(M) ≥ voln(C) . (3.8)

We can improve (3.8) as follows (for n = 3, see also [A2, Lemma 2.1]).

LEMMA 3.2.

Let C denote a set of cusps of M . Then,

voln(M) ≥ voln(C)

dn(∞)
, (3.9)

where dn(∞) is the simplicial horoball density.

Proof. Let M = Hn/Γ . Since the elements of C are pairwise disjoint, it suffices to prove

(3.9) for C = {C} . By definition, C is of the form Vq/Γq where q is some cusped point of

M . Assume without loss of generality that q = ∞ . Then, V∞ is a horoball B ⊂ En
+ with

basis ∞ and provides a horoball packing (cf. 2.1)

B∞ = { γB | γ ∈ Γ − Γ∞ } ,

whose Dirichlet–Voronŏı cells D are all congruent. If Γ∞ would be trivial, then each D

would be a Dirichlet fundamental domain for the action of Γ on Hn (cf. [Ra, §6.5]).

Since Γ∞ 6= { id } , consider a fundamental domain G for the action of Γ∞ on D. Then,

D = ∪γ∈Γ∞
γG . Since G is also a fundamental domain for Γ, one has voln(M) = voln(G) .

For the local density ldn(B,B∞) , we deduce

ldn(B,B∞) =
voln(B ∩ G)

voln(G)
,

and by (2.5),
voln(B ∩ G)

voln(G)
≤ dn(∞) .

Since voln(B ∩ G) = voln(C) and voln(G) = voln(M) , the lemma follows. ⊓⊔

Remark.

(b) It follows from the proof and 2.1 that the inequality (3.9) is sharp if the lift of each

element of C to Hn induces a regular horoball packing. Since the latter exist only for

n ≤ 3, we deduce

voln(M) >
voln(C)

dn(∞)
for n > 3 .

By combining (3.2), (3.5) and (3.9), we get a first, rough volume bound for cusped hyper-

bolic manifolds (cf. [K4, Satz 3.2.5]).



Volumes of cusped hyperbolic manifolds 13

PROPOSITION 3.3.

Let M denote an oriented hyperbolic n−manifold of finite volume withm ≥ 1 cusps. Then,

voln(M) ≥ m · c(n)

in−1 · dn−1 · dn(∞)
. (3.10)

Remark.

(c) The inequality (3.10) remains valid for non-orientable manifolds M if the right hand

side of (3.10) is multiplied by a factor 1
2 . This comes from the passage to the orientable

double cover M̃ of M with voln(M̃) = 2 · voln(M) .

Example.

Let M = H3/Γ be an oriented hyperbolic 3−manifold of finite volume with one cusp.

Then, by (2.7), (3.3), (3.10), Remark (a) and (2.2), we obtain the volume estimate

vol3(M) ≥
√

3

4 · d3(∞)
=
ν3
2

≃ 0.50747 ,

which was already discovered by R. Meyerhoff [M1], [M2]. His proof relies on the estimate

vol3(C) ≥
√

3
4 for a cusp C ⊂ M based on Jørgensen’s trace inequality for discrete

non-elementary subgroups of PSL(2,C) and an observation similar to Lemma 3.2. On

the other hand, consider the Gieseking manifold N1 which arises from the ideal regular

simplex S∞
reg with dihedral angle π

3 and volume ν3 by identifying suitably its faces. N1 is

non-orientable and has exactly one cusp. C. C. Adams [A1] showed that N1 is the unique

hyperbolic 3−manifold with one cusp of minimal volume. Therefore, in the orientable case,

Adams obtained the better estimate vol3(M) > ν3 .

Indeed, Proposition 3.3 can be improved considerably by taking into account the tangency

in boundary points of cusps with themselves or other cusps of M (cf. [A2, §2] for the

case n = 3). A set C of m cusps of M is called a maximal disjoint set of cusps if the

interiors of the cusps are pairwise disjoint and if none of the cusps in C can be enlarged

without having its interior intersect with the interior of itself or some other cusp of C.

Each of these intersection points is termed tangency point. The total number k = k(C)

of tangency points between cusps of C is called the tangency number of C. Finally, write

voln(C) :=
∑

C∈C voln(C) .
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LEMMA 3.4.

Let M be a hyperbolic n−manifold of finite volume. Denote by C a set of maximal disjoint

cusps of M with tangency number k = k(C) . Then,

voln(C) ≥ 2 · k · c(n)

dn−1
. (3.11)

Proof. Let M = Hn/Γ, and fix an element C ∈ C with cusped point q. For simplicity,

assume that q = ∞. Write C = B/Γ∞ , where B = B∞(ρ) is a horoball with basis ∞
and at distance ρ > 0, say, from the ground space { xn = 0 } . Consider a fundamental

polytope P∞ ⊂ { xn = 0 } for the action of Γ∞ on horospheres based at ∞.

The tangency points of C give rise to a set of Γ∞−inequivalent Euclidean (n − 1)−balls

of radius ρ
2 in { xn = 0 } as follows. Let r denote the number of tangency points of

C with any other cusp C′ ∈ C , and let s be the number of tangency points of C with

itself. A tangency point of C with a cusp C′ gives rise to a horoball B′ in Hn covering

C′ which touches B and which is based in a point of P∞ modulo the action of Γ∞ on

∂P∞ . When C touches itself, two points on its boundary are identified. In Hn, they

correspond to two points on ∂B which project to P∞. Moreover, they are the touching

points of B with two distinct horoballs based in points of P∞ . All together, there are

r+2s horoballs based in P∞ and touching B all distinct under the action of Γ∞. Observe

that they form n−dimensional Euclidean balls of radius ρ
2 . Projected to { xn = 0 } , we

obtain a collection of disjoint balls B1, . . . , Br+2s ⊂ En−1 of radius ρ
2 all of whose centers

lie in P∞ . Consider the ball packing

B := { γ(B1), . . . , γ(Br+2s) | γ ∈ Γ∞ } .

It is easy to see that its local density equals

voln−1(∪r+2s
i=1 Bi )

voln−1(P∞)
= (r + 2s) · voln−1(B1)

voln−1(P∞)
.

By (2.3), we obtain

voln−1(P∞) ≥ (r + 2s) · voln−1(B1)

dn−1
.
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Hence (cf. also (3.7)),

voln(C) = voln−1(P∞) ·
∞∫

ρ

dxn

xn
n

=
voln−1(P∞)

(n− 1) · ρn−1

≥ (r + 2s) · voln−1(B1)

(n− 1) · ρn−1 · dn−1

= (r + 2s) · Ωn−2

(n− 1)2 · 2n−1 · dn−1

= (r + 2s) · c(n)

dn−1
.

Since a tangency point of C with a cusp C′ contributes the same additional amount of

volume c(n)
dn−1

to voln(C′), we finally obtain

voln(C) ≥ 2 · k · c(n)

dn−1
. ⊓⊔

With these preparations, we can quantify vn in (3.1) for the case of cusped hyperbolic

n−manifolds.

THEOREM 3.5.

Let M denote a hyperbolic n−manifold of finite volume with m ≥ 1 cusps. Then,

voln(M) ≥ 2 ·m · c(n)

dn−1 · dn(∞)
= m · Ωn−2

2n−2 · (n− 1)2 · dn−1 · dn(∞)
. (3.12)

For n > 3, the inequality (3.12) is strict.

Proof. The proof is similar to [A2, Lemma 2.4]. Let C = {C1, . . . , Cm } denote a set of

cusps of M . We associate to C a maximal disjoint set of cusps. For this, expand C1 until it

just touches itself, by shrinking the other cusps if necessary. Then, we obtain at least one

point of tangency. Expand successively each of the remaining cusps until it touches itself

or one of the previously enlarged cusps. In this way, we obtain a maximal disjoint set of

cusps with k ≥ m tangency points. The assertion follows now from Lemma 3.2, Lemma

3.4 and Remark (b). ⊓⊔

Remarks.

(d) The volume bound (3.12) can be made explicit for each n: Formula (2.8) in Corollary

2.2 expresses the simplicial horoball density dn(∞) as a function of n ≥ 2 (cf. also Table

2). The Euclidean simplicial density dn−1 is known explicitly for n ≤ 8 while for arbitrary

n there are elementary estimates improving dn−1 < 1 (cf. 2.2).
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(e) For hyperbolic n−manifolds M with geodesic boundary and of finite volume, a result

analogous to Theorem 3.5 was obtained by Y. Miyamoto (cf. [Miy] and also [K4]). By

introducing the notions of r−hyperball packing and the simplicial hyperdensity ρn(r) , he

showed [Miy, Theorem 4.2] that

voln(M)

voln−1(∂M)
≥ ρn(0) ,

which is sharp for n = 3, 4 . The limiting density ρn(0) can be expressed in the form

ρn(0) =
voln(Treg)

(n+ 1) · voln−1(S∞
reg)

,

where Treg ⊂ Hn is a (polarly) truncated regular simplex all of its vertices are at infinity.

COROLLARY 3.6.

Let M denote a hyperbolic n−manifold of finite volume with m ≥ 1 cusps. Let S0 ⊂ Sn−2

be a regular simplex with dihedral angle 2α0 = arccos( 1
n−1

) . Denote by νn the volume of

an ideal regular simplex in Hn . Then,

voln(M) ≥ m · 2

n(n+ 1)
· Ωn−2

voln−2(S0)
· νn ≥ m · 2n

n(n+ 1)
· νn . (3.13)

For n > 3, the inequalities in (3.13) are strict.

Proof. The first inequality in (3.13) follows from Theorem 3.5 by expressing the Euclidean

simplicial density dn−1 by means of (2.6) and the simplicial horoball density dn(∞) by

means of (2.7). The second, strict inequality is obtained by observing that the dihedral

angle of S0 satisfies 2α0 <
π
2 . Moreover, for an arbitrary regular simplex Sreg(2α) ⊂ Sk ,

the volume volk(Sreg(2α)) is a strictly monotonely increasing function in α (cf. [K3, §4,

(A2)]). Since Sk is dissected into 2k+1 copies of Sreg(
π
2
) , we obtain, for n > 2 ,

voln−2(S0) < voln−2(Sreg(
π

2
)) =

Ωn−2

2n−1
.

For n = 2, we have vol0(Sreg) = 1 = Ω0/2 .

⊓⊔

Remark.

(f) The regular simplex volume voln−2(S0) is commensurable with Ωn−2 if the dihedral

angle 2α0 = arccos( 1
n−1 ) of S0 is commensurable with π. This is the case precisely for

n = 2 and n = 3 (cf. 4.2, 4.3).
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4. Applications

4.1. A lower bound for the Gromov invariant

Let X denote an oriented closed connected n−manifold. The Gromov invariant (or the

simplicial volume) ||X || of X is defined to be the simplicial ℓ1−norm of the fundamental

class [X ] of X in Hn(X ; R) , that is,

||X || = inf { || c || | c is a singular n− cycle representing [X ] } .

This definiton can be extended for non–orientable manifolds X by passing to the double

cover X̃ of X and setting

||X || = 1

2
|| X̃|| .

For a closed n−manifold X which supports an affine flat bundle of dimension n, a result

of J. Milnor–D. Sullivan–J. Smillie (cf. [G2, §0.3]) says that

||X || ≥ 2n · |χ| ,

where χ is the Euler number of the bundle. This result is meaningful only for n even since

otherwise χ vanishes.

For an oriented closed spherical or Euclidean Clifford-Klein space form, the Gromov in-

variant vanishes. This follows from the fact that || f∗(α)|| ≤ ||α|| for a continuous map

f : X −→ Y and an element α ∈ Hk(X ; R) .

Let n ≥ 2, and consider an oriented closed hyperbolic n−manifold M . An oriented closed

Riemannian surface Mg of genus g > 1 has Gromov invariant

||Mg|| = 2 |χ(Mg) | = 4(g − 1) .

For n arbitrary, W. Thurston [Th, Corollary 6.1.7] proved that ||M || is always strictly

positive and satisfies ||M || ≥ voln(M)/νn . For the wider class of hyperbolic manifolds M

of finite volume, M. Gromov [G2, §0.4] sharpened Thurston’s result by showing

||M || = voln(M)

νn

. (4.1)

His proof is based on a different but equivalent definition of ||M || in the sense of bounded

cohomology and the observation that M is concave relative to infinity (cf. [G2, §1, Ap-

pendix 3]). By means of Corollary 3.6, we can estimate the Gromov invariant of cusped

hyperbolic manifolds universally from below using (4.1) (for n = 3, cf. also [A2, Corollary

5.1]).
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COROLLARY 4.1.

Let M denote a hyperbolic n−manifold of finite volume with m ≥ 1 cusps. Then, for

n = 3 , ||M || ≥ m . For n > 3 ,

||M || > m · 2n

n(n+ 1)
. (4.2)

4.2. Cusped hyperbolic manifolds of even dimension

Let n = 2l ≥ 2 , and consider a cusped hyperbolic n−manifold M of finite volume. By the

theorem of Gauss–Bonnet–Chern, which was generalized by G. Harder and M. Gromov

(cf. [G2, Theorem (C’)]) to the non-compact case, the volume of M is proportional to the

Euler–Poincaré characteristic χ(M) according to

vol2l(M) = (−1)l Ω2l

2
· χ(M) . (4.3)

By (4.3) and Corollary 3.6, we can estimate the maximal number of cusps of M .

COROLLARY 4.2.

Let n ≥ 2 be even, and denote by M an n−dimensional hyperbolic manifold of finite

volume with m ≥ 1 cusps. Then,

m ≤ π

2
· n(n+ 1)

n− 1
· voln−2(S0)

νn

· |χ(M) | ≤ n(n+ 1)

2n+1
· Ωn

νn

· |χ(M) | , (4.4)

where S0 ⊂ Sn−2 is a regular simplex with dihedral angle 2α0 = arccos( 1
n−1 ) , and νn

denotes hyperbolic ideal regular n−simplex volume. For n > 2 , the inequalities in (4.4)

are strict.

Example 1.

Let n = 2. Denote by M a hyperbolic Riemannian surface, that is, χ(M) < 0 . Then,

(4.3) yields

vol2(M) =
Ω2

2
|χ(M) | ∈ 2π · N .

Assume that M is non-compact with m cusps. By the weaker estimate in (4.4), m is

bounded from above by

m ≤ 3 |χ(M) | .
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Hence, a non-compact hyperbolic surface M of minimal volume has at most 3 cusps. It is

known that there are exactly 4 non-homeomorphic Riemannian surfaces of minimal volume

2π . Among them, there is one hyperbolic surface with 3 cusps, the 3–punctured sphere.

It is obtained by glueing 2 ideal triangles of area π each.

Example 2.

Let n = 4. J. Ratcliffe and S. Tschantz [RT] constructed several hundreds of non-compact

hyperbolic 4−manifolds as quotients by congruence 2 subgroups of O(4, 1; Z) . These

manifolds are of minimal volume 4π2/3 with up to 6 cusps and arise all by glueing suitably

together the facets of the ideal 24−cell (an ideal regular hyperbolic 4−polytope all of whose

24 facets are octahedra).

A computation of ν4 (cf. [K1]) gives

ν4 =
4π

3

(
π − 5α0

)
, (4.5)

where cos(2α0) = 1/3 , that is, π−5α0 = arccos (
√

242
243

) . Moreover, vol2(S0) = 6α0 −π .

Hence, by Corollary 3.6 and (4.5), an arbitrary cusped hyperbolic 4−manifold M satisfies

the strict inequality

vol4(M) > m · 8π2

15
· π − 5α0

6α0 − π
≃ m · 0.61293 . (4.6)

This result improves the bound of S. Hersonsky [He, Theorem 2] which, in the oriented

manifold case, gives

vol4(M) ≥ m ·
√

3

36
≃ m · 0.04811 .

By (4.3), vol4(M) ∈ 4π2/3 · N . Therefore, a manifold M of minimal volume such that

(4.6) is close to being sharp would need to have 21 cusps. On the other hand, by the first

inequality in Corollary 4.2, the number m of cusps of a manifold M is bounded from above

by

m <
10π

3
· vol2(S0)

ν4
· χ(M) , (4.7)

that is, for χ(M) = 1 ,

m ≤
[

5

2
· 6α0 − π

π − 5α0

]
= 21 .

Here, [u] denotes the biggest integer smaller than or equal to u. Therefore, if one could

find a 4−manifold with Euler–Poincaré characteristic equal to 1 and having 21 cusps, for

example, then our estimates (4.6), (4.7) would be rather accurate ! To our knowledge, the

existence of such a manifold is as yet not known.
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4.3. Further results

Let n ≥ 3 be odd, and consider the n−th hyperbolic volume spectrum

Voln := { voln(M) | M hyperbolic n− manifold } ⊂ R+ ,

and its subset Vol∞n ⊂ Voln of volumes formed by cusped manifolds.

Let n = 3 . By work of Thurston and T. Jørgensen, the structure of the spectrum Vol3

is very particular (cf. [G1]). For example, it is well-ordered, finite-to-one, and its smallest

element v3 must be realized by compact manifolds. Despite many research efforts, it is still

an open question which manifolds are of minimal volume. A candidate is the example due

to J. Weeks and S. Matveev–A. Fomenko. It is obtained by Dehn surgery on the figure

eight knot complement on S3. Its volume is approximatively equal to 0.94272 .

Consider the spectrum Vol
∞
3 with smallest element v∞3 > 0 . By Theorem 3.5, we know

that a hyperbolic 3−manifold M with m ≥ 1 cusps satisfies

vol3(M) ≥ m · ν3 ≃ m · 1.01494 . (4.8)

More concretely, Adams [A1, Theorem 2.5] showed that v∞3 = ν3 , and that this volume

is attained exclusively by the Gieseking manifold N1 (cf. Example, 3.3). Furthermore, he

proved [A2, Theorem 3.2] that the manifold N2 arising by glueing together two copies of

S∞
reg(

π
3
) is the unique (non-orientable) hyperbolic 3−manifold with 2 cusps, while – for

m > 2 – the inequality (4.8) is strict.

Finally, let n = 5 . By Theorem 3.5 and Tables 1 and 2, the volume of any m−cusped

hyperbolic 5−manifold M is bounded from below by

vol5(M) > m · Ω3

128 · d4 · d5(∞)
≃ m · 0.39220 . (4.9)

However, to our knowledge, there is only one geometric construction of a cusped hyperbolic

5−manifold known. It is due to Ratcliffe and Tschantz [RT]. Their manifold is of positive

first Betti number and has 10 cusps. It is obtained by glueing the facets of a polytope

P ⊂ H5 which in turn consists of 184,320 copies of the Coxeter simplex R whose symmetry

group is given by the reflection group with Coxeter-Dynkin diagram

Σ(R) : ◦——–◦====◦——–◦——–◦–——◦ .

The volume of R was computed in [K2, (29)] and equals

vol5(R) =
7

46, 080
ζ(3) .
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Therefore, one obtains

vol5(M) = 28 · ζ(3) ≃ 33.65759 , (4.10)

which should be compared with (4.9). Finally, one deduces that

28 · ζ(3) · N ⊂ Vol∞5 .
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