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Abstract

For hyperbolic Coxeter groups of finite covolume we review and present new theoretical

and computational aspects of wide commensurability. We discuss separately the arithmetic

and the non-arithmetic cases. Some worked examples are added as well as a panoramic view

to hyperbolic Coxeter groups and their classification.

§ 1. Introduction

Consider two discrete groups Γ1,Γ2 ⊂ IsomHn , n ≥ 3 , with fundamental polyhe-

dra P1, P2 of finite volume, respectively. The groups Γ1,Γ2 are said to be commensurable

(in the wide sense) if the intersection of Γ1 with some conjugate Γ′2 of Γ2 in IsomHn

has finite index in both, Γ1 and Γ′2. In this case, the orbifolds Hn/Γ1 and Hn/Γ2 are

covered, with finite sheets and up to isometry, by a common hyperbolic n-manifold.

Or, in other words, there is a hyperbolic polyhedron P ⊂ Hn which is simultaneously

glued by finitely many copies of P1 and by finitely many copies of P2. In particular, the

quotient of the volumes of P1 and P2 is a rational number.

Consider a Coxeter group Γ ⊂ IsomHn of rank N , that is, Γ is a discrete group

generated by finitely many reflections si , 1 ≤ i ≤ N , in hyperplanes of Hn. A funda-

mental polyhedron P for Γ is a Coxeter polyhedron, that is, a convex polyhedron with
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(non-zero) dihedral angles of the form π/m for integers m ≥ 2. Such groups are charac-

terised by a particularly nice presentation (see (2.2)) and provide – for small N ≥ n+ 1

– an important class of hyperbolic n-orbifolds and n-manifolds of small volumes.

In [30], the hyperbolic Coxeter n-simplex groups (of rank N = n + 1) of finite

covolume were classified up to commensurability. They exist for n ≤ 9, only. In [24],

the authors resolved the commensurability problem for the considerably larger fam-

ily of hyperbolic Coxeter pyramid groups, existing up to n = 17. They are of rank

N = n + 2 and have fundamental polyhedra which are combinatorially pyramids with

apex neighborhood given by a product of two simplices of positive dimensions; they

were discovered by Tumarkin [52], [54]. Among the 200 examples in this class are arith-

metic and non-arithmetic groups. Furthermore, modulo finite index, all these groups

have fundamental polyhedra which are (polarly and simply) truncated simplices, and

at times they arise as amalgamated free products. This indicates why several different

algebraic and geometric methods had to be developped in [24] in order to achieve the

commensurability classification.

In this work we present various of these general methods allowing us to decide

about commensurability of hyperbolic Coxeter groups. We illustrate the theory in

detail by providing several typical and also new examples. In Section 2, we furnish the

necessary background about hyperbolic Coxeter groups, including volume identities in

three dimensions, and add a panoramic view to hyperbolic Coxeter polyhedra known so

far. Since arithmeticity is a commensurability invariant, we discuss this aspect in a quite

complete and self-contained way (see Section 4). For non-arithmetic Coxeter pyramid

groups Γ ⊂ IsomHn with non-compact quotient space Hn/Γ, the commensurability

classification is based on geometric results exploiting the presence and the nature of

Bieberbach groups and their full rank translational lattices in a thorough way. We

summarise the corresponding results, only, and refer to [24, Section 4.1] for technical

details and proofs. In the case of certain non-arithmetic groups in IsomH3 which are

seemingly incommensurable, we manage to provide a rigorous proof by means of their

commensurator group (see Section 3.1) and an adequate covolume comparison (see

Section 5.4).

At the end of the work are appended the list of the 23 non-compact Coxeter tetra-

hedra and their volumes, the list of Tumarkin’s Coxeter pyramids as well as the classi-

fication tables of all arithmetic and non-arithmetic hyperbolic Coxeter pyramid groups,

respectively.
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§ 2. Preliminaries

§ 2.1. Hyperbolic Coxeter groups and Coxeter polyhedra

Denote by Xn either the Euclidean space En, the sphere Sn, or the hyperbolic space

Hn, and let IsomXn be its isometry group. As for the sphere Sn ⊂ En+1, embed Hn in

a quadratic space Yn+1. More concretely, we view Hn in the Lorentz-Minkowski space

En,1 = (Rn+1, 〈x, y〉n,1 =
∑n
i=1 xiyi − xn+1yn+1) of signature (n, 1) so that

Hn = {x ∈ En,1 | 〈x, x〉n,1 = −1, xn+1 > 0 }

(see [59], for example). The group IsomHn is then isomorphic to the group PO(n, 1) of

positive Lorentz-matrices. In the Euclidean case, we take the affine point of view and

write Yn+1 = En × {0}.
A geometric Coxeter group is a discrete subgroup Γ ⊂ IsomXn generated by finitely

many reflections in hyperplanes of Xn. The cardinality N of the set of generators is

called the rank of the group Γ.

Let si be a generator of the geometric Coxeter group Γ acting on Xn as the reflection

with respect to the hyperplane Hi (1 ≤ i ≤ N). Associate to Hi a normal unit vector

ei ∈ Yn+1 such that

Hi = {x ∈ Xn | 〈x, ei〉Yn+1 = 0 } ,
and which bounds the closed half-space

H−i = {x ∈ Xn | 〈x, ei〉Yn+1 ≤ 0 } .

A convex (closed) fundamental domain P = P (Γ) ⊂ Xn of Γ can be chosen to be given

by the polyhedron

(2.1) P =

N⋂
i=1

H−i .

By Vinberg’s work [59], the combinatorial, metrical and arithmetical properties of P

and Γ, respectively, can be read off from the Gram matrix G(P ) of P formed by the
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products 〈ei, ej〉Yn+1 ( 1 ≤ i, j ≤ N). In the hyperbolic case, the product 〈ei, ej〉n,1
characterises the mutual position of the hyperplanes Hi, Hj as follows.

−〈ei, ej〉n,1 =


cos π

mij
if Hi, Hj intersect at the angle π

mij
in Hn,

1 if Hi, Hj meet at ∂Hn,
cosh lij if Hi, Hj are at distance lij in Hn.

A fundamental domain P ⊂ Xn as in (2.1) for a geometric Coxeter group is a

Coxeter polyhedron, that is, a convex polyhedron in Xn all of whose dihedral angles are

submultiples of π. Conversely, each Coxeter polyhedron in Xn gives rise to a geometric

Coxeter group.

The geometric Coxeter group Γ has the presentation

(2.2) Γ = 〈 s1, . . . , sN | s2
i , (sisj)

mij 〉

for integers mij = mji ≥ 2 for i 6= j.

We restrict our attention to cocompact or cofinite geometric Coxeter groups, that is,

we assume that the associated Coxeter polyhedra are compact or of finite volume in Xn.

In particular, hyperbolic Coxeter polyhedra are bounded by at least n+ 1 hyperplanes,

appear as the convex hull of finitely many points in the extended hyperbolic space

Hn ∪ ∂Hn and are acute-angled (less than or equal to π
2 ). An (ordinary) vertex p ∈ Hn

of P is given by a positive definite principal submatrix of rank n of the Gram matrix

G(P ) of P . Its vertex figure Pp is an (n− 1)-dimensional spherical Coxeter polyhedron

which is a product of k ≥ 1 pairwise orthogonal lower-dimensional spherical Coxeter

simplices. A vertex (at infinity) q ∈ ∂Hn of P is characterised by a positive semi-definite

principal submatrix of rank n − 1 of the Gram matrix G(P ). Its vertex figure Pq is a

compact (n− 1)-dimensional Euclidean Coxeter polyhedron which is a product of l ≥ 1

pairwise orthogonal lower-dimensional Euclidean Coxeter simplices. The polyhedron

Pq is a fundamental domain of the stabiliser Γq of q which is a crystallographic group

containing a finite index translational lattice of rank n− 1 by Bieberbach’s Theorem.

Many of these properties can be read off from the Coxeter graph Σ of P and Γ. To

each hyperplane Hi of P and to each generator si ∈ Γ corresponds a node νi of Σ. Two

nodes νi, νj are joined by an edge with label mij ≥ 3 if ](Hi, Hj) = π/mij (the label 3

is usually omitted). If Hi, Hj are orthogonal, their nodes are not connected. If Hi, Hj

meet at ∂Hn, their nodes are joined by an edge with label∞ (or by a bold edge); if they

are at distance lij > 0 in Hn, their nodes are joined by a dotted edge, often without

the label lij . We will also use the Coxeter symbol for a Coxeter group. For example,

[p, q, r] is associated to a linear Coxeter graph with 3 edges of consecutive labels p, q, r,

and the Coxeter symbol [(p, q, r)] describes a cyclic graph with labels p, q, r. Often, we

abbreviate further and write [p2] instead of [p, p], and so on. The Coxeter symbol [3i,j,k]
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denotes a group with Y-shaped Coxeter graph with strings of i, j and k edges emanating

from a common node. We assemble the different symbols into a single one in order to

describe the different nature of portions of the Coxeter graph in question (see Figure 1

and also [29]).
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Figure 1: The Coxeter pyramid group [4, 31,1, 32, (3,∞, 4)] acting on H6

§ 2.2. A panoramic view to hyperbolic Coxeter polyhedra

The irreducible spherical and Euclidean Coxeter polyhedra are completely charac-

terised [10]. They exist in any dimension n ≥ 2, and correspond to the irreducible finite

and affine Coxeter groups, respectively. Tables can be found in [61, pp. 202–203], for

example.

Unlike their spherical and Euclidean counterparts, hyperbolic Coxeter groups are

far from being classified. In this part, we provide an overview of known classification

results. In the sequel, we shall make no distinction between a Coxeter group and the

corresponding Coxeter polyhedron.

2.2.1. Dimensional bounds There are the following dimensional bounds for the

finite volume case, due to Prokhorov-Kovanskij [45], and for the compact and arithmetic

cases, due to Vinberg (see [61], for example).

Theorem 2.1. There are no finite volume Coxeter polyhedra in Hn for n ≥ 996.

Theorem 2.2. There are no compact Coxeter polyhedra in Hn for n ≥ 30.

Furthermore, if one restricts the context to particular families of hyperbolic Cox-

eter polyhedra, other dimensional bounds can be obtained. By an abuse of language,

a Coxeter polyhedron is arithmetic if its associated Coxeter group is arithmetic (see

Section 4).

Theorem 2.3. There are no arithmetic Coxeter polyhedra in Hn for n ≥ 30.

2.2.2. Dimensions 2 and 3 The planar case is completely described by the following

result due to Poincaré (see also [61, Chapter 3.2]).

Theorem 2.4. Let N ≥ 3 be an integer and 0 ≤ α1, ..., αN < π be non-negative
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real numbers such that

(2.3) α1 + ...+ αN < (N − 2)π.

Then, there exists a hyperbolic N -gon P ⊂ H2 with angles α1, ..., αN . Conversely, if

0 ≤ α1, ..., αN < π are the angles of an N -gon P ⊂ H2, then they satisfy (2.3).

In particular, the set of hyperbolic Coxeter polygons with N sides can be identified

with the set of N -tuples given by
{

(p1, ..., pN ) | 2 ≤ pi ≤ ∞,
∑N
i=1

1
pi
< N −2

}
over Z.

The situation in the 3-dimensional case becomes already more subtle. For compact

acute-angled polyhedra, that is, all dihedral angles are less than or equal to π
2 , there is

the following result due to Andreev [3], which has been fully proved by Roeder [47, 48].

Theorem 2.5. Let P ⊂ H3 be a compact acute-angled polyhedron with N ≥ 5

facets and M ≥ 5 edges with corresponding dihedral angles α1, ..., αM . Then,

1. For all i = 1, ...,M , αi > 0.

2. If three edges ei, ej , ek meet at a vertex, then αi + αj + αk > π.

3. For any prismatic 3-circuit with intersecting edges ei, ej , ek, one has αi+αj +αk <

π.

4. For any prismatic 4-circuit with intersecting edges ei, ej , ek, el, one has αi + αj +

αk + αl < 2π.

5. For any quadrilateral facet F bounded successively by edges ei, ej , ek, el such that

eij , ejk, ekl, eli are the remaining edges of P based at the vertices of F (epq is based

at the intersection of ep and eq), then

αi + αk + αij + αjk + αkl + αli < 3π

and

αj + αl + αij + αjk + αkl + αli < 3π.

Furthermore, the converse holds, i.e. any abstract 3-polyhedron satisfying the conditions

above can be realised as a compact acute-angled hyperbolic 3-polyhedron, and is unique

up to isometry.

Andreev also extended his result to the non-compact case [4]. Let us mention that

the special case of ideal polyhedra, that is, polyhedra all of whose vertices lie on ∂Hn,

admits a simple formulation using the dual of a polyhedron: Recall that the dual of a

polyhedron P ⊂ H3 is the polyhedron P ∗ such that the set of vertices of P is in bijection

with the set of facets of P ∗, and vice-versa. Furthermore, for any edge e of P associated

to a dihedral angle α, the corresponding edge e∗ of P ∗ supports a dihedral angle α∗

given by α∗ = π − α. The result, due to Rivin [46] (see also [21]), reads as follows.
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Theorem 2.6. Let P ⊂ H3 be an ideal polyhedron. Then, its dual P ∗ ⊂ H3

satisfies the following conditions.

1. For any dihedral angle α∗ of P ∗, one has 0 < α∗ < π.

2. If the edges e∗1, ..., e
∗
k with associated dihedral angles α∗1, ..., α

∗
k form the boundary of

a facet of P ∗, then
k∑
i=1

α∗i = 2π.

3. If the edges e∗1, ..., e
∗
k with associated dihedral angles α∗1, ..., α

∗
k form a closed circuit

in P ∗ but do not bound a facet, then

k∑
i=1

α∗i > 2π.

Moreover, any polyhedron P ∗ ⊂ H3 satisfying the above conditions (1)− (3) is the dual

of some ideal polyhedron P ⊂ H3, which is unique up to isometry.

2.2.3. Classifications in terms of the number of facets

Let P ⊂ Hn be a finite volume Coxeter polyhedron with N ≥ n+1 facets. Complete

classifications have been obtained for N = n + 1 and N = n + 2 only. For N = n + 1

and hyperbolic Coxeter simplices, the classification is due to Lannér in compact case

and to Koszul in the finite volume case.

Theorem 2.7 (N = n+ 1).

• Compact hyperbolic Coxeter simplices exist in dimensions n = 2, 3 and 4 only. For

n = 3, 4, there are finitely many of them.

• Finite-volume non-compact hyperbolic Coxeter simplices exist in dimensions n =

2, ..., 9 only. For 3 ≤ n ≤ 9, there are finitely many of them.

Tables can be found in [61, p. 203 and pp. 206–208], for example. For n = 3, the

non-compact Coxeter tetrahedra of finite volume are listed in Appendix Appendix A.

If N = n + 2, then P is either a prism, or a product of two simplices of positive

dimensions, or a pyramid over the product of two simplices of positive dimensions. The

respective classification is due to Kaplinskaja [32], Esselmann [14] and Tumarkin [54].

Theorem 2.8 (N = n+ 2).

• Compact, respectively finite-volume, Coxeter prisms in Hn exist only for n ≤ 5. For

4 ≤ n ≤ 5, there are finitely many of them.
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• Compact Coxeter polyhedra with n+ 2 facets in Hn which are not prisms exist only

for n ≤ 4. For n = 4, there are exactly 7 of them.

• Finite-volume Coxeter polyhedra with n+ 2 facets in Hn which are not prisms exist

only for n ≤ 17. For 3 ≤ n ≤ 17, there are finitely many of them.

Tables can be found in [32, pp. 89–90], [61, p. 61], [14, p. 230] respectively

while the list [54] of Tumarkin’s Coxeter pyramids which are pyramids over a product

of two simplices of positive dimensions is attached in Appendix Appendix B. Notice

that among the non-compact Coxeter polyhedra with n + 2 facets in Hn, n ≥ 3, the

polyhedra of Tumarkin are the only ones apart from the Coxeter polyhedron P̃ ⊂ H4

depicted in Figure 2 which is combinatorially a product of two triangles.
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Figure 2: The Coxeter polyhedron P̃ ⊂ H4

In this work, the family of Tumarkin’s pyramids will be of special interest. Such

a pyramid is not compact since its apex, with a neighborhood being a cone over a

product of two Euclidean simplices, has to be a point at infinity. In the associated

Coxeter graph Σ, the node separating Σ into the two disjoint corresponding Euclidean

Coxeter subgraphs is encircled. Let us just mention a few particular features of the

family of Tumarkin’s Coxeter pyramid groups. It has 200 members, with examples up

to dimension n = 17, and comprises non-arithmetic groups up to dimension 10. There

is a single but very distinguished group Γ∗ in dimension 17.

b b bb b b b b b ce b b b b b b bb b
Figure 3: The graph of the Coxeter pyramid P∗ = [32,1, 312, 31,2] in H17

The group Γ∗ is closely related to the even unimodular group PSO(II17,1) in the

following way. Denote by P∗ the Coxeter polyhedron associated to Γ∗ whose Cox-

eter graph is given in Figure 3. By a result of Emery [12, Theorem 1], the orbifold

H17/PSO(II17,1) is the (unique up to isometry) hyperbolic n-space form of minimal

volume among all orientable arithmetic hyperbolic n-orbifolds for n ≥ 2. Its volume

can be identified with the one of P∗ and computed according to (see [12, Section 3])

vol17(P∗) = vol17(H17/PSO(II17,1)) =
691 · 3617

238 · 310 · 54 · 72 · 11 · 13 · 17
ζ(9) .
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The top-dimensional non-arithmetical Coxeter pyramid group Γ3,4 is the subgroup

of IsomH10 given by the Coxeter symbol [32,1, 36, (3,∞, 4)] and by the Coxeter graph

in Figure 4 (for k = 3, l = 4). It turns out to be the free product with amalgamation

b b b b b b b b b bd bb ��
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Figure 4: The Coxeter pyramid groups Γk,l ⊂ IsomH10

Γ3,4 = Γ̂2,3 ?Φ Γ̂2,4 of the two (incommensurable) arithmetic Coxeter groups Γ̂2,l =

[32,1, 36, l] , l = 3, 4 , of infinite covolume (see Figure 4 and Figure 5 ; cf. [60] and

Section 4).

b b b b b b b b b bb
m

Figure 5: The (total) Coxeter simplex group Γ̂2,m of infinite covolume

The group Γ3,4 is a mixture in the sense of Gromov and Piatetski-Shapiro [20] and

has a Coxeter polyhedron P3,4 ⊂ H10 which is obtained by glueing the Coxeter pyramids

P2,3, P2,4 with Coxeter graphs Γ2,3 = [32,1, 36, 3,∞] , Γ2,4 = [32,1, 36, 4,∞] along their

common Coxeter facet F ⊂ H9 with reflection group Φ and Coxeter graph given by

Figure 6.

b b b b b b b b bb
Figure 6: The common subgroup Φ of Γ2,3 and Γ2,4

For N = n+3, a complete classification has been obtained only in the compact case,

due to results of Esselmann [13] and Tumarkin [55]. Such polyhedra exist in dimen-

sions n ≤ 8. Moreover, Tumarkin [53] proved that there are no finite-volume hyperbolic

Coxeter polyhedra in dimensions n ≥ 17, and that there is a unique such polyhedron in

dimension n = 16.

For N = n + 4, a dimensional bound is available for the compact case, only. In fact,

such polyhedra do not exist in dimensions n > 8, and there is a unique compact hyper-

bolic Coxeter polyhedron in H7 with 11 facets. These results are due to Felikson and

Tumarkin [15].

For N ≥ n+ 5, no dimensional bound and no classification are available so far.
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Hopes for complete classifications of Coxeter polyhedra with given numbers of facets

have been dashed when the following two results, due to Allcock [2], were established.

Theorem 2.9. There are infinitely many isometry classes of finite-volume Cox-

eter polyhedra in Hn, for every n ≤ 19. For 2 ≤ n ≤ 6, they may be taken to be either

compact or non-compact.

Theorem 2.10. For every n ≤ 19, with the possible exceptions of n = 16, 17,

the number of isometry classes of Coxeter polyhedra in Hn of volume ≤ V grows at least

exponentially with respect to V . For 2 ≤ n ≤ 6, they may be taken to be either compact

or non-compact.

Notice that the bound n ≤ 19 is not a strict one. This is due to the fact that,

except from Borcherds’ particular example in dimension n = 21 [6], all known Coxeter

polyhedra occur in dimensions n ≤ 19.

One important tool in Allcock’s approach is the so-called doubling trick, which

allows one to construct new Coxeter polyhedra by gluing together congruent copies of the

same Coxeter polyhedron along isometric facets satisfying certain angular conditions.

2.2.4. Classifications and dimensional bounds for polyhedra with specific

combinatorics

Another way to attack the classification question is to consider polyhedra with

prescribed combinatorial and metrical properties. There are a couple of results in this

direction.

In [25], Im Hof studied and classified so-called crystallographic Napier cycles of type

d, which are (d − 1)-fold truncated Coxeter orthoschemes. He proved that they exist

only for d = 1, 2, 3 and in dimensions n ≤ 9, and he provided a complete classification

[25, pp. 540–544].

Schlettwein [49] classified the so-called edge-finite hyperbolic Coxeter truncated sim-

plices, that is, simplices whose edges are not entirely cut off during the truncation

procedure. Such polyhedra exist in dimensions 2 ≤ n ≤ 5 for both the compact and

finite-volume cases. Tables can be found in [49, pp. 41–44].

The family of hyperbolic Coxeter pyramids has been investigated by McLeod [40], based

on previous works of Tumarkin and Vinberg. In particular, he showed that hyperbolic

Coxeter pyramids with n + p facets exist only for 1 ≤ p ≤ 4, and he completed the

classification for the case p = 4 (for 1 ≤ p ≤ 3, the pyramids were part of already

available classifications, see Section 2.2.3).

It is remarkable that many of the known Coxeter polyhedra can be interpreted as

(not necessarily edge-finite) truncated simplices [26].
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A further class of polyhedra which has been investigated is the class of n-cubes, that

is, polyhedra which are combinatorially equivalent to the standard cube [0, 1]n ⊂ Rn.

Jacquemet [28] proved that there are no finite-volume Coxeter n-cubes in Hn for n ≥ 10,

and no compact ones in Hn for n ≥ 9. Moreover, he proved that the ideal hyperbolic

Coxeter n-cubes exist for n = 2 and also n = 3 only, and provided a classification.

Beside polyhedra of fixed combinatorial type, some results are available for simple

polyhedra P ⊂ Hn of finite volume, which means that for 1 ≤ k ≤ n, each (n− k)-face

is contained in exactly k bounding hyperplanes of P . All three results below are due to

Felikson and Tumarkin (see [16], [17] and [18]).

Theorem 2.11. There are no simple ideal Coxeter polyhedra in Hn for n ≥ 9.

Theorem 2.12. Let P ⊂ Hn be a simple non-compact Coxeter polyhedron. If

n > 9, then P has a pair of disjoint facets, and if n ≤ 9, then either P has a pair of

disjoint facets, or P is a simplex, or P is the product of two simplices.

The corresponding result for compact (and therefore simple) Coxeter polyhedra is

even stronger.

Theorem 2.13. Let P ⊂ Hn be a compact Coxeter polyhedron. If n > 4, then

P has a pair of disjoint facets, and if n ≤ 4, then either P has a pair of disjoint facets,

or P is a simplex, or P has n+ 2 facets and is one of the seven Esselmann polytopes.

Based on these facts and in order to refine the classification problem for Coxeter

polyhedra based on Allcock’s results, Felikson and Tumarkin [18] introduced the notion

of essential Coxeter polyhedra, playing the role of indecomposable ‘building blocks’ that

can be used in order to build other Coxeter polyhedra. More precisely, let n ≥ 4 and

consider a polyhedron P ⊂ Hn with f ≥ n + 1 facets and p pairs of disjoint facets. If

p ≤ f − n − 2, then P is called an essential polyhedron. The following result gives a

new hope for a classification of hyperbolic Coxeter polyhedra.

Theorem 2.14. Let P be the set of essential hyperbolic Coxeter polyhedra. Then

card(P) <∞.

§ 2.3. Some hyperbolic volume identities

Consider a Coxeter group Γ ⊂ IsomHn with Coxeter polyhedron P = P (Γ). The

covolume of Γ is defined to be the volume of P .

For n even, it is well known that the covolume of Γ is proportional to the absolute value

of the Euler characteristic χ(Γ) and given by

(2.4) covolnΓ = voln(P ) =
(2π)

n
2

1 · 3 · . . . · (2n− 1)
· |χ(Γ)| .
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The program CoxIter developped by Guglielmetti [22] provides the value of χ(Γ), and

therefore the covolume of Γ in the even-dimensional case, for a group Γ with prescribed

Coxeter graph. More concretely, the program gives the combinatorial structure in terms

of the f -vector of P = P (Γ), whose k-th component is the number of k-faces of P . It

also allows one to decide whether Γ is cocompact or cofinite and whether it is arithmetic

(see Section 4).

For n odd, volume computations are much more difficult to handle due to the lack of

closed formulas and the implication of transcendental functions such as polylogarithms.

Let us consider some simple cases when n = 3. It is known that hyperbolic volume

can be expressed in terms of the Lobachevsky function L(ω) which is related to the

dilogarithm function Li2(z) =
∑∞
k=1

zk

k2 by means of

L(ω) =
1

2

∞∑
r=1

sin(2rω)

r2
= −

ω∫
0

log | 2 sin t | dt , ω ∈ R .(2.5)

The Lobachevsky function satisfies the following three essential functional properties.

• L(x) is odd.

• L(x) is π-periodic.

• L(x) satisfies for each integer m 6= 0 the distribution law

(2.6) L(mx) = m ·
m−1∑
k=0

L(x+
kπ

m
) .

In this context, let us mention the following conjectures of Milnor [51, Chapter 7], [43].

Conjectures (Milnor).

(A) Every rational linear relation between the real numbers L(x) with x ∈ Qπ is a

consequence of the three essential functional equations above.

(B) Fixing some denominator N ≥ 3, the real numbers L(kπ/N) with k relatively

prime to N and 0 < k < N/2 are linearly independent over Q.

Next we consider some concrete cases. Let [p, q, r] be a non-compact Coxeter or-

thoscheme in H3, with one vertex at infinity so that 1
p + 1

q = 1
2 , say. In Figure 7 we

depict such an orthoscheme in the upper half space model with vertex ∞. Its volume

can be expressed according to (see [34, p. 562], for example)

(2.7) vol3([p, q, r]) =
1

4
{L(

π

p
+
π

r
) + L(

π

p
− π

r
) + 2 L(

π

q
)} , 1

q
+

1

r
≥ 1

2
.
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Figure 7: The Coxeter orthoscheme [p, q, r] ⊂ H3 with 1
p + 1

q = 1
2

In particular, the volumes of the Coxeter orthoschemes [3, 3, 6] and [3, 4, 4] are given by

(2.8)
vol3([3, 3, 6]) =

1

8
L(

π

3
) ' 0.04229 ,

vol3([3, 4, 4]) =
1

6
L(

π

4
) ' 0.07633 .

Remark. In [1] and based on Meyerhoff’s work [42], Adams proved that the 1-

cusped 3-orbifold H3/[3, 3, 6] is the (unique) non-compact hyperbolic orbifold of minimal

volume.

Consider an ideal hyperbolic tetrahedron S∞ = S∞(α, β, γ) ⊂ H3 which is char-

acterised by the dihedral angles α, β, γ ∈]0, π2 ], each one sitting at a pair of opposite

edges, and satisfying α + β + γ = π. It can be decomposed into 3 isometric pairs of

orthoschemes, each having 2 vertices at infinity, in such a way that the identity (2.7)

provides the following volume formula.

(2.9) vol3(S∞) = L(α) + L(β) + L(γ) , α+ β + γ = π .

As a consequence, a regular ideal tetrahedron S∞, characterised by α = β = γ = π
3 , is

of volume 3L(π3 ). In [30], the covolumes of all hyperbolic Coxeter n-simplex groups,

3 ≤ n ≤ 9, were determined; for the values in the case of n = 3, see Appendix Appendix

A.

Next, consider one of the 7 ideal Coxeter cubes in H3 (see [28]). It can be dissected

into 4 ideal tetrahedra according to Figure 8. In the case of the Coxeter cube W with

Coxeter graph given by Figure 9 and edge lengths l1, l2, l3 of pairs of opposite facets

satisfying

(2.10) cosh l1 = cosh l2 =
5

2
, cosh l3 =

2
√

3

3
,
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Figure 8: Dissection of a cube into tetrahedra

the formula (2.9) yields the following.

(2.11) vol3(W ) = 10 L(
π

3
) .

a a a
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6
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6l1 l3

l2

Figure 9: An ideal Coxeter cube W ⊂ H3

For pyramids P ⊂ H3, there is also a closed formula in terms of the dihedral angles

due to Vinberg [61, pp. 129–130] (up to minor sign errors). In the special case of a

pyramid P = P (α1, . . . , α4) whose apex q at infinity is the intersection of 4 edges with

right (interior) dihedral angles, Vinberg’s formula can be stated as follows in terms of

the dihedral angles α1, . . . , α4 opposite to q (circularly enumerated with indices modulo

4).

2 vol3(P ) =

4∑
k=1

{
L
(
(
π

2
+ αk + αk+1)/2

)
+ L

(
(
π

2
+ αk − αk+1)/2

)
+L

(
(
π

2
− αk + αk+1)/2

)
+ L

(
(
π

2
− αk − αk+1)/2

)}
.(2.12)
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As an application, the covolumes of all Coxeter pyramid groups in IsomH3 given by the

Coxeter graphs according to Figure 10 can be explicitly determined. In particular, the

b b
b bbd
b b
b bbd

��
�

HHH
��
�

HHH

��
�

HHH

��
�

HHH

∞ ∞

∞ ∞

k = 2, 3, 4 ;

l = 3, 4 ;

k = 5, 6 ;

l = 2, 3, 4, 5, 6 ;

m = 2, 3, 4 ;

n = 3, 4 .

m = 2, 3 .
k

l

m

k

l

m

n

Figure 10: The Coxeter pyramids [(k,∞, l), (m,∞, n)] and [(k,∞, l), (m,∞, 3)] in H3

covolumes of the two (non-arithmetic) Coxeter pyramid groups Γ1 and Γ2 with Coxeter

graphs given by Figure 11 is as follows.

b b be b
b4

Γ1 Γ2

b b be b
b��

QQ QQ
��

4

4∞ ∞
∞ ∞

Figure 11: Two (non-arithmetic) Coxeter pyramid groups

covol3(Γ1) =
1

3
L(

π

4
) +

1

8
L(

π

6
) + L(

5π

24
)−L(

π

24
) ' 0.40362 ,

covol3(Γ2) = L(
π

4
) +

1

8
L(

π

6
) + L(

5π

24
)−L(

π

24
) ' 0.70894 .

(2.13)

For the (non-arithmetic) Coxeter pyramid group ΓT with Coxeter graph given by Figure

12, the covolume is equal to

(2.14) covol3(ΓT ) =
5

4
L(

π

3
) +

1

3
L(

π

4
) ' 0.57555 .

b b be b
bQQ

�� ∞
∞

6

Figure 12: The (non-arithmetic) Coxeter pyramid group ΓT

§ 3. Commensurable hyperbolic Coxeter groups

Two discrete subgroups G1, G2 ⊂ IsomHn are said to be commensurable in the

wide sense or just commensurable, for abbreviation, if the intersection G1 ∩ G′2 of G1
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with some conjugate G′2 of G2 in IsomHn is of finite index both in G1 and G′2. As a

consequence, the associated orbifolds Hn/G1 and Hn/G2 admit a common finite sheeted

cover up to isometry.

Notice that the intersection H := G1 ∩G′2 contains a non-trivial normal subgroup N of

finite index in G1, the normal core of H, which is given by ∩γ∈G1
γ H γ−1.

It is not difficult to see that commensurability is an equivalence relation which is

preserved when passing to a finite index subgroup. In particular, one can study commen-

surability for orientation preserving subgroups (of index two) or - by Selberg’s Lemma

- by passing to a finite index torsion-free subgroup. This is particularly convenient for

dimensions n = 2 resp. n = 3 where the group PSO(n, 1) of orientation preserving

isometries is isomorphic to PSL(2,R) resp. PSL(2,C).

§ 3.1. Commensurability criteria

It follows from the definition that the commensurability relation on the set G of

discrete groups G ⊂ IsomHn leaves invariant properties such as cocompactness, cofinite-

ness and arithmeticity (for the arithmetic aspects, see Section 4).

An important characterisation of (non-)arithmeticity is due to Margulis (see [38,

Theorem 10.3.5], for example). Consider the commensurator

(3.1) Comm(G) = { γ ∈ IsomHn | G ∩ γGγ−1 has finite index in G and γGγ−1 }

of a cofinite discrete group G ⊂ IsomHn , n ≥ 3. Then, the result of Margulis can be

stated in the following form.

Theorem 3.1. The commensurator Comm(G) ⊂ IsomHn is a discrete subgroup

in IsomHn containing G with finite index if and only if G is non-arithmetic.

In particular, for G non-arithmetic, the commensurator Comm(G) is the maximal

element in the commensurability class of G so that all non-arithmetic hyperbolic orb-

ifolds with fundamental groups commensurable to G cover a smallest common quotient.

Suppose that a finite volume hyperbolic orbifold Q = Hn/G has a cusp, that is, the

group G has a fundamental polyhedron with an ideal vertex q ∈ ∂Hn. Therefore, the

stabiliser Gq ⊂ G is a crystallographic group containing a translational lattice Λ ∼= En−1

of finite index. Let Uq ⊂ Q be the maximal embedded cusp neighborhood. Then, the

quotient voln(Uq)/voln(Q) is called the cusp density of q in Q. It is known that for

1-cusped orbifolds Q = Hn/G with discrete commensurator Comm(G), the cusp density

is a commensurability invariant (see [19, Section 2]). However, since (transcendental)

volume expressions are involved, this property is of limited value (see (2.5) and (2.13),

for example). In the case of 1-cusped quotients by non-arithmetic Coxeter pyramid
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groups (see Section 5.3), we present results whose proofs are based on a different rea-

soning without volume computation but using crystallography (see Theorem 5.4 and

Lemma 5.6).

In fact, volume considerations rarely help to judge about commensurability in a

rigorous way but relate such questions to analytical number theory. As a general prin-

ciple, if the covolume quotient of two groups in G is an irrational number, then the

groups cannot be commensurable. However, already for n = 3, such criteria are very

difficult to handle and closely related to Milnor’s Conjectures presented in Section 2.3.

Furthermore, for n = 2k, the above observation is void in view of (2.4).

A natural conjugacy invariant is the (ordinary) trace field Tr(G) of G in GL(n +

1,R) which is defined to be the field generated by all the traces of matrices in G ⊂
PO(n, 1). In the particular case of Kleinian groups, that is, of cofinite discrete groups

G ⊂ PSL(2,C), one can sometimes avoid trace computations by considering the in-

variant trace field kG = Q(Tr(G(2))), generated by the traces of all squared elements

γ2 , γ ∈ G , and the invariant quaternion algebra AG over kG. Both, the field kG and

the algebra AG are commensurability invariants (see [44]). Furthermore, kG is a finite

non-real extension of Q (see [38, Theorem 3.3.7]), and if the group G is not cocompact

(containing parabolic elements), then the algebra AG is isomorphic to the matrix alge-

bra Mat(2, kG) (see [38, Theorem 3.3.8]).

In the case when the group G is an amalgamated free product of the form G = G1?HG2,

where H is a non-elementary Kleinian group, then kG is a composite of fields according

to (see [38, Theorem 5.6.1])

kG = kG1 · kG2 .

In this context, consider hyperbolic Coxeter groups Γ ⊂ IsomHn which are amalgamated

free products Γ̂1 ?Φ Γ̂2 such that Φ ⊂ IsomHn−1 is itself a cofinite Coxeter group whose

fundamental Coxeter polyhedron F is a common facet of the fundamental Coxeter

polyhedra P1 and P2 of Γ1 and Γ2 (for an example, see the groups Γk,l ⊂ IsomH10 as

described by Figures 4, 5 and 6 and the explanation given in Section 2.2). Geometrically,

a fundamental polyhedron for Γ̂1 ?Φ Γ̂2 is the Coxeter polyhedron arising by glueing

together P1 and P2 along their common facet F . Then, the following general result of

Karrass and Solitar [33, Theorem 10] is very useful to decide about commensurability,

in particular in the case of Tumarkin’s Coxeter pyramid groups (for details, see Section

5.3, Lemma 5.6).

Theorem 3.2. Let G = A?U B be a free product with amalgamated subgroup U ,

and let H be a finitely generated subgroup of G containing a normal subgroup N of G

such that N ≮ U . Then, H is of finite index in G if and only if the intersection of U

with each conjugate of H is of finite index in U .
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§ 4. Arithmetical aspects

In [36], Maclachlan described an effective way to decide about the commensurability

of two arithmetic discrete subgroups of IsomHn. The key point is that the classification

of arithmetic hyperbolic groups is equivalent to the classification of their underlying

quadratic forms up to similarity. In turn, the classification of these quadratic forms can

be achieved using a complete set of invariants based on quaternion algebras. In this

section, we present the necessary algebraic background, discuss the result of Maclachlan

and provide a few examples. In Appendix Appendix C we provide the commensurability

classes of arithmetic hyperbolic Coxeter pyramid groups.

§ 4.1. Arithmetic groups

In order to motivate the precise definition of an arithmetic group (of the simplest

type), we start with an example. Let fn(x) = x2
1 + . . . + x2

n − x2
n+1 be the standard

Lorentzian quadratic form on Rn+1 and consider the cone C = {x ∈ Rn+1 | fn(x) < 0}.
We denote by O(fn,Z) ⊂ GL(n + 1,R) the group of linear transformations of Rn+1

with coefficients in Z which preserve the quadratic form fn. The index two subgroup

O+(fn,Z) consisting of elements of O(fn,Z) which preserve the two connected compo-

nents C± = {x ∈ C |xn+1 ≶ 0} of the cone C is the prototype of an arithmetic group.

Moreover, it is well known that this discrete group has finite covolume in O+(n, 1).

Note that the condition that the transformation has coefficients in Z is equivalent to

invariance requirement of the standard Z-lattice in Rn+1.

Now, let K be any totally real number field, OK its ring of integers, and let V be

an (n+ 1)-dimensional vector space over K endowed with an admissible quadratic form

f of signature (n, 1), that is, all conjugates fσ of f by the non-trivial Galois embedding

σ : K −→ R are positive definite. The cone Cf = {x ∈ V ⊗ R : f(x) < 0} has

two connected components C±f and gives rise to the Minkowski model C+
f /R∗ of the

hyperbolic n-space Hn. We now let

O(f) =
{
T ∈ GL(V ⊗ R) | f ◦ T (x) = f(x), ∀x ∈ V ⊗ R

}
.

Finally, for a OK-lattice L of full rank in V and for O(f)K the K-points of O(f), we

consider the group

O(f, L) :=
{
T ∈ O(f)K |T (C+

f ) = C+
f , T (L) = L

}
.

It is a discrete subgroup of IsomHn of finite covolume (see [7]).

Definition 4.1. A discrete group Γ ⊂ IsomHn is an arithmetic group of the

simplest type if there exist K, f and L as above such that Γ is commensurable to

O(f, L). In this setting, we say that Γ is defined over K and that f is the quadratic

form associated to Γ.
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Remarks 4.2 ([61, Chapter 6]).

1. If such a group is non-cocompact, then it must be defined over Q.

2. If Γ is defined over Q, then it is non-cocompact if and only if the lattice is isotropic

(see also [20, Section 2.3]). In particular, if Γ is non-compact then n ≥ 4 (this

follows from [9, Chapter 4, Lemma 2.7] and the Hasse-Minkowski theorem).

3. There is a slightly more general definition of discrete arithmetic subgroups of

IsomHn. However, when a discrete subgroup of IsomHn is arithmetic and contains

reflections, then it is of the simplest type. Therefore, we will refer to arithmetic of

group of the simplest type as arithmetic group.

Vinberg presented in [61] a criterion to decide whether a hyperbolic Coxeter group

is arithmetic or not. In order to present the criterion, we need the following definition.

Definition 4.3. Let A := (Ai,j) ∈ Mat(n,K) be a square matrix with coeffi-

cients in a field K. A cycle of length k, or k-cycle, in A is a product Ai1,i2 ·Ai2,i3 · . . . ·
Aik−1,ik ·Aik,i1 . Such a cycle is denoted by A(i1,...,ik). If the ij are all distinct, the cycle

is called irreducible.

Theorem 4.4. Let Γ be a hyperbolic Coxeter group of finite covolume in IsomHn

and let G be its Gram matrix. Let K̃ be the field generated by the entries of G and let

K be the field generated by the (irreducible) cycles in 2G. Then, Γ is arithmetic if and

only if

• K̃ is a totally real number field;

• for each Galois embedding σ : K̃ −→ R with σ|K 6= id, the matrix Gσ is positive

semi-definite;

• the cycles in 2G are algebraic integers in K.

In this case, the field of definition of Γ is K.

If the group Γ is a non-cocompact hyperbolic Coxeter group, then the criterion can

be simplified as follows.

Proposition 4.5 ([22, Proposition 1.13]). Let Γ = 〈s1, . . . , sN 〉 be a non-co-

compact hyperbolic Coxeter group of finite covolume, G its Gram matrix and Σ its

Coxeter graph. Then, Γ is arithmetic if and only if the two following conditions are

satisfied.

1. The graph Σ contains only edges with labels in {∞, 2, 3, 4, 6} and dotted edges.
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2. 4 ·G2
i,j ∈ Z.

3. For every simple cycle (si1 , . . . , sik , si1) in the graph Σ, the product
(
2G
)

(i1,...,ik)

is a rational integer. Moreover, it is sufficient to test this condition in the graph

obtained by collapsing every non-closed path.

Remark. The condition 4 ·G2
i,j ∈ Z (which must hold for a non-cocompact arith-

metic Coxeter group) is a strong condition for the weights of the dotted lines.

b b b b b7 4

Figure 13: A 3-dimensional compact Coxeter prism

Example 4.6. We consider the cocompact group Γ given in Figure 13 whose

fundamental polyhedron is a triangular Coxeter prism (or a simply truncated Coxeter

orthoscheme). Its Gram matrix G is given by

G =



1 − cos π7 0 0 0

− cos π7 1 − 1
2 0 0

0 − 1
2 1 − 1√

2
0

0 0 − 1√
2

1 −
√

cos 2π
7 −1

2 cos 2π
7 −1

0 0 0 −
√

cos 2π
7 −1

2 cos 2π
7 −1

1


.

The field K̃ generated by the entries of G is Q
(
cos π7 ,

√
2,
√
α
)
, where

α = (2 cos2
(π

7

)
− 1)/(4 cos2

(π
7

)
− 3) = (cos

2π

7
)/(2 cos

2π

7
− 1),

and the field K generated by the cycles is Q
(
cos 2π

7

)
. Since the Galois conjugates

of α are all positive, the first condition of Theorem 4.4 is satisfied. Since the minimal

polynomial of cos π7 is p(x) = 8x3−4x2−4x+1 (up to normalisation), the field extension

K̃/K has degree 12. Now, a Galois embedding σ : K̃ −→ R which is not the identity

on Q
(
cos 2π

7

)
has to send cos π7 to one of the two other roots of p(x). Therefore, we

have to consider the 8 possible embeddings. For each of them, numerical computations

show that the matrix Gσ is positive semi-definite. Finally, since the cycles in 2G are

algebraic integers, the group Γ is arithmetic.

§ 4.2. Algebraic background

In this section we present basic facts about the Brauer group and quaternion alge-

bras which are needed to compute the invariants.



Commensurability of hyperbolic Coxeter groups: theory and computation 77

4.2.1. The Brauer group Let K be a field and let A be a finite dimensional central

simple algebra over K (the center of A is K and A has no proper non-trivial two-sided

ideal). By Wedderburn’s theorem, there exists a unique (up to isomorphism) division

algebra D over K and a unique integer n such that A ∼= Mat(n,D). This allows to define

an equivalence relation on the set of isomorphism classes of central simple algebras over

K: two algebras A ∼= Mat(n,D) and A′ ∼= Mat(n′, D′) are said to be Brauer equivalent

if and only if D ∼= D′. The quotient set is endowed with the structure of an abelian

group as follows:

[A] · [B] = [A⊗K B].

We remark that the neutral element is the class of Mat(m,K) and [A]−1 =
[
Aop

]
, where

Aop denotes the opposite algebra of A. Note that we will often write A · B instead of

[A] · [B].

The Brauer group is denoted by BrK. All its elements are torsion and the 2-torsion is

generated by quaternions algebras (see [41]).

4.2.2. Quaternion algebras Let K be a field of characteristic different of two. A

quaternion algebra over K is a four-dimensional central simple algebra over K. Since

the characteristic of K is different from two, there exist a K-basis {1, i, j, k} of A and

two non-zero elements a and b of K such that the multiplication in A is given by the

following rules:

i2 = a, j2 = b, ij = −ji = k.

We then write A = (a, b)K or just (a, b) if there is no confusion about the base field.

We sometimes call (a, b)K the Hilbert symbol of the quaternion algebra. This is kind of

unfortunate because we also have the Hilbert symbol of a field K, which is the function

K∗ ×K∗ −→ {−1, 1} defined as follows.

(a, b) =

1 if ax2 + by2 − z2 = 0 has a non-trivial solution in K3

−1 otherwise.

We will use this function later when speaking about the ramification of rational quater-

nion algebras.

For an element q = x + yi + zj + tk, with x, y, z, t ∈ K, the standard involution

q = x− yi− zj − tk gives rise to the norm

N : A −→ K, q 7−→ N(q) = q · q = x2 − ay2 − bz2 + abt2.

Since an element q ∈ A is invertible if and only if N(q) 6= 0, we have the following

proposition.
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Proposition 4.7 ([35, Chapter III, Theorem 2.7]). Let A = (a, b)K be a quater-

nion algebra. Then, the following properties are equivalent:

• A is a division algebra;

• the norm N : A −→ K has no non-trivial zero;

• the equation aX2 + bY 2 = 1 has no solution in K ×K;

• the equation aX2 + bY 2 − Z2 = 0 has only the trivial solution.

Moreover, if A is not a division algebra, then A ∼= Mat(2;K).

Therefore, deciding whether a given quaternion algebra is a division algebra or not

reduces to a purely number theoretical question. We will come back to this question

later.

Proposition 4.8. For every a, b, c ∈ K∗, we have the following isomorphisms

of quaternion algebras:

(a, b) ∼= (b, a), (a, c2b) ∼= (a, b), (a, a) ∼= (a,−1)

(a, 1) ∼= (a,−a) ∼= (a, 1− a) ∼= (1, 1) ∼= 1

(a, b) · (a, c) ∼= (a, bc) ·Mat(2;K), (a, b)2 ∼= Mat(4;K).

We note that the last two relations can be rewritten in the Brauer group as follows

(a, bc) = (a, b) · (a, c), (a, b)2 = 1.

Proposition 4.9 ([56, chapitre I, Théorème 2.9; chapitre III, Section 3]). If K

is a number field, and if B1 and B2 are quaternion algebras over K, there exists a

quaternion algebra B such that B1 ·B2 = B in BrK.

4.2.3. Isomorphism classes of quaternion algebras We will see below that

the question of the commensurability of two arithmetic Coxeter subgroups of IsomHn

reduces almost to deciding whether two quaternions algebras are isomorphic. Hence, in

this section, we investigate the isomorphism classes of quaternion algebras.

First, it is worth to mention that the isomorphism classes of quaternion algebras

are not determined by Hilbert symbols (for example, we have (5, 3)Q ∼= (−10, 33)Q).

However, we will see that there is an efficient way to produce a set which completely

describe the quaternion algebra: the ramification set.

Let K be a number field. Recall that a place of K is an equivalence class of absolute

values1: two non-trivial absolute values | · |1, | · |2 : K −→ R are equivalent if there exists

1Some authors use the word (multiplicative) valuation for what we call absolute value. This is why
a place is often denoted by v.
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some number e ∈ R such that |x|1 = |x|e2 for all x ∈ K. We can easily create two kind

of places:

Infinite places Any Galois embedding σ : K −→ R yields a place by composition

with the usual absolute value. Similarly, any complex Galois embedding σ : K −→
C gives rise to a place by composition with the modulus. These places are called

infinite places.

Note that in our setting, since the number field K is supposed to be totally real,

we only get real embeddings.

Finite places Let P be a prime ideal of OK . This defines a valuation on OK as

follows:

ηP : OK −→ Z ∪ {∞}, ηP(x) = sup{r ∈ N : x ∈ Pr}.
This valuation can be extended to K by setting ηP(x/y) = ηP(x) − ηP(y). Now,

we pick any 0 < λ < 1 and define the associated absolute value

| · |P : K −→ R, |x|P = ληP(x).

Note that the place associated to this absolute value is independent of the choice of

λ. The places defined in this way are called finite places.

Using Ostrowski’s theorem and theorems about extensions of absolute values, one gets

the following standard result.

Theorem 4.10. Let K be a number field. The two constructions explained above

give all the places on K.

We will denote by Ω(K) (respectively Ω∞(K) and Ωf (K)) the set of all places

(respectively infinite places and finite places) of K. If v ∈ Ω(K) is a place, we denote

by Kv the completion of K with respect to v. For a quaternion algebra B over K, we

write Bv for B⊗K Kv, which is a quaternion algebra over Kv. When the place v comes

from a prime ideal P of OK , we will sometimes write KP instead of Kv and BP instead

of Bv.

The fact that Bv is either a division algebra or a matrix algebra (see Proposition 4.7)

motivates the following definition.

Definition 4.11. Let B be a quaternion algebra defined over a number field K.

The ramification set of B, denoted by RamB, is defined as follows:

RamB =
{
v ∈ Ω(K) |Bv := B ⊗K Kv is a division algebra

}
.

We will also write

Ramf B := RamB ∩ Ωf (K), Ram∞B = RamB ∩ Ω∞(K).
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Theorem 4.12 ([56, Chapter III, Theorem 3.1]). Let B be a quaternion algebra

defined over a number field K. The ramification set RamB of B is a finite set of even

cardinality. Conversely, if R ⊂ Ω(K) is a finite set of even cardinality, there exists, up

to isomorphism, a unique quaternion algebra B′ over K such that RamB′ = R.

Remark. Using Proposition 4.7 it is easy to compute the infinite ramification

Ram∞B of a quaternion algebra B = (a, b)K . Indeed, if σ : K −→ R is a Galois

embedding and if v is the corresponding absolute value, then Bv ∼=
(
σ(a), σ(b)

)
. Thus,

v ∈ Ram∞(a, b)K if and only if σ(a) > 0 and σ(b) > 0.

Remark. When K = Q, the previous theorem comes from classical results such

as the Hasse-Minkowski principle (since two quaternion algebras are isomorphic if the

quadratic spaces induced by their norms are isomorphic) and Hilbert’s reciprocity law.

Finally, let us mention a result which helps for computations in the case K = Q
(see also Proposition 4.15).

Proposition 4.13 ([56, p. 78]). Let B1 and B2 be two quaternion algebras over

a number field K and let B be such that B1 · B2 = B ∈ BrK (see Proposition 4.9).

Then, we have

RamB =
(

RamB1 ∪ RamB2

)
\
(

RamB1 ∩ RamB2

)
.

When dealing with arithmetic groups of odd dimensions, we will need to compute

the ramification of quaternion algebras over a quadratic extension of a number field.

Proposition 4.14. Let K be a number field and let L = K(
√
δ) be a quadratic

extension of K. Let B be a quaternion algebra over K and define A := B ⊗K L. Then,

the ramification sets at finite places of A and B are related as follows:

Ramf A =
{
P1,P

′
1, . . . ,Pr,P

′
r},

where each pair Pi,P
′
i is a pair of prime ideals of OL which lie above a prime ideal Pi

of OK such that B is ramified at Pi, and Pi splits completely.

Proof. Let P be a prime ideal of OL and let P := P ∩ OK . We also consider the

completions LP (respectively KP) of L (respectively K) with respect to the valuation

defined by P (respectively P). We first note that AP
∼= BP ⊗KP LP. Indeed, we have

AP
∼= A⊗L LP = (B ⊗K L)⊗L LP

∼= B ⊗K LP
∼= BP ⊗KP LP.

By classical results, we then have three possibilities for the ideal POL:
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1. Inert case The ideal POL is prime, meaning that POL = P.

2. Ramified case We have POL = P2.

3. Split case There exists another prime ideal P′ above P such that POL = PP′.

In the first two cases, [LP : KP ] = 2 (see, for example, [9, Chapter I, 5, Proposition 3])

which implies that AP is a matrix algebra (see [56, chapitre II, Théorème 1.3]). In the

last case, we have KP ∼= LP (again by [9]) and thus AP
∼= BP . Therefore, A is ramified

at P if and only if B is ramified at P if and only if A is ramified at P′, as required.

Computing the ramification set when K = Q. In this part we consider a

quaternion algebra B = (a, b) over Q, and we explain how to compute its ramification.

In this setting, the finite places are the p-adic valuations, and there is exactly one

infinite place, denoted by | · |∞, corresponding to the usual absolute value. By virtue

of Proposition 4.7, it is clear that B is ramified at ∞ if and only if a < 0 and b < 0.

Moreover, using Proposition 4.8 and Proposition 4.13, we see that we only have to

compute the ramification set for quaternion algebras which are of one of the following

forms:

(−1, q), (p, q), (−p, q), ∀p, q ∈ P,
where P denotes the set of prime numbers.

Proposition 4.15. We have Ram(−1, 2) = ∅ and Ram(−1,−2) = {2,∞}.
If q is a prime number different from two, then we have the following ramification

sets:

q ≡ 1 mod 8 q ≡ 3 mod 8 q ≡ 5 mod 8 q ≡ 7 mod 8

(−1, q) ∅ {2, q} ∅ {2, q}
(−1,−q) {2,∞} {q,∞} {2,∞} {q,∞}
(2,−q) ∅ {2, q} {2, q} ∅
(−2, q) ∅ ∅ {2, q} {2, q}

Finally, let q1, q2 ∈ P \ {2} be two distinct prime numbers. The ramification set of the

quaternion algebra (−q1, q2) is as follows:

q2 ≡ 1 (mod 4) q2 ≡ 3 (mod 4)

q1 ≡ 1 (mod 4)
{q1, q2} if

(
q1
q2

)
= −1

∅ otherwise

{2, q1} if
(
q1
q2

)
= −1

{2, q2} otherwise

q1 ≡ 3 (mod 4)
{q1, q2} if

(
q1
q2

)
= −1

∅ otherwise

{q1, q2} if
(
q1
q2

)
= 1

∅ otherwise

where
(
a
b

)
denotes the Legendre symbol of a and b.
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Proof. For x, y ∈ Q we have the Hilbert symbol (x, y)p ∈ {−1, 1} (see, for example,

[9]) and for a diagonal quadratic form f = 〈a1, . . . , an〉, we define

c(f)p =
∏
i<j

(ai, aj)p, c(B)p = c
(
〈1,−a,−b, ab〉

)
p
.

By [9, Lemme 2.6, page 59]), we get

p ∈ Ram(B)⇔ c(B)p =

1 p = 2,∞
−1 p odd.

Therefore, to find the ramification set it is sufficient to compute the Hilbert symbols

c(B)p. To compute these symbols, we can use [50, Part I, Chapter III, Theorem 1]. We

note that if p ∈ RamB, then we must have p = 2 or p | a or p | b.
It follows that the Hilbert symbols satisfy

c
(
(−1, 2)

)
2

= (−1,−2)2 = −1, c
(
(−1,−2)

)
2

= (2,−1)2 = 1,

c
(
(−1, q)

)
2

= (−q,−q)2 = (−1)ε(−q), c
(
(−1, q)

)
q

= (−q,−q)q = (−1)ε(q),

c
(
(−1,−q)

)
2

= (q, q)2 = (−1)ε(q), c
(
(−1,−q)

)
q

= (q, q)q = (−1)ε(q),

c
(
(2,−q)

)
q

= (−1)ω(q), c
(
(−2, q)

)
q

= (−1)ε(q)+ω(q),

c
(
(2,−q)

)
2

= (q,−1)2 · (−2,−q)2 = (−1)1+ω(−q),

c
(
(−2, q)

)
2

= (2,−1)2 · (−q,−2)2 = (−1)ε(−q)+ω(−q),

where

ε(n) =

0 if n ≡ 1 (mod 4)

1 if n ≡ 3 (mod 4)
, ω(n) =

0 if n ≡ ±1 (mod 8)

1 if n ≡ ±3 (mod 8).

Finally, if q1, q2 ∈ P \ {2} are two distinct prime numbers, we have

c
(
(−q1, q2)

)
2

= (q1,−1)2 · (−q2,−q1)2 = (−1)ε(q1)+ε(−q1)·ε(−q2)

c
(
(−q1, q2)

)
q1

= (q1,−1)q1 · (−q2,−q1)q1 =

(
q2

q1

)
c
(
(−q1, q2)

)
q2

= (q1,−1)q2 · (−q2,−q1)q2 = (−1)ε(q2) ·
(
q1

q2

)
,

where
(
a
b

)
denotes the Legendre symbol of a and b.

4.2.4. Clifford algebras In this section, we present basic facts about Clifford alge-

bras. These algebras are used to prove Maclachlan’s theorem (cf. Theorem 4.20) but
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are not used for the computations of the invariants. The reader who only wants to

compute the invariants can skip this part.

Let (V, f) be a quadratic space defined over some field K. A Clifford algebra

associated to (V, f) is a unitary associative algebra over K denoted by Cl(V, f), together

with a K-linear map i : V −→ Cl(V, f) which satisfy the following:

• For every v ∈ V , i(v)2 = f(v) · 1Cl(V,f).

• The following universal property is satisfied: if A is another unitary associative K-

algebra provided with a K-linear function iA : V −→ A such that iA(v)2 = f(v)·1A,

then there exists a unique morphism of K algebras ψ : Cl(V, f) −→ A such that

the following diagram commutes.

V
iA //

i

��

A

Cl(V, f)

ψ

;;

Because of the universal property, if the Clifford algebra Cl(V, f) exists, then it is unique

up to isomorphism. In fact, the algebra can be constructed explicitly as follows. We

start with the tensor algebra T (V ) =
⊕

i∈N V
⊗n, where V ⊗n = V ⊗. . .⊗V , n times, and

V ⊗0 = K. Then we consider the ideal I in T (V ) generated by the elements v2 − f(v).

Finally, we see that the quotient T (V )/I satisfies the universal property as required.

Thus, we have Cl(V, f) = T (V )/I. When working in Cl(V, f) we will abbreviate and

write the product a⊗ b in the form a · b. It is easy to see that if v1, . . . , vn is a K-basis

of V , then {
vi1 · . . . · vik | 1 ≤ i1 < i2 < . . . < ik ≤ n

}
is a K-basis of Cl(V, f). In particular, dimk Cl(V, f) = 2dimK V .

The natural N-grading on the tensor algebra T (V ) induces a
(
Z/2Z

)
-grading on

Cl(V, f) which is compatible with the algebra structure. In other words, the vector

space

Cl0(V, f) := spanK
{
vi1 · . . . · vik | 1 ≤ i1 < i2 < . . . < ik ≤ n, k even

}
is a sub-algebra of Cl(V, f) called the even part of Cl(V, f). More canonically, Cl0(V, f)

is the image of
⊕

i∈N V
⊗2i by the quotient map.

Example 4.16. Let V = Rn be endowed with the quadratic form f(v) = −‖v‖2,

where ‖ · ‖ is the euclidean norm. For n = 1 we have Cl(V, f) = C and for n = 2 we

get Cl(V, f) = (−1,−1)R, the quaternions of Hamilton. In the latter case, we have

Cl0(V, f) ∼= C.
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Remark. In some cases, it is useful to construct the algebra by requiring v2 =

−f(v) instead of v2 = f(v). The choice depends on the authors.

§ 4.3. Classification

Let Γ1,Γ2 ⊂ IsomHn be two arithmetic Coxeter groups defined over the number

fields K1 and K2, respectively, and let f1 and f2 be their underlying quadratic forms.

A result of Gromov and Piatetski-Shapiro (see [20, Section 2.6]) implies the following

result:

Γ1 ∼ Γ2 ⇔ K1 = K2 and f1 ∼ f2,

where Γ1 ∼ Γ2 means that Γ1 and Γ2 are commensurable and where f1 ∼ f2 means that

the two quadratic forms are similar (meaning that there exists c ∈ K1 = K2 such that

c · f1
∼= f2). Therefore, deciding whether Γ1 is commensurable to Γ2 can be done in two

steps. First, we have to find the defining fields and the underlying quadratic forms (see

[57, Section II, Theorem 2]). Secondly, we have to detect the similarity of the forms.

The main references for this section are [36] and [57].

Remark. An immediate consequence of the result of Gromov and Piatetski-

Shapiro is the following: when n is odd, a necessary condition for Γ1 and Γ2 to be

commensurable is that K1 = K2 and that the quotient det f1/ det f2 is a square in K1.

We will present the two points separately and illustrate them with an example: the

goal is to decide whether the two (non-cocompact, cofinite) subgroups Γ6
1,Γ

6
2 ⊂ IsomH6

presented in Figure 14 are commensurable or not. We first remark that these two groups

are arithmetic by virtue of Proposition 4.5:

• The Gram matrix of the first one has entries in Z
[

1
2

]
.

• The second graph contains only weights 3, 4 and 6 and no cycles.

The group Γ6
1 is the simplex group P 6 and has covolume 13π3

1,360,800 . The group Γ6
2 is one

of the pyramids given by Tumarkin in [54] and has covolume 13π3

604,800 . Since both groups

are non-cocompact, the fields of definition equal Q.

Figure 14: Two arithmetic Coxeter subgroups of IsomH6
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4.3.1. Finding the defining field and the underlying quadratic form Let

Γ ⊂ IsomHn be an arithmetic Coxeter group of rank N . We want to find the defining

field K and the underlying quadratic form f of Γ. We consider the associated funda-

mental polyhedron P (Γ) and the outward-pointing normal vectors ei ∈ Rn+1 of the

bounding hyperplanes Hi of P (Γ), which means that P (Γ) =
⋂N
i=1H

−
ei (see (2.1)). Fi-

nally, we denote by G(Γ) = (ai,j) ∈ Mat(R, N) the Gram matrix of Γ, meaning that

ai,j = 〈ei, ej〉.
Using Vinberg’s arithmeticity Criterion (see Theorem 4.4), we can determine the defin-

ing field K of Γ. Now, consider the K-subvector space V spanned by all the vectors

(4.1) vi1,...,ik = a1,i1 · ai1,i2 · . . . · aik−1,ikeik , {i1, . . . , ik} ⊂ {1, . . . , N}.

The restriction of the Lorentzian form f0 to V is an admissible quadratic space of

dimension n + 1 over K. Moreover, Γ is commensurable to O(f, L), where L is the

lattice spanned over K by a basis v1, . . . , vn+1 of V and f is the quadratic form defined

by the matrix whose entries are the Lorentzian products 〈vi, vj〉 of signature (n, 1).

Remark. The task of finding the outward-pointing normal vectors of the poly-

hedron P (Γ) is difficult: one has to find the vectors e1, . . . , eN of Rn+1 such that

〈ei, ej〉 = ai,j . This is basically equivalent to solve a system of r(r+1)
2 quadratic equa-

tions with r(n+1) unknowns. Assuming that e1 = (0, . . . , 0, 1) and that the first vectors

contain a lot of zeroes, we can guess the remaining vectors using software such as Math-

ematica or Maple. Another possibility is to compute sufficiently good approximations

of the vectors ei using numerical methods and then use the LLL algorithm to find the

exact components. This approach is described in [5].

The normal vectors of the polyhedra P (Γ6
1) and P (Γ6

2) associated to the groups

Γ6
1 and Γ6

2 (see Figure 14) can be easily determined by means of Remark 4.3.1 and are

given in Figure 15. We know that the normal vectors of the simplex Γ6
1 are linearly

independent and they all arise as vectors according to (4.1), up to a rescaling by a

rational number. Therefore, we can take e1, . . . , e7 as a Q-basis of the space V . Thus,

in this case, the underlying quadratic form is the form induced by the Gram matrix of

Γ6
1. In the case of the group Γ6

2, we find the following vectors:

e1, . . . , e8,
√

2 · e2, . . . ,
√

2 · e7,
√

6 · e8.

We see that the vectors v1 := e1, v2 :=
√

2 ·e2, . . . , v7 :=
√

2 ·e7 are linearly independent



86 Guglielmetti, Jacquemet, Kellerhals

over Q. Hence, the matrix of the quadratic form is given by

(〈vi, vj〉) =



1 0−1 0 0 0 0

0 2−1 0 0 0 0

−1−1 2−1 0 0 0

0 0−1 2−1 0 0

0 0 0−1 2−1 0

0 0 0 0−1 2−1

0 0 0 0 0−1 2


.

Finally, we determine the diagonal forms of these two quadratic forms (this can be done

using a software such as Sage):

f6
1 = 〈1, 3, 6, 10, 15, 21,−21〉,
f6

2 = 〈1, 1, 2, 2, 2, 6,−1〉.

e1 = (1, 0, 0, 0, 0, 0, 0)

e2 =
(
−

1

2
,

1

6

(
6−
√

6
)
,

1

8

(
− 5 + 3

√
6
)
,

1

24

(
− 15
√

2 + 22
√

3
)
,

1

24

(
− 9 + 11

√
6
)
,

1

2
,

1

12

(
15− 11

√
6
))

e3 = (0,−1, 2, 2
√

2, 2, 0,−4)

e4 =
(

0, 0,−
11

8
,−

3

4
√

2
,−

5

8
, 0,

5

4

)
e5 = (0, 0, 0,−

√
2, 0, 0, 1)

e6 =
(

0, 0, 0, 0,−1,
1

2
,

1

2

)
e7 = (0, 0, 0, 0, 0,−1, 0)

(a) Normal vectors of P (Γ6
1)

e1 = (1, 0, 0, 0, 0, 0, 0)

e2 =
(

0,−
1
√

2
,

1
√

2
, 0, 0, 0, 0

)
e3 =

(
−

1
√

2
,

1
√

2
, 0, 0, 0, 0, 0

)
e4 =

(
0,−

1
√

2
,−

1
√

2
,−
√

3

2
,−

1

2
, 0,−1

)
e5 =

(
0, 0, 0,

√
3

2
,−

1

2
, 0, 0

)
e6 =

(
0, 0, 0, 0, 1,

1

2
,

1

2

)
e7 = (0, 0, 0, 0, 0,−1, 0)

e8 =
(

0, 0, 0,−
1

2
,−
√

3

2
,

√
3

2
,−
√

3

2

)
(b) Normal vectors of P (Γ6

2)

Figure 15: Outward-pointing normal vectors for the examples P (Γ6
1) and P (Γ6

2) in

dimension 6

4.3.2. Constructing the invariants Before we give Maclachlan’s result (cf. Theo-

rem 4.20), we briefly explain where the invariants come from. The reader only interested

in computations can skip this section. Since the commensurability classes of arithmetic

groups are determined by similarity classes of quadratic forms, we define, for a totally
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real number field K, the following map:

Θ : SimQF(K,n+ 1) −→ IsomAlg(K, 2n)[
(V, f)

]
7−→ Cl0(V, f),

where SimQF(K,n + 1) is the set of similarity classes of quadratic spaces over K of

dimension n+ 1, and IsomAlg(K, 2n) is the set of isomorphism classes of algebras over

K of dimension 2n. If we restrict the map Θ to the quadratic forms f of signature (n, 1)

whose conjugates fσ under non-trivial Galois embeddings σ : K −→ R are positive

definite, then we get an injective map (see [36, Theorems 6.1 and 6.2]). Hence, we have

to be able to decide whether the even parts of the Clifford algebras (see Section 4.2.4)

associated to the underlying quadratic forms are isomorphic as algebras. Luckily for

us, in this setting, there is an efficient way to decide that using the Witt and the Hasse

invariants.

Definition 4.17. Let (V, f) be a quadratic space over a field K. The Witt

invariant of (V, f), denoted by c(V, f), or only c(f), is the element of BrK defined as

follows:

c(V, f) :=


[

Cl0(V, f)
]

if dimV is odd,[
Cl(V, f)

]
if dimV is even.

Definition 4.18. The Hasse invariant of a diagonal quadratic form 〈a1, . . . , an〉
over K is the element of the Brauer group defined as follows:⊗

i<j

(ai, aj)K .

It can be shown (see [35, Chapter V, Proposition 3.18]) that two isomorphic quadratic

forms have the same Hasse invariant. Therefore, we can define the Hasse invariant of

quadratic space (V, f) to be the Hasse invariant of any diagonalisation of f . It will be

denoted by s(V, f) or just s(f).

Proposition 4.19 ([35, Proposition 3.20]). For a given quadratic space (V, f),

the Hasse invariant and the Witt invariant are related as follows:

c(f) =


s(f) dimV ≡ 1, 2 (mod 8)

s(f) · (−1,−det f) dimV ≡ 3, 4 (mod 8)

s(f) · (−1,−1) dimV ≡ 5, 6 (mod 8)

s(f) · (−1,det f) dimV ≡ 7, 8 (mod 8)

Remark. If K is a number field, then Proposition 4.9 implies that we can choose a

representative of s(f) and of c(f), respectively, which is a quaternion algebra. However,

in some cases, finding such a quaternion algebra may be difficult.
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The even case We suppose that n is even. Let Γ be an arithmetic group defined

over a totally real number field K with underlying quadratic form f . Consider the Witt

invariant c(f) and a quaternion algebra B which represents c(f). Then, we have

Θ(f) = Cl0(f) ∼= Mat
(
2(n−2)/2;B

)
,

where the last isomorphism comes from [36, Theorem 7.1]. Hence, Θ(f) is a central

simple algebra over K whose class in the Brauer group is B (and thus it is completely

determined by B). In particular, we get the following theorem due to C. Maclachlan.

Theorem 4.20 ([36, Theorem 7.2]). When the dimension n is even, the com-

mensurability class of an arithmetic group of the simplest type is completely determined

by the isomorphism class of a quaternion algebra which represents the Witt invariant of

its underlying quadratic form.

The odd case When n is odd, the situation is more complicated. We consider, as

before, Γ, f , c(f) and B. We also consider the signed determinant δ = (−1)n(n+1)/2 ·
det f of f . Since f is admissible (i.e. all its conjugates by non-trivial Galois embeddings

are positive definite), det f = δ·(−1)n(n+1)/2 is negative but all its non-trivial conjugates

are positive. We distinguish now two cases:

• δ is a square in K∗ :

Then, δ cannot have any non-trivial conjugates which implies K = Q. Moreover,

we must have n ≡ 1 (mod 4). We finally have Cl0(f) ∼= Mat
(
2(n−3)/2;B

)
×

Mat
(
2(n−3)/2;B

)
.

• δ is not a square in K∗ :

In this case, we have Cl0(f) ∼= Mat
(
2(n−3)/2;B ⊗K K(

√
δ)
)
.

About the ramification at infinite places As we saw above, commensurability

classes are in fact determined by the ramification set of certain quaternion algebras

(either the Witt invariant or the Witt invariant over a quadratic extension of the base

field). However, the ramification at infinite places is completely independant of the Witt

invariant. Indeed, using admissibility of the quadratic form, Proposition 4.19 and the

fact that σ(det f) > 0 for every σ : K −→ R with σ 6= id, we find

Ram∞ c(f) =


∅ dimV ≡ 1, 2 (mod 8)

Ω∞(K) \ {id} dimV ≡ 3, 4 (mod 8)

Ω∞(K) dimV ≡ 5, 6 (mod 8)

{id} dimV ≡ 7, 8 (mod 8)
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4.3.3. Computing the invariants In this section, we exlain how to compute the

invariants which completely determine the commensurability class of an arithmetic hy-

perbolic Coxeter group.

Let Γ ⊂ IsomHn be an arithmetic Coxeter group defined over the totally real

number field K. Let f be the underlying quadratic form (see Section 4.3.1) and δ =

(−1)n(n+1)/2 · det f be the signed determinant of f . From a diagonalised form of f

compute the Hasse invariant s(f) of f (see Definition 4.18) and the Witt invariant c(f)

(see Proposition 4.19). Finally, choose a representative B of c(f) which is a quaternion

algebra (see Remarks 4.21 below). Then, a complete invariant for the commensurability

class of Γ is given in Figure 16.

n complete invariant

even
{
K,Ramf B

}
odd

δ not a square in K∗:
{
K, δ,Ramf

(
B ⊗K K(

√
δ)
)}

δ is a square in K∗:
{
Q,Ramf

(
B
)}

Figure 16: Complete invariant for an arithmetic group Γ ⊂ IsomHn

Remarks 4.21.

• Sometimes, it can be tricky to find a representative of c(f) which is a quaternion

algebra. However, this step is not really important as we are only interested in the

ramification of c(f) (see Proposition 4.13).

• When n is odd and when δ is not a square in K∗, one can use Proposition 4.14 to

compute the ramification of B ⊗K K(
√
δ) (as a quaternion algebra over K(

√
δ)).

4.3.4. Finishing the examples in dimension 6

We come back to our two examples in dimension 6 defined over the Q and with

quadratic forms (see Figure 14)

f6
1 = 〈1, 3, 6, 10, 15, 21,−21〉,
f6

2 = 〈1, 1, 2, 2, 2, 6,−1〉.

We first compute the Hasse invariant of the two quadratic forms. Recall that for a

quadratic form f = 〈a1, . . . , am〉, we have s(f) =
⊗

i<j(ai, aj) ∈ BrK. Using the
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properties of Proposition 4.8, we compute:

s(f6
1 ) = (3, 6) · (3, 10) · (3, 15) ·

(3,−1)︷ ︸︸ ︷
(3, 21) · (3,−21)

· (6, 10) · (6, 15) · (6,−1)

· (10, 15) · (10,−1)

· (15,−1)

= (5,−1).

Similarly, we find s(f6
2 ) = 1. By Proposition 4.19, we get c(f6

1 ) = (5,−1) · (−1,−3) =

(−1,−15) and c(f6
2 ) = 1 · (−1,−3). We find with Proposition 4.15 the followings

ramifications sets:

Ram(−1,−3) = {3,∞}, Ram(−1, 5) = ∅.

Finally, Proposition 4.13 yields Ram c(f6
1 ) = {3,∞} = Ram c(f6

2 ), which implies that

the groups Γ6
1 and Γ6

2 are commensurable.

4.3.5. Worked example (compact case) We study the commensurability of three

particular cocompact arithmetic subgroups Γ4
i , i = 1, 2, 3, of IsomH4. These groups

correspond to maximal subgroups generated by reflections in the groups of units of

three (reflexive) quadratic forms with base field K = Q[
√

5]. They were found using

Vinberg’s algorithm (see [58]). For simplicity, we write Θ = 1+
√

5
2 for the generator of

the ring of integers of OK = Z[Θ]. The first group Γ4
1 is the simplex group [5, 3, 3, 4]

and is associated to the quadratic form f1 = 〈−Θ, 1, 1, 1, 1〉 (see [8]). The two groups

Γ4
2, Γ4

3 are new and associated to the quadratic forms f2 = 〈−Θ, 1, 1, 1, 2 + Θ〉 and

f3 = 〈−Θ, 1, 1, 2 + Θ, 2 + Θ〉 respectively. The Coxeter graphs of the groups Γ4
1 and Γ4

2

are presented in Figure 17.

Figure 17: Γ4
1,Γ

4
2 ⊂ IsomH4

The Coxeter graph of the third group Γ4
3 is more complicated: it has 16 vertices

and 72 edges. In Figure 18 we depict the non-dotted edges of the graph while the dotted

edges can be computed using the normal vectors given in Figure 19 (see Remark 4.3.1).

The invariants of the three groups are presented in Figure 20.
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Figure 18: Γ4
3 ⊂ IsomH4

e1 = (0,−1, 1, 0, 0), e4 = (0, 0, 0, 0,−1),

e2 = (0, 0,−1, 0, 0), e5 = (−1 + 1 ·Θ, 1 ·Θ, 0, 0, 0),

e3 = (0, 0, 0,−1, 1), e6 = (1, 0, 0, 1, 0),

e7 = (1 + 3 ·Θ, 2 + 1 ·Θ, 0, 1 + 1 ·Θ, 1 + 1 ·Θ),

e8 = (2 + 3 ·Θ, 1 + 2 ·Θ, 2 ·Θ, 1 + 1 ·Θ, 1 + 1 ·Θ),

e9 = (4 + 7 ·Θ, 3 + 4 ·Θ, 3 + 4 ·Θ, 2 + 3 ·Θ, 2 ·Θ),

e10 = (2 + 5 ·Θ, 1 + 2 ·Θ, 1 + 2 ·Θ, 1 + 2 ·Θ, 1 + 2 ·Θ),

e11 = (9 + 12 ·Θ, 4 + 7 ·Θ, 4 + 7 ·Θ, 3 + 6 ·Θ, 2 + 4 ·Θ),

e12 = (10 + 15 ·Θ, 4 + 7 ·Θ, 4 + 7 ·Θ, 4 + 7 ·Θ, 3 + 6 ·Θ),

e13 = (11 + 18 ·Θ, 7 + 11 ·Θ, 7 + 11 ·Θ, 4 + 7 ·Θ, 4 + 5 ·Θ),

e14 = (7 + 10 ·Θ, 4 + 6 ·Θ, 4 + 6 ·Θ, 3 + 4 ·Θ, 2 + 3 ·Θ),

e15 = (7 + 11 ·Θ, 4 + 7 ·Θ, 4 + 5 ·Θ, 3 + 5 ·Θ, 2 + 3 ·Θ),

e16 = (15 + 25 ·Θ, 10 + 15 ·Θ, 7 + 11 ·Θ, 7 + 11 ·Θ, 5 + 7 ·Θ).

Figure 19: Normal vectors for P (Γ4
3)

Since the dimension of the space is even, the commensurability class is completely

determined by the ramification set of the Witt invariant c(fi), i = 1, 2, 3, as indicated

in Theorem 4.20. Direct computations (see Figure 20) show that the Witt invariants

are given by

c(f1) = (−1,−1), c(f2) = (−Θ, 2 + Θ) · (−1,−1), c(f3) = (−1,−2−Θ).

Therefore, in order to decide about the commensurability of the groups, we have to

compute the finite ramification of the quaternion algebras (−1,−1)K , (−Θ, 2+Θ)K and

(−1, 2 + Θ)K . By Proposition 4.14, we get Ramf (−1,−1) = ∅. Since NK/Q(−Θ) = −1,

the element −Θ is invertible, and NK/Q(2 + Θ) = 5 implies that 2 + Θ is a prime

element of OK lying over 5. For a quaternion algebra (a, b)K , a necessary condition for

a prime ideal P ⊂ OK to belong to the ramification set is that P | 〈2ab〉 = (2ab)OK .

In our case, since 2 remains prime in OK , the only candidates are 2 and
√

5. Moreover,

since the ramification set has even cardinality and since |Ram∞Bi| = 2, then either

Ramf Bi = ∅ or Ramf Bi = {2,
√

5}. To compute the ramification, we will use the

following theorem.
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Theorem 4.22 ([5, Theorem 16]). Let K be a number field. Let P be a prime

ideal of OK and let a, b ∈ OK such that the valuations satisfy ηP(a), ηP(b) ∈ {0, 1}.
Define the integer m as follows:

• if P | 〈2〉, m = 2ηP(2) + 3;

• if P - 〈2〉, then m = 1 if ηP(a) = ηP(b) = 0 and m = 3 otherwise.

Furthermore, let S be a finite set of representatives for the ring OK/Pm.

Then, P /∈ Ramf (a, b)K , i.e. (a, b) splits at P, if and only if there exists a triple

(X,Y, Z) ∈ S3 such that the two following conditions are satisfied:

• aX2 + bY 2 − Z2 = 0 or m ≤ ηP(aX2 + bY 2 − Z2);

• ηP(X) = 0 or ηP(Y ) = 0 or ηP(Z) = 0.

Remark. Since (ac2, b) ∼= (a, b), the condition ηP(a), ηP(b) ∈ {0, 1} is not a

restriction.

We start with the group Γ4
2. We take P = 〈

√
5〉 and a = −Θ, b = 2 + Θ, which

gives ηP(a) = 0 and ηP(b) = 1 and thus m = 3. The quotient OK/P3 has 125 elements

which can be described has follows (see [11, Theorem 1]):

OK/P3 =
{

(x+ y
√

5)P3 | 0 ≤ x < 25, 0 ≤ y < 5
}
.

Using a computer program, we can check using Theorem 4.22 that
√

5 belongs to

Ramf (−Θ, 2 + Θ) and thus
√

5 ∈ Ramf B2. Therefore, we have Ramf B2 = {2,
√

5}.
On the other hand, since the equation (2 + Θ)X2 − Y 2 − Z2 = 0 is satisfied with

X = Y = −1 + Θ and Z = 1 (and thus ηP(X) = ηP(Y ) = ηP(Z) = 0), then√
5 6∈ Ramf (−1, 2 + Θ) which implies that Ramf B3 = ∅. Hence, the simplex group Γ4

1

is commensurable to the group Γ4
3 but not to Γ4

2.

Example 4.23. In [24], the Coxeter pyramid groups of Tumarkin (including all,

arithmetic and non-arithmetic groups) have been classified up to commensurability. In

Appendix Appendix D, we provide the list with the commensurability classes in the

arithmetic case.

§ 4.4. Case n = 3 (arithmetic and non-arithmetic)

When n = 3, we have two interesting features:

• the computation of the invariants is easier;

• some of the results are true even when the group is not arithmetic.
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invariant Γ4
1 Γ4

2 Γ4
3

fi 〈−Θ, 1, 1, 1, 1〉 〈−Θ, 1, 1, 1, 2 + Θ〉 〈−Θ, 1, 1, 2 + Θ, 2 + Θ〉
f − vector (5, 10, 10, 5, 1) (14, 28, 22, 8, 1) (48, 96, 64, 16, 1)

covolume 17π2

21,600
π2

60
221π2

900

s(fi) 1 (−Θ, 2 + Θ) (−1, 2 + Θ)

c(fi) (−1,−1) (−Θ, 2 + Θ) · (−1,−1) (−1, 2 + Θ) · (−1,−1)

Ramf Bi ∅ {2,
√

5} ∅

Figure 20: Invariants of the three cocompact groups Γ4
i ⊂ IsomH4

A standard reference for the three-dimensional case is [38]. Let Γ ⊂ IsomH3 be a cofinite

Coxeter group of rank N . As above, we denote by G(Γ) = (ai,j) the Gram matrix of Γ

and by ei the normal vectors of the bounding hyperplanes of the fundamental polyhedron

P (Γ) of Γ. We let K be the field generated by the cycles in G(Γ):

K = Q
(
ai1,i2 · . . . · aik−1,ik · aik,i1 | ij ∈ {1, . . . , N}

)
.

We also consider the K-vector space M(Γ) spanned by the vectors

a1,i1 · ai1,i2 · . . . · aik−1,ik · eik .

The space M(Γ), endowed with the restriction of the Lorentzian form, is a quadratic

space of signature (3, 1). Let δ be the signed determinant of this quadratic space. Now,

the invariant trace field kΓ+ = Q(Tr(Γ+(2)
)) of the rotation subgroup Γ+ of Γ, which

is a commensurability invariant by [38, Theorem 3.3.4], can be characterised as follows

(cf. Section 3.1).

Theorem 4.24 ([38, Theorem 10.4.1]). kΓ+ = K(
√
δ).

Let 〈−a1, a2, a3, a4〉, ai > 0, be a diagonal form of the quadratic form corresponding

to M(Γ).

Definition 4.25. The quaternion algebra (−a1 ·a2,−a1 ·a3)kΓ+ over the invari-

ant trace field kΓ+ is called the invariant quaternion algebra of Γ. It is denoted by

AΓ+.

Theorem 4.26 ([37, Theorems 2.1 and 3.1]). The invariant quaternion algebra

AΓ of Γ is a commensurability invariant.
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Remark. Let Γ+ ⊂ PSL(2,C) be the rotational subgroup of a Coxeter group Γ

acting on H3 such that the quotient H3/Γ is not compact but of finite volume. Then

the invariant quaternion algebra AΓ+ equals Mat(2, kΓ+) = 1Br(kΓ+) (see [38, Theorem

3.3.8]).

Remark. If Γ is arithmetic, then the invariant trace field and the invariant quater-

nion algebra correspond to what we get using the Witt invariant and thus form a com-

plete set of invariants. Indeed, since we are only interested in the similarity class of the

quadratic form, we can suppose that it can be written as 〈1, b̃, c̃,−d̃〉, with b̃, c̃, d̃ > 0.

We then let δ = −bcd be the determinant of the form which gives

〈1, b̃, c̃,−d̃〉 ∼= 〈1,−δc̃d̃,−δb̃d̃, δb̃c̃〉 = 〈1,−δc,−δd, δcd〉,

with c := c̃d̃, d := b̃d̃. Then, a direct computation shows that the Witt invariant of this

last quadratic form is (c, d) = (c̃d̃, b̃d̃).

Example 4.27. Consider the ideal Coxeter cube W ⊂ H3 providing the Coxeter

group ΓW of rank N = 6 with graph Σ given by Figure 9. The distances l1, l2, l3 of

opposite facets are given by (2.10). Observe that the group ΓW is not arithmetic in view

of Vinberg’s criterion reproduced in Proposition 4.5. The Gram matrix G = G(W ) is

given by

G =



1 −
√

3/2 0 −1/2 −
√

3/2 −5/2

−
√

3/2 1 −1/2 0 −5/2 −
√

3/2

0 −1/2 1 −2
√

3/3 −1/2 0

−1/2 0 −2
√

3/3 1 0 −1/2

−
√

3/2 −5/2 −1/2 0 1 −
√

3/2

−5/2 −
√

3/2 0 −1/2 −
√

3/2 1


.

In particular, the field K generated by the irreducible cycles of G is Q. Moreover,

one can see that the rows e1, ..., e6 of the matrix

A =



1 0 0 0

−
√

3/2 1/2 0 0

0 −1 −
√

3/3
√

3/3

−1/2 −
√

3/2 7/4 7/4

−
√

3/2 −13/2 5
√

3/2 9
√

3/2

−5/2 −7
√

3/2 13/4 29/4


are normal vectors for the facets of W . It follows that the vectors described in (4.1) are

equal to

v1 = e1, v2 =
√

3 e2, v3 =
√

3 e3, v4 = e4, v5 =
√

3 e5, v6 = e6.
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One can check that {v1, ..., v4} is a basis of R4, giving rise to the diagonal form q =

〈1, 3, 7,−7〉 of signed determinant δ = −3 (recall that δ is defined up to an integer

square).

We conclude that the invariant trace field kΓ+
W of the rotation subgroup Γ+

W is given

by kΓ+
W = Q(

√
3i).

Example 4.28. There are 32 non-isometric hyperbolic Coxeter tetrahedra giv-

ing rise to arithmetic and non-arithmetic, cocompact and non-cocompact hyperbolic

reflection groups of finite covolume in IsomH3. Their commensurability classification

can be found in [38, Section 13] and [30].

Example 4.29. In [24], the Coxeter pyramid groups of Tumarkin have been

classified up to commensurability.

Among the non-arithmetic examples in IsomH3 is the pyramid group ΓT with graph

given by Figure 21 (see Section 2.3). As in Example 4.27 one determines the invariant

b b be b
bQQ

�� ∞
∞

6

Figure 21: The non-arithmetic Coxeter pyramid group ΓT

trace field of kΓ+
T and finds that kΓ+

T = Q(
√

3i).

In Appendix Appendix D, we provide the list with the commensurability classes in the

non-arithmetic case.

We shall see below that the groups ΓC and ΓT having identical invariant trace field

(and invariant quaternion algebra) are not commensurable.

§ 5. Some other aspects

Consider cofinite hyperbolic Coxeter groups in PO(n, 1) for n ≥ 3. There are

methods to decide about commensurability in certain cases, and this independently of

arithmetic considerations. In the sequel, we shall present some of these aspects.

§ 5.1. Comparison of trace fields related to Coxeter elements

A natural conjugacy invariant is the ordinary trace field Tr(G) of G in IsomHn

which is defined to be the field generated by all the traces of matrices in G ⊂ PO(n, 1).

For a hyperbolic Coxeter group Γ with generators s1, . . . , sN and a Coxeter element

c = s1·. . .·sN , one observes that each finite index subgroup of Γ must contain ck for some

positive integer k. Following ideas and methods in [30, p. 132], where all hyperbolic
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Coxeter simplex groups (of rank N = n + 1) are classified up to commensurability,

incommensurability for this family of Coxeter groups can be tested as follows. Let

∆1,∆2 ⊂ IsomHn be Coxeter simplex groups with Coxeter elements c1 and c2, and let

T ki = Q(tr(cki )) ⊂ Tr(∆i), i = 1, 2, be the fields generated by the traces of the k-th

powers of c1 and c2, k ∈ N. If

(5.1) T k1 * Tr(∆2) for all k ∈ N or T l2 * Tr(∆1) for all l ∈ N,

then ∆1 and ∆2 are not commensurable. This property can be extended to Coxeter

pyramid groups in the following way.

Let Γ1,Γ2 ⊂ IsomHn be two Coxeter pyramid groups (of rank n+ 2). Up to finite

index, each of them can be identified with a group generated by reflections in a polarly

truncated Coxeter simplex (see [27, Section 4.1]). Let P1 =
⋂n+2
i=1 H

−
i be a fundamental

polyhedron for Γ1, and let S1 = {s1, ..., sn+2} be the set of generators of Γ1 such that

each si is a reflection in the hyperplane Hi ⊂ Hn with unit normal vector ui pointing

outward from P1, say. Associated to Γ1 is a Coxeter total simplex group Γ̂1 (for the

definition of a total simplex, see [27, Definition 4.2]; an illustrative example is given

by the group Γ2,m according to Figure 4 with total simplex Γ̂m according to Figure 5

for m = 3, 4). Without loss of generality, we can suppose that Γ̂1 is generated by the

reflections s1, ..., sn+1, so that the vectors u1, ..., un+1 are linearly independent. Let Ĝ1

and G1 be the respective Gram matrices of Γ̂1 and Γ1. By construction, the matrix Ĝ1

is the top-left principal submatrix of size n + 1 in G1. Now, for i = 1, ..., n + 1, the

matrix of si with respect to the canonical basis of Rn+1 is R1,i := I − 2A1,i, where A1,i

is obtained by replacing the i-th line of the zero matrix of size n + 1 by the i-th line

of Ĝ1. Moreover, the vector un+2 normal to the truncating polar hyperplane Hn+2 is

given by

(5.2) un+2 =

∑n+1
j=1 cofj,n+1(Ĝ1)uj√

det(Ĝ1) cofn+1,n+1(Ĝ1)

(see [27, (4.7)]). Here, cofi,j(M) = (−1)i+jdetMij is the (i, j)-th cofactor arising from

deleting the i-th line and the j-th column from the square matrix M . Notice that un+2

can be interpreted as an ultra-ideal vertex with Lorentz norm 1, say vn+1, of the total

simplex associated to Γ̂1 as described in [27, Section 4.1.2]. It follows that the matrix

of sn+2 with respect to the canonical basis of Rn+1 equals R1,n+2 := I − 2B1, where B1

is given by [B1]i,j = 0 if j 6= n+ 1 and [B1]i,n+1 =
cofi,n+1(Ĝ1)

cofn+1,n+1(Ĝ1)
, 1 ≤ i ≤ n+ 1.

Let U := (u1, ..., un+1) ∈ GL(n + 1,R) be the matrix whose i-th column is ui, i =

1, ..., n + 1. Then, UR1,iU
−1 ∈ O(n, 1) for 1 ≤ i ≤ n + 2. The group generated by

R1,1, ..., R1,n+2 is a matrix representation of Γ1 in GL(n + 1, Q(Γ̂1)), with Coxeter

element C1 := Πn+2
i=1 R1,i.



Commensurability of hyperbolic Coxeter groups: theory and computation 97

Similarly, one obtains a matrix representation of Γ2 in GL(n+ 1,Q(Γ̂2)) with Coxeter

element C2 = Πn+2
i=1 R2,i.

Now, as in the simplex case, if the corresponding condition (5.1) is satisfied, the groups

Γ1 and Γ2 are incommensurable (as subgroups of GL(n+ 1,R)).

Example 5.1. Consider the hyperbolic Coxeter pyramid groups Γ1, Γ2 and Γ3

given by Figure 22.

a a ad aa��
HH
4

Γ1 : ∞ ∞ a a ad aa��
HH
4

4Γ2 : ∞ ∞ a a ad aa��
HH
4

6

Γ3 : ∞ ∞

Figure 22: Three non-arithmetic Coxeter pyramid groups acting on H3

By removing the first node on the left of Γi, one obtains the Coxeter graph of the

Coxeter total simplex group Γ̂i associated to Γi. Let Gi, i = 1, 2, 3, be the Gram matrix

of Γi, and Ĝi be the Gram matrix of Γ̂i. For i = 1, 2, 3 and j = 1, ..., 5, we compute

the matrix representations Ri,j as above. In particular, the product Ci := Π5
j=1Ri,j ∈

GL(4,Q(Ĝi)) is a matrix representation for a Coxeter element of Γi. The characteristic

polynomial χi = χ(Ci) is of the form

χi(t) = (t− 1)(t+ 1)(t2 − 2αit+ 1),

where the coefficients αi are given by the following table.

i 1 2 3

αi 3 +
√

2 7/2 +
√

2 4 +
√

6

Then, the eigenvalues λi,k, k = 1, ..., 4, of Ci are given by

λi,1 = 1, λi,2 = −1, λi,3 = αi +
√
α2
i − 1, λi,4 = αi −

√
α2
i − 1.

Hence, the trace tr(Cki ), for k ≥ 0, is given by

4∑
l=1

λki,l = 1 + (−1)k +
k∑

m=0

(
k

m

)
(1 + (−1)m)αk−mi

(√
α2
i − 1

)m

= 1 + (−1)k + 2
k∑

m=0
m even

(
k

m

)
αk−mi

(√
α2
i − 1

)m

= 1 + (−1)k + 2

k∑
m=0
m even

(
k

m

)
αk−mi

(
α2
i − 1

)m/2
.
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Since α2
i − 1 > 0 for i = 1, 2, 3, each term of the sum consists of a product of

(powers of) algebraic numbers of positive rational part and positive coefficients on
√

2

and
√

6, respectively, so that we obtain the following fields for the groups Γ1, Γ2 and

Γ3 :

T k1 = Q(
√

2), T k2 = Q(
√

2), T k3 = Q(
√

6), for all k ∈ N.

For i = 1, 2, 3, let Q(Gi) be the field generated by the coefficients of the Gram matrix

Gi. Observe that Tr(Γ1),Tr(Γ2) ⊂ Q(Ĝ1) = Q(Ĝ2) = Q(
√

2) and that Tr(Γ3) ⊂
Q(Ĝ3) = Q(

√
2,
√

3). Then, by (5.1), the group Γ3 is incommensurable to Γ1 and to Γ2.

Moreover, commensurability between Γ1 and Γ2 cannot be decided by this approach.

In Section 5.4, we shall see that the groups Γ1 and Γ2 are incommensurable as well.

Example 5.2. Consider the non-cocompact Coxeter pyramid groups Γ4 and Γ5

in IsomH4 given by the graphs according to Figure 23.

da a a a a a6 5 ∞Γ4 : daaaa aa��
QQ

64 ∞Γ5 :

Figure 23: Two Coxeter pyramid groups acting on H4

By removing the first nodes on the left of Γ4 and Γ5, we obtain graphs of rank 5

Coxeter groups Γ̂4 and Γ̂5, respectively. In particular, one has Tr(Γ4) ⊂ Q(Ĝ5) = Q(
√

5)

and Tr(Γ5) ⊂ Q(Ĝ5) = Q(
√

2). Let C4 and C5 be the respective matrix representations

of Coxeter elements of Γ4 and Γ5, obtained as described above. For example, one can

take

C4 =


3 1 +

√
5 0 0 1/2

(
3 + 5

√
5
)

2 1/2
(
1 +
√

5
)

0 0 1/2
(
1 + 3

√
5
)

0 1/2
(
1 +
√

5
)

0 0 2

0 0 1 0 1

0 0 0 1 0


and

C5 =


5 + 2

√
2
√

2 0 0 3 + 3
√

2

2 +
√

2 0 0 0 1 +
√

2√
2 1 0 0 2

0 0 1 0 1

0 0 0 1 0

 .

Then, the characteristic polynomials χ(C4) and χ(C5) are given by

χ(C4)(t) = 1
2 (t− 1)

(
2t4 − (5 +

√
5)t3 − (8 + 2

√
5)t2 − (5 +

√
5)t+ 2

)
,

χ(C5)(t) = (t− 1)
(
t4 − (4 + 2

√
2)t3 − (7 + 4

√
2)t2 − (4 + 2

√
2)t+ 1

)
.
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Their eigenvalues λi,j , i = 4, 5, j = 1, ..., 5, are given by

λi,1 = 1 , λi,2 =
1

4
(αi + βi +

√
γi + δi) , λi,3 =

1

4
(αi + βi −

√
γi + δi) ,

λi,4 =
1

4
(αi − βi +

√
γi − δi) , λi,5 =

1

4
(αi − βi −

√
γi − δi) ,

with

α4 =
5 +
√

5

2
, β4 =

1

2

√
126 + 26

√
5 ,

γ4 = 23 + 9
√

5 , δ4 =
2
√

2(95 + 32
√

5)√
63 + 13

√
5

,

and

α5 = 2 (2 +
√

2) , β5 = 2

√
15 + 8

√
2 ,

γ5 = 2 (17 + 12
√

2) , δ5 = 4
46 + 31

√
2√

15 + 8
√

2
.

Then, a procedure similar to the one already used above shows that for i = 4, 5 and

k ∈ N, one has

tr(Cki ) = 42−k
k∑
j=0
j even

k−j∑
l=0

j/2∑
m=0

m+l even

(
k

j

)(
k − j
l

)(
j/2

m

)
αk−j−li βli γ

j/2−m
i δmi .

Since for each term of the sum the integer m + l has to be even, the integer l −m is

even as well, and one observes that

βl4 δ
m
5 = 2

m+l
2 (63 + 13

√
5)

l−m
2 (95 + 32

√
5)m

and that

βl5 δ
m
6 = 2l+2m(15 + 8

√
2)

l−m
2 (46 + 31

√
2)m .

Hence, for i = 4, 5, each term of the sum is an algebraic number with positive rational

part and positive coefficient on
√

5 and
√

2, respectively, so that one obtains the following

fields :

T k4 = Q(
√

5), T k5 = Q(
√

2) for all k ∈ N .

As a consequence of condition (5.1), the groups Γ4 and Γ5 are incommensurable.

In a similar way, the trace fields associated to Coxeter elements can be determined

for all Coxeter pyramid groups in IsomHn (see [27, Section 5.2]). In Table 1, the

fields Ti of all non-arithmetic Coxeter pyramid groups Γi ⊂ IsomH4, i = 1, . . . , 5, are

recapitulated.
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i Coxeter symbol Ti

1 [4, 4, 3, (3,∞, 4)] Q(
√

2)

2 [6, 3, 3, (3,∞, 4)] Q(
√

2)

3 [6, 3, 3, 5,∞] Q(
√

5)

4 [6, 3, 3, (3,∞, 5)] Q(
√

5)

5 [6, 3, 3, (4,∞, 5)] Q(
√

2,
√

5)

Table 1: The non-arithmetic Coxeter pyramid groups Γi ⊂ IsomH4 and their fields Ti

The methods described and exploited above for hyperbolic Coxeter pyramid groups,

being simply and polarly truncated Coxeter simplex groups, can be generalised to arbi-

trary Coxeter groups of rank N ≥ n+ 2 in IsomHn as follows.

Theorem 5.3. Let i = 1, 2, and let Γi ⊂ IsomHn be a hyperbolic Coxeter group

with natural generating reflection system Si = {s1, . . . , sNi} of rank Ni ≥ n + 1 and

Coxeter element ci = s1 · . . . ·sNi . Let T ki = Q(tr(cki )) be the field generated by the traces

of the k-th powers of ci, k ∈ N. If

T k1 * Tr(Γ2) for all k ∈ N or T l2 * Tr(Γ1) for all l ∈ N,

then the groups Γ1,Γ2 are incommensurable (as subgroups of GL(n+ 1;R)).

Proof. Consider a fundamental Coxeter polyhedron P =
⋂N
i=1H

−
i ⊂ Hn of Γ ∈

{Γ1,Γ2}. It suffices to consider the case N ≥ n+ 2. Suppose that the set of generators

= {s1, . . . , sN} of Γ is such that si is the reflection with respect to the hyperplane Hi

with normal unit vector ui pointing outwards from P , and let G be the Gram matrix of

P . Without loss of generality, we can assume that the vectors u1, ..., un+1 are linearly

independent providing a basis of Rn+1. Let Ĝ be their associated Gram matrix. Then,

Ĝ is the top-left principal submatrix of size n+ 1 of G.

Recall that for i = 1, ..., N , one has si(x) = x − 2〈x, ui〉ui for all x ∈ Hn. Hence,

for i = 1, ..., n + 1, the matrix of si with respect to the canonical basis of Rn+1 is

Ri := I − 2Ai, where Ai is obtained by replacing the i-th line of the zero matrix of size

n+ 1 by the i-th line of Ĝ.

Now, let j ∈ {n+ 2, ..., N}. Since u1, ..., un+1 form a basis of Rn+1, we can write uj =∑n+1
k=1 λ

(j)
k uk, with uniquely determined coefficients λ

(j)
k ∈ R. Hence, for i = 1, ..., n+ 1,
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we get

sj(ui) = ui − 2〈ui,
n+1∑
k=1

λ
(j)
k uk〉

n+1∑
l=1

λ
(j)
l ul = ui − 2

n+1∑
l=1

n+1∑
k=1

λ
(j)
k λ

(j)
l 〈ui, uk〉ul.

Observe that 〈ui, uk〉 = [Ĝ]i,j for all i, k ∈ {1, ..., n+ 1}.
Let Bj ∈ GL(n + 1,R) be the matrix given by [Bj ]l,i =

∑n+1
k=1 λ

(j)
k λ

(j)
l [Ĝ]i,k, 1 ≤ l, i ≤

n + 1. Then, the matrix of sj with respect to the canonical basis of Rn+1 equals

Rj := I − 2Bj , j = n+ 2, ..., N .

As in the case N = n + 2, let U = (u1, ..., un+1) ∈ GL(n + 1,R) be the matrix whose

i-th column is ui, i = 1, ..., n + 1. Then, URiU
−1 ∈ O(n, 1) for 1 ≤ i ≤ N . The group

generated by R1, ..., RN is a matrix representation of Γ in GL(n+1, Q(Γ̂)), with Coxeter

element C = ΠN
i=1Ri.

§ 5.2. Finite index subgroups

As mentionned in Section 3, commensurability is preserved by passing to finite index

subgroups. When searching for finite index subgroups of Γ ⊂ PO(n, 1), there are some

general criteria, for example those due to Maxwell [39, Proposition 3.1, Proposition 3.2].

In particular, consider a Coxeter pyramid group Γ with Euclidean Coxeter subgroups of

type F̃4 = [3, 4, 3, 3] and ∆ (see Figure 24 for the Coxeter graph Σ of Γ), Maxwell’s result

shows that the hyperbolic Coxeter pyramid group with Euclidean Coxeter subgroups

B̃4 = [4, 3, 31,1] (replacing F̃4) and ∆ is a subgroup of index 3 in Γ.

a a a a a ad a4
∆ a a aa a ad a4

∆>
3

Figure 24: The group Γ = [F̃4, 3, 3,∆] and its subgroup [B̃4, 3, 3,∆] of index 3

There are also some ad hoc results based on looking at additional hyperplanes

bisecting Coxeter polyhedra into smaller Coxeter polyhedra or at Coxeter groups related

to higher Bianchi groups. In this way, in dimension 3, a natural bisection shows that

the Coxeter pyramid groups [∞, 3, 3,∞] resp. [∞, 4, 4,∞] are subgroups of index 2 in

the Coxeter simplex groups [3, 4, 4] resp. [4, 4, 4], and the latter group is related to the

last but one by an index 3 subgroup relation arising by a tetrahedral trisection. In

Table 2 and in Table 3, we provide the subgroup relations of all arithmetic hyperbolic

Coxeter simplex groups in IsomH3. These groups fall into 2 commensurability classes,

one containing the group [3, 4, 4] of covolume L(π/4)/6 and one containing the group

[3, 3, 6] of covolume L(π/3)/8 (see (2.8)).
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[3,4,4]

[3,41,1]

[(32,42)]

[4,4,4]

[41,1,1]

[4[4]]

.......................................................................................................................................................................................

3

..................................................................

2

..................................................................

2

..................................................................

2

..................................................................

2

Table 2: Coxeter tetrahedral groups commensurable with [3, 4, 4]

[3,3,6]

[3,3[3]]

[4,3,6]

[4,3[3]] [6,31,1] [3,6,3] [6,3,6]

[(3,6)[2]] [6,3[3]][3[]×[ ]

[3[3,3]]

................................................................................................

5
................................................................................................

2
................................................................................................

2
..................................................................
4

........................................................................................................
6

............................................................................................................................................................................................................................

2

................................................................................................

2
................................................................................................

2
..................................................................

4

................................................................................................

5
..................................................................

3

................................................................................................

2

..................................................................

2

Table 3: Coxeter tetrahedral groups commensurable with [3, 3, 6]

As an example in dimension 4, by [31, p. 172], the Coxeter pyramid group

[∞, 3, 3, 4, 4] given by Figure 25 is a subgroup of index 3 in the Coxeter simplex group

[3, 4, 3, 4]; the latter group generates the symmetry group of the right-angled ideal reg-

ular 24-cell and is also related to the quaternionic modular group PSL(2,H).

b b be b b b∞ 4 4

Figure 25: The Coxeter pyramid group [∞, 3, 3, 4, 4] acting on H4

§ 5.3. Commensurability of amalgamated free products

Consider hyperbolic Coxeter groups Γ ⊂ IsomHn which are amalgamated free

products Γ̂1 ?Φ Γ̂2 such that Φ ⊂ IsomHn−1 is itself a cofinite Coxeter group whose

fundamental Coxeter polyhedron F is a common facet of the fundamental Coxeter

polyhedra P1 and P2 of Γ1 and Γ2 (see Section 2.2). Geometrically, a fundamental

polyhedron for Γ̂1 ?Φ Γ̂2 is the Coxeter polyhedron arising by glueing together P1 and

P2 along their common facet F . Among the Coxeter pyramid groups of Tumarkin, there
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are several examples of this form which can be characterised by Coxeter graphs as given

in Figure 26 (see also Figures 11 and 12). For Coxeter groups given as amalgamated

free products according to Figure 26, the following incommensurability result can be

derived.

b b b be b
b��

ZZ

p1 pn−1

q1

q2

∞. . .

Figure 26: The free product Γ = [p1, . . . , pn−1, (q1,∞, q2)] = Θ̂1 ?Φ Θ̂2 of Θ̂i =

[p1, . . . , pn−1, qi] amalgamated by Φ = [p1, . . . , pn−1]

Theorem 5.4 ([24, Proposition 1]). Let Γ be a hyperbolic Coxeter pyramid group

with n+ 2 generators such that Γ is the free product of the Coxeter orthoscheme groups

Θ̂1 = [p1, . . . , pn−1, q1] and Θ̂2 = [p1, . . . , pn−1, q2] amalgamated by their common Cox-

eter subgroup Φ = [p1, . . . , pn−1], where p1 = ∞ for n = 3. Suppose that Hn/Γ is

1-cusped. Then, the following holds.

(1) If q1 = q2 =: q and Θ := [p1, . . . , pn−1, q,∞], then Γ is a subgroup of index 2 in Θ.

(2) If q1 6= q2, then Γ is incommensurable to Θk := [p1, . . . , pn−1, qk,∞] for k = 1 and

k = 2.

Example 5.5. Using Theorem 5.4, we see that the two (non-arithmetic) Coxeter

pyramid groups Γ = [6, 3, 3, (3,∞, 5)] and Γ′ = [6, 3, 3, 5,∞] in Isom(H4), both with 1-

cusped orbit spaces, have identical trace field Q(
√

5) but are not commensurable.

As for the groups Γ1 = [4, 4, 3, (3,∞, 4)] and Γ2 = [6, 3, 3, (3,∞, 4)] in Isom(H4),

which are both non-arithmetic free products with amalgamation having trace field

Q(
√

2), Theorem 5.4 does not apply. In fact, the 4-orbifold H4/Γ1 has 2 cusps. In-

spired by the fact that the Euclidean lattices [4, 4] and [6, 3| are inequivalent, and in

view of the result of Karrass and Solitar (see Section 3.1), we proved the following result

by a geometric reasoning.

Lemma 5.6 ([24, Lemma 2]). The two non-arithmetic Coxeter pyramid groups

Γ1 = [4, 4, 3, (3,∞, 4)] with 2-cusped quotient and Γ2 = [6, 3, 3, (3,∞, 4)] with 1-cusped

quotient are incommensurable in IsomH4.

§ 5.4. Commensurator and incommensurable non-arithmetic groups

Consider the two non-arithmetic Coxeter groups ΓW and ΓT arising as reflection

groups associated to the ideal Coxeter cube W given by Figure 9 and the pyramid T
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given by Figure 12 in H3. Their rotation subgroups have identical invariant trace field

and invariant quaternion algebra, respectively. By having a look at the covolume ratio

based on the values (2.11) and (2.14), an accurate numerical check indicates that the

quotient

ω : =
covol3(ΓT )

covol3(ΓW )
=

5
4 L(π3 ) + 1

3 L(π4 )

10 L(π3 )
=

1

8
+

1

30

L(π4 )

L(π3 )

∼ 0.1701240538565287

(5.3)

is an irrational number implying the incommensurability of the groups ΓT and ΓW .

Let us prove rigorously that ω defined by (5.3) is irrational. We assume the contrary

and suppose that ΓT and ΓW are commensurable. Let C denote their commensurator

(see Section 3.1). Since ΓT and ΓW are non-arithmetic, by Margulis’ Theorem 3.1, the

group C is a discrete subgroup of IsomH3 containing both groups as subgroups of finite

indices. Furthermore, C is a non-cocompact but cofinite (non-arithmetic) group so that

its covolume is universally bounded from below by the minimal covolume L(π/3)/8 in

this class which is realised by the tetrahedral group [3, 3, 6] (see [42] and [34, Table 2]).

This allows us to rewrite (5.3) according to

(5.4) ω =
covol3(ΓT )

covol3(ΓW )
=

covol3(ΓT )/covol3(C)

covol3(ΓW )/covol3(C)
=

[C : ΓT ]

[C : ΓW ]
.

Now, since covol3(ΓW ) = 10 L(π/3) and covol3([3, 3, 6]) = 1
8 L(π/3) , we get that

[C : ΓW ] < 80. Using this and (5.4), it is easy to check that there is no rational

solution ω to (5.3) with an approximate value ω ∼ 0.1701240538565287. This provides

the desired contradiction. A similar reasoning based on the covolume expressions (2.13)

allows us to prove that the two non-arithmetic Coxeter pyramid groups [∞, 3, (3,∞, 4)]

with 1-cusped quotient and [∞, 3, (4,∞, 4)] with 2-cusped quotient, both groups having

identical invariant trace field and invariant quaternion algebra, are incommensurable in

IsomH3. In this way, the commensurability classification for the family of Tumarkin’s

Coxeter pyramid groups could be finalised. In Appendix Appendix D, we provide the

commensurability classes of all non-arithmetic Coxeter pyramid groups.
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Appendices

§Appendix A. The non-compact hyperbolic Coxeter tetrahedra

In [29] and [30], the covolumes and commensurability classes of all hyperbolic Cox-

eter n-simplex groups (existing for n ≤ 9) are listed. In this section, we provide the

list of the 23 non-compact hyperbolic Coxeter tetrahedral groups together with their

covolumes (see Table 4 and Table 5).

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
R1 R2 R3

6 6 6 6

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
R4

4 6

R∗
5

5 6

R6

4 4

R7

4 4 4

...........................................................................................................

...........................................................................................................

...........................................................................................................

...........................................................................................................
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

◦

◦

◦

◦

◦

◦

◦S1 S2 S∗
3 S4

4 5 6

◦ ◦ ◦ ◦◦◦
◦

◦

◦

◦

◦

◦S5 S6 S7

6
4

4

4
4

4

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
T ∗
1 T ∗

2 T ∗
3 T4 T5 T ∗

6 T7

6 6 6 6 4 4 44 5 6
4 4 4

44

4

4

◦

◦ ◦ ◦

◦
◦

◦

◦

◦

◦ ◦

U V

..........................................................................................................

..........................................................................................................

..........................................................................................................

................
................
................
................
............................................................................................
................................................
.................................................

...................................................

.....................
.....................
..............................

.....................
.........

.....................................................

Table 4: The 23 non-compact hyperbolic Coxeter tetrahedral groups of finite covolume

where ∗ indicates non-arithmeticity
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§Appendix B. Tumarkin’s Coxeter pyramid groups

The classification of the cofinite Coxeter groups in IsomHn of rank n + 2 whose

fundamental polyhedra are pyramids over a product of two simplices of positive dimen-

sions is due to Tumarkin [52], [54]. The results are summarised in the following three

tables (see [54, Section 4]).

da a aa a��
QQ
QQ
��

ad a a aa��
HH
4

ad a a aa
a

ad a aa a a4

ad a a a a a4

ad a a a a a aa a a ad a aa��
HH
4

4ad a a a4 4ad aa a
4

4

ad a aa��
HH

6ad a a a
ad aa��
HH
k

l

k=2, 3, 4

l=3, 4
∞

Figure 27: Glueing together any two graphs by the encircled node yields the graph of a

hyperbolic Coxeter pyramid group

da a aa aa a��
QQ ��

QQ

da a aa a a aa��
HH

da a aa a a a a4

da a a aa a a a a da a a a a4 4

da a a aa��
HH

4

da aa aa��
QQ

4

4

da aa��
HH
6

k

k=2, 3, 4, 5, 6∞

da aa��
HH

∞

da a a∞

Figure 28: Glueing together any graph from the left side with any graph from the right

side by identifying the encircled node yields the graph of a hyperbolic Coxeter pyramid

group
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Name Coxeter symbol Volume Value '

R1 [3, 3, 6] 1
8 L( 1

3π) 0.0422892336

R6 [3, 4, 4] 1
6 L( 1

4π) 0.0763304662

S1 [3, 3[3]] 1
4 L( 1

3π) 0.0845784672

R4 [4, 3, 6] 5
16 L( 1

3π) 0.1057230840

S6 [3, 41,1] 1
3 L( 1

4π) 0.1526609324

R2 [3, 6, 3] 1
2 L( 1

3π) 0.1691569344

R∗5 [5, 3, 6] 1
2 L( 1

3π)+ 1
4 L( 11

30π)− 1
4 L( 1

30π) 0.1715016613

S2 [4, 3[3]] 5
8 L( 1

3π) 0.2114461680

S5 [6, 31,1] 5
8 L( 1

3π) 0.2114461680

R7 [4, 4, 4] 1
2 L( 1

4π) 0.2289913985

R3 [6, 3, 6] 3
4 L( 1

3π) 0.2537354016

T5 [(32, 42)] 2
3 L( 1

4π) 0.3053218647

S∗3 [5, 3[3]] L( 1
3π)+ 1

2 L( 11
30π)− 1

2 L( 1
30π) 0.3430033226

T ∗1 [(33, 6)] 5
8 L( 1

3π)+ 1
3 L( 1

4π) 0.3641071004

U [3[ ]×[ ]] 5
4 L( 1

3π) 0.4228923360

S7 [41,1,1] L( 1
4π) 0.4579827971

S4 [6, 3[3]] 3
2 L( 1

3π) 0.5074708032

T ∗2 [(3, 4, 3, 6)] 13
16 L( 1

3π)− 1
6 L( 1

4π)+ 2
3 L( 1

8π) 0.5258402692

T ∗6 [(3, 43)] 1
2 L( 1

4π)+ 2
3 L( 1

8π) 0.5562821156

T ∗3 [(3, 5, 3, 6)] L( 1
3π)+L( 11

60π)−L( 1
60π) 0.6729858045

T4 [(3, 6)[2]] 5
2 L( 1

3π) 0.8457846720

T7 [4[4]] 2L( 1
4π) 0.9159655942

V [3[3,3]] 3L( 1
3π) 1.0149416064

Table 5: Covolumes of the 23 non-compact hyperbolic Coxeter tetrahedral groups –

arranged by increasing order
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da a a aa aa��
HH

da a aa a a a4

da a a aaa
a a da a aa aa��

QQ

da a a a4 6

ea a aa��
HH

4

da aa��
HH
5

k

k=2, 3, 4, 5∞

da a a a6

da a aa��HH

da aa��
HH

∞

da a a∞

Figure 29: Glueing together any graph from the left side with any graph from the right

side by identifying the encircled node yields the graph of a hyperbolic Coxeter pyramid

group
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§Appendix C. Commensurability classes of arithmetic hyperbolic

Coxeter pyramid groups

n A1
n ÷ α1

n A2
n ÷ α2

n A3
n ÷ α3

n A4
n ÷ α4

n

3 [(3,∞, 3), (4,∞, 4)] [(3,∞, 3), (6,∞, 6)] [(3,∞, 3), (3,∞, 3)]

4 4 6

4 [6, 3, 3, 3,∞] [4, 4, 3, 3,∞]

4 20

5 [3[3], 32, 3[3]] [3[4], 3, (3,∞, 3)] [(3, 42, 3), 3, 3[3]] [(3, 42, 3), (3, 42, 3)]

3 4 6 20

6 [3[5], 3, (3,∞, 3)] [3[4], 32, 3[3]] [3[4], 3, (3, 42, 3)]

2 4 18

7 [3[5], 32, 3[3]] [31,1, 31,2, (3,∞, 3)] [3[6], 3, (3,∞, 3)] [3[4], 32, 3[4]]

2 4 8 12

8 [32,2, 33, (3,∞, 3)]

16

9 [32,2, 34, 3[3]]

10

10 [32,1, 36, (3,∞, 3)]

4

11 [32,1, 37, (3,∞, 3)] [32,1, 36, (3, 42, 3)]

2 3

12 [32,1, 36, 3[4]]

2

13 [32,1, 38, 31,1,1]

3

17 [32,1, 312, 31,2]

1

Table 6: Commensurability classes Akn with representatives and cardinalities αkn in the

arithmetic case
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§Appendix D. Commensurability classes of non-arithmetic hyperbolic

Coxeter pyramid groups

n |Nn| = 1 |Nn| = 2 |Nn| = 3 |Nn| = 4

3 [(3,∞, 4), (3,∞, 4)] [∞, 3, (3,∞, k)] for [∞, 3, 5,∞]

k = 4, 5, 6

[∞, 3, (l,∞,m)] for

4 ≤ l < m ≤ 6

[∞, 4, (3,∞, 4)]

4 [6, 32, (k,∞, l)] for [42, 3, (3,∞, 4)] [6, 32, 5,∞]

3 ≤ k < l ≤ 5

5 [4, 32,1, (3,∞, 4)]

6 [3, 4, 33, (3,∞, 4)]

10 [32,1, 36, (3,∞, 4)]

Table 7: Commensurability classes Nn in the non-arithmetic case

References

[1] C. Adams, Limit volumes of hyperbolic three-orbifolds, J. Differential Geom. 34 (1991),

115–141.

[2] D. Allcock, Infinitely many hyperbolic Coxeter groups through dimension 19, Geom. Topol.

10 (2006), 737–758.

[3] E. Andreev, Convex polyhedra in Lobacevskii spaces, Mat. Sb. (N.S.) 81 (123) (1970),

445–478.

[4] E. M. Andreev, Convex polyhedra of finite volume in Lobačevskĭı space, Mat. Sb. (N.S.)
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Provence, Marseille, 2004.

[48] Roland K. W. Roeder, John H. Hubbard, and William D. Dunbar, Andreev’s theorem on

hyperbolic polyhedra, 57 (2007), no. 3, 825–882.

[49] L. Schlettwein, Hyperbolische Simplexe, Diploma Thesis, University of Basel, 1995.

[50] J.-P. Serre, A course in arithmetic, vol. 7, Springer-Verlag, New York, 1996.

[51] W. Thurston, The geometry and topology of three-manifolds, url-

http://library.msri.org/books/gt3m/PDF/7.pdf, 1980.

[52] P. Tumarkin, Hyperbolic Coxeter n-polytopes with n+2 facets, arXiv:math/0301133 (2003),

14 pp.

[53] , Non-compact hyperbolic Coxeter n-polytopes with n + 3 facets, Russian Math.

Surveys 58 (2003), 805–806.

[54] , Hyperbolic Coxeter polytopes in Hm with n + 2 hyperfacets, Mat. Zametki 75

(2004), 909–916.

[55] , Compact hyperbolic Coxeter n-polytopes with n + 3 facets, Electron. J. Combin.

14 (2007), no. 1, Research Paper 69, 36 pp. (electronic).
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