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Abstract

Let Hn be the real hyperbolic n-space, Isom(Hn) its group of isometries
and Isom+(Hn) the index two subgroup of orientation preserving isometries.

In this thesis we establish some new algebraic commensurability condi-
tions for the class of hyperbolic Coxeter groups. These are discrete groups in
Isom(Hn) generated by finitely many reflections in the bounding hyperplanes
of hyperbolic polyhedra all of whose dihedral angles are integral submulti-
ples of π. At the basis is Vinberg’s work associating to such a group a
quadratic space (V, q), which we call the Vinberg space.

We also exploit the Clifford matrix interpretation of Isom+(Hn) and
present our results [19], joint with S. Drewitz, about the realisability of
right-angled hyperbolic polygons in any dimension.

For n = 5, we introduce a trace field for certain groups of complexified
quaternionic 2 × 2 matrices. We show – in analogy to Kleinian groups in
PSL(2,C) – that this trace field is an algebraic number field.
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Zusammenfassung

Sei Hn der reelle hyperbolische Raum, Isom(Hn) seine Isometriegruppe
und Isom+(Hn) die Index zwei Untergruppe von orientierungserhaltenden
Isometrien.

In dieser Dissertation beweisen wir einige neue algebraische Kommensu-
rabilitätsbedingungen für die Klasse der hyperbolischen Coxeter-Gruppen.
Dies sind diskrete Gruppen in Isom(Hn), die durch endlich viele Spiegelun-
gen an den begrenzenden Hyperebenen von hyperbolischen Polyedern, deren
Diederwinkel ganzzahlige Teiler von π sind, erzeugt werden. Grundlage ist
Vinbergs Arbeit, die einer solchen Gruppe einen quadratische Raum (V, q)
zuordnet, den wir den Vinberg-Raum nennen.

Wir nutzen auch die Clifford-Matrix Interpretation von Isom(Hn) und
präsentieren unsere Ergebnisse [19], gemeinsam mit S. Drewitz, über die
Realisierbarkeit von rechtwinkligen hyperbolischen Polygonen in jeder Di-
mension.

Für n = 5 führen wir für bestimmte Gruppen von komplexifizierten
quaternionischen 2× 2-Matrizen einen Spurkörper ein. Wir zeigen – analog
zu Kleinschen Gruppen in PSL(2,C) – dass dieser Spurkörper ein algebrai-
scher Zahlkörper ist.
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Résumé

Soient Hn l’espace hyperbolique réel, Isom(Hn) son groupe d’isométries
et Isom+(Hn) le sous-groupe d’indice deux des isométries préservant l’orienta-
tion.

Dans cette thèse, nous établissons de nouvelles conditions algébriques
pour la commensurabilité des groupes de Coxeter hyperboliques. Ce sont des
groupes discrets dans Isom(Hn) engendrés par un nombre fini de réflexions
par rapport aux hyperplans bordant des polyèdres hyperboliques dont tous
les angles dièdres sont des sous-multiples entiers de π. À la base de notre ap-
proche est le travail de Vinberg associant à un tel groupe un espace quadra-
tique (V, q), que nous appelons l’espace de Vinberg.

Nous exploitons aussi l’interprétation de Isom+(Hn) à l’aide des matri-
ces de Clifford et présentons nos résultats [19], partagés avec S. Drewitz, sur
la réalisabilité des polygones hyperboliques à angles droits dans n’importe
quelle dimension.

Pour n = 5, nous introduisons un corps de traces pour des matrices de
format 2 × 2 quaternioniques complexifiées. Nous montrons – en analogie
avec les groupes de Klein dans PSL(2,C) – que ce corps de traces est un
corps de nombres algébriques.
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Introduction

Let Hn be the real hyperbolic n-space, n ≥ 2, and denote by Isom(Hn)
its isometry group. Hyperbolic space forms Hn/Γ, where Γ is a discrete
subgroup of Isom(Hn) are hyperbolic manifolds and orbifolds, and they can
be described by polyhedral models. In general, there is a great interest to
understand these objects in terms of their characteristic invariants. The
most important one is their volume.

A natural step is to distinguish hyperbolic space forms up to commen-
surability: two space forms are commensurable if they admit a common
finite-sheeted cover.

In low dimensions there is a rich theory and a wealth of results about hy-
perbolic space forms. For example, for n = 3, commensurability of Kleinian
groups in PSL(2,C) is well understood due to the work of Maclachlan and
Reid. In particular, for arithmetic Kleinian groups, we dispose of a com-
plete set of commensurability invariants, the invariant trace field and the
invariant quaternion algebra.

Our contribution to the theory covers several aspects. For n = 5, we
interpret elements of the group Isom+(H5) of direct isometries as quater-
nionic 2× 2 matrices and pass to their complexified images. This approach
allows us to introduce a trace field for a discrete group in Isom+(H5) and to
prove, in analogy to the work of Maclachlan and Reid, that it is an algebraic
number field.

Our main contribution deals with the commensurability of hyperbolic
Coxeter groups in Isom(Hn), n ≥ 2. These groups form an important class of
discrete groups, and they appear often as fundamental groups of hyperbolic
space forms of minimal volume. As for their commensurability, and based on
the work of Vinberg, we provide new commensurability conditions in terms
of the Vinberg field and the Vinberg form.

We also integrate the joint work with S. Drewitz about the realisability
of right-angled hyperbolic polygons in any dimension. Our methods consist
notably of the identification of direct hyperbolic isometries with Clifford
matrices.
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In more concrete terms, this thesis is structured as follows.

In Chapter 1 we provide the necessary theory about hyperbolic space
and its isometries, geometric Coxeter groups and commensurability.

Chapter 2 contains a condensed version of the paper “On right-angled
polygons in hyperbolic space” written jointly with S. Drewitz [19].

In this chapter we first describe direct isometries as Clifford matrices
which allows us to give an explicit algorithm for the construction of a right-
angled hyperbolic polygon (right-angled closed geodesic edge path) in arbi-
trary dimension. We also discuss necessary and sufficient conditions for the
realisability of such polygons.

The author’s contribution to the paper [19] is the algebraic and geomet-
ric arguments leading to the algorithm.

In Chapter 3 we look at elements of Isom+(H5) in form of 4 × 4 com-
plex block matrices with determinant one, following the work of Wilker [77].
Using this identification we define a trace field for a discrete subgroup Γ of
Isom+(H5). We show that this trace field is an algebraic number field if Γ
is cocompact and torsion-free.

Chapter 4 is devoted to the commensurability of hyperbolic Coxeter
groups. First, and motivated by the work of Vinberg [69], we associate to
a hyperbolic Coxeter group a field of cycles and a regular quadratic form
of signature (n, 1) which we call the Vinberg field and the Vinberg form.
Our main result is a necessary commensurability condition for hyperbolic
Coxeter groups that holds even in the non-arithmetic case.

We also detect a weaker commensurability invariant as given by the Vin-
berg ring. We close the chapter by characterising the similarity class of a
Vinberg form in terms of the Hasse invariant and the Witt invariant.

In Chapter 5 we present different ways to generate the Vinberg field
K(Γ), as an extension of Q, of a quasi-arithmetic Coxeter group Γ. Firstly,
we show that K(Γ) can be generated by the coefficients of the characteristic
polynomial of the Gram matrix of Γ. Secondly, we prove that K(Γ) is
generated by the coefficients of the characteristic polynomial of any Coxeter
transformation of Γ.

We also present a result about how the extension degree of K(Γ) has an
effect on the possible finite weights of the Coxeter graph of Γ.

Attached to this work are four appendices. Appendix A provides three
elementary ways to determine the coefficients of a characteristic polyno-
mial of a complex matrix. Appendix B contains an approach to test our
Conjecture 5.5.1 about the Vinberg field K(Γ) as presented in Chapter 5.
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Appendix C contains the published article “On right-angled polygons in hy-
perbolic space” written jointly with S. Drewitz and published in Geometriae
Dedicata, June 2019, Vol. 200, Issue 1, pp. 45–59 [19]. Finally, Appendix
D consists of the Erratum “Commensurability classes of hyperbolic Coxeter
groups”, due to J. Ratcliffe and S. Tschantz, which fixes a gap in the proof
of Theorem 1 of [36]. The publication of the Erratum here in this work has
been authorised by J. Ratcliffe and S. Tschantz.
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Chapter 1

The hyperbolic space and its
isometries

In this chapter we provide the definitions and notions which will be used
throughout this work. We shall start by considering the vector models of the
three standard geometries: hyperbolic, Euclidean and spherical. We then
focus on discrete subgroups of isometries generated by reflections in these
spaces, the so-called geometric Coxeter groups. Of interest for this work will
be the hyperbolic space. A standard reference for this chapter is the book
of Ratcliffe [59].

1.1 The three standard geometries

Let n ≥ 2. For κ ∈ {−1, 0, 1}, equip Rn+1 with the bilinear form

〈·, ·〉κ : Rn+1 × Rn+1 → R

defined as

〈x, y〉κ =
n∑
i=1

xiyi + κ · xn+1yn+1.

Let Xκ denote one of the three simply connected complete Riemannian man-
ifolds of dimension n with constant sectional curvature κ equal to −1, 0 and
1, respectively. They can be modelled in the following way. The vector space
model, or hyperboloid model, of the hyperbolic n-space Hn is given by the set

Hn := X−1 = {x ∈ Rn+1 | ||x||2−1 = 〈x, x〉−1 = −1, xn+1 > 0}
with metric

dHn(x, y) = arcosh(−〈x, y〉−1) ∀x, y ∈ Hn.
The bilinear form 〈·, ·〉−1 is called Lorentzian product. The space Rn+1

equipped with the Lorentzian product is denoted by Rn,1. From Chap-
ter 2 onward we shall work only with the hyperbolic space. Thus we will
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denote the Lorentzian product only by 〈·, ·〉. Its associated quadratic form,
the Lorentzian form, will be denoted by q−1(x) := 〈x, x〉.

The n-dimensional Euclidean space is given by the set

En := X0 = {x ∈ Rn+1 | xn+1 = 0},

with the metric given by

dEn(x, y) =
√
〈x− y, x− y〉0 ∀x, y ∈ En.

The n-dimensional sphere is given by the set

Sn := X1 = {x ∈ Rn+1 | ||x||21 = 〈x, x〉1 = 1},

with the metric given by

cos(dSn(x, y)) = 〈x, y〉1 ∀x, y ∈ Sn.

The group of isometries of Xκ is denoted by Isom(Xκ). There are other
models of the hyperbolic space Hn. They are discussed in Section 1.2.

1.1.1 Hyperplanes and polyhedra

In the hyperbolic space Hn the orthogonal complement of a vector e ∈ Rn+1

of Lorentzian norm 1 is

e⊥ := {x ∈ Rn+1 | 〈x, e〉−1 = 0},

and He = e⊥ ∩Hn is the hyperplane orthogonal to e.
In the Euclidean space En, an (affine) hyperplane is given by a unit

vector e ∈ Rn and a vector t ∈ Rn according to

He,t = {x ∈ Rn | 〈x, e〉0 = 0}+ t.

On the sphere Sn, analogously to the hyperbolic case, the orthogonal
complement of a unit vector e ∈ Rn+1 is defined as

e⊥ := {x ∈ Rn+1 | 〈x, e〉1 = 0}.

The hyperplane orthogonal to e is then given by He = e⊥ ∩ Sn.
The relative position between two hyperplanes in Xκ is characterised as

follows.

i) In the hyperbolic space Hn two hyperplanes Ha and Hb intersect if and
only if |〈a, b〉−1| < 1. In this situation their dihedral angle is given by

cos∠(Ha, Hb) = −〈a, b〉−1.
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The hyperplanes are parallel if and only if |〈a, b〉−1| = 1. In this situa-
tion their intersection angle is zero.

The hyperplanes do not intersect (they are ultraparallel) if and only if
|〈a, b〉−1| > 1. In this situation there is a unique common perpendicular
between Ha and Hb of length

arcosh(|〈a, b〉−1|).

ii) In the Euclidean space En two hyperplanes Ha,t and Hb,s intersect if
and only if | 〈a, b〉0 |6= 1. In this case the angle is given by

cos∠(Ha, Hb) = −〈a, b〉0.

If | 〈a, b〉0 |= 1, then the two hyperplanes are parallel with intersection
angle zero.

iii) On the sphere Sn two hyperplanes Ha and Hb always intersect. The
angle between them is given by

cos∠(Ha, Hb) = −〈a, b〉1.

A hyperplane He divides Xκ, for κ ∈ {−1, 1}, into two half-spaces H−e =
{x ∈ Xκ | 〈x, e〉κ ≤ 0} and H+

e = {x ∈ Xκ | 〈x, e〉κ ≥ 0} such that
H−e ∩H+

e = He. For X0 the definitions are similar, namely H−e,t = {x ∈ En |
〈x, e〉1 ≤ 0}+ t and H+

e,t = {x ∈ En | 〈x, e〉1 ≥ 0}+ t.
We can now state the definition of a polyhedron P ⊂ Xκ; our main

reference is [73, Chapter 1].

Definition 1.1.1. A (convex) polyhedron P ⊂ Xκ is the intersection with
non-empty interior of finitely many half-spaces, that is, P =

⋂N
i=1H

−
ei , N ≥

n + 1, where the unit vector ei normal to the hyperplane Hei is pointing
outwards of P .

Remark 1.1.2. If N = n+ 1, then we call P a n-simplex.

Definition 1.1.3. A Coxeter polyhedron P ⊂ Xκ is a polyhedron for which
all the angles between the bounding hyperplanes of P are either zero or
integral submultiples of π, hence of the form π

k for k ∈ N, k ≥ 2.

1.2 Other models of the hyperbolic space and their
isometries

In Section 1.1 we have introduced the vector space model Hn of the hyper-
bolic space. This model is very convenient in order to describe hyperplanes
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and polyhedra by means of their normal vectors. Moreover the group of
isometries Isom(Hn) is the Lie group of positive Lorentzian matrices

O+(n, 1) =
{
A ∈ Mat(n+ 1,R) | ATJA = J, [A]n+1,n+1 > 0

}
, (1.1)

where J = diag(1, . . . , 1,−1) is the diagonal matrix which represents the
Lorentzian form. Notice that O+(n, 1) is not an algebraic group.

Furthermore, each isometry in Isom(Hn) is the product of finitely many
reflections with respect to hyperplanes (see [7, Proposition A.2.2]).
There are further models for the hyperbolic space, each one of them has its
own advantages. In particular they provide a different way to represent the
isometries of the hyperbolic space. They are described in greater detail in
Chapter 6 of [59].

The upper half-space model

The upper half-space model Un is defined as the set Rn−1 × R>0 endowed
with the metric dU : (Rn−1 × R>0)× (Rn−1 × R>0)→ R given by

arcosh dU (x, y) = 1 +
||x− y||20

2xnyn
,

for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn−1 × R>0. For practicality, the
space (Un, dU ) will be denoted by Un, only. This model is very convenient
when dealing with orientation preserving isometries, or direct isometries,
Isom+(Un). Indeed, there is a way to represent every direct isometry of the
hyperbolic space as a 2× 2 matrix with entries in the Clifford group of the
real Clifford algebra Cn−2. This aspect will be explained in more detail and
used in Section 2.1. Well-known are the cases Isom+(U2) ∼= PSL(2,R) and
Isom+(U3) ∼= PSL(2,C).

The projective model

Consider the open unit disk

Dn = {x ∈ En | ||x||0 < 1}.

We define the metric dK : Dn ×Dn → R as follows

arcosh dK(x, y) =
1− 〈x, y〉0√

1− ||x||20
√

1− ||y||20
for all x, y ∈ Dn.

This gives rise to the projective model Kn. It is a non-conformal model for
Hn but it is very practical for studying the combinatorics of polyhedra and
the relative positions of hyperplanes. A very important aspect is that the
isometries of the hyperbolic space realised in the model Kn form an algebraic
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group. Let O(n, 1) =
{
A ∈ Mat(n+ 1,R) | ATJA = J

}
be the group of all

matrices which preserve the Lorentzian form (see (1.1)). Then,

Isom(Kn) ∼= O(n, 1)/{±I} =: PO(n, 1). (1.2)

The fact that Isom(Kn) is an algebraic group will be exploited in Section
4.3 (see Remark 4.3.3).

Remark 1.2.1. There is another important model which utilizes the open
ball as its base space, the conformal ball model of Poincaré Bn ([59, §4.5]).
However, we will not use this model.

1.3 Geometric Coxeter groups

Definition 1.3.1. An abstract Coxeter group Γ is a finitely presented group
generated by the elements s1, . . . , sN ∈ Γ such that

Γ = 〈s1, . . . , sN : (sisj)
mij = 1〉, (1.3)

with mij = 1 if and only if i = j and, for i 6= j, mij = mji ∈ {2, 3, . . . ,∞}.

We set mij = ∞ if sisj is of infinite order. The set of generators
s1, . . . , sN is denoted by S. The cardinality N of S is called the rank of
Γ.

We are interested in Coxeter groups which admit a geometrical inter-
pretation as reflection groups acting on Xκ. Consider a hyperplane He in
X−1 = Hn with e a normal vector of Lorentzian norm 1.

Definition 1.3.2. A reflection with respect to the hyperplane He is the
linear application se = sHe : Hn → Hn defined as

se(x) = x− 2〈x, e〉 e.

For the spherical and Euclidean cases we refer to [59, Chapter 7]. Gen-
erally, let Γ < Isom(Xκ) be the discrete reflection group associated to a
Coxeter polyhedron P =

⋂N
i=1H

−
ei in Xκ, that is, Γ is generated by the

reflections with respect to the hyperplanes bounding P , and it is denoted
by Γ = 〈se1 , . . . , seN 〉. Consider the reflection sei with respect to the hy-
perplane Hei of P , 1 ≤ i ≤ N . If two hyperplanes Hei and Hej intersect
under an angle π/mij , mij ≥ 2, then (seisej )

mij = 1 in Γ. If Hei and Hej

are parallel or ultraparallel, seisej is of infinite order in Γ. Moreover s2
ei = 1

for all 1 ≤ i ≤ N . These relations coincide with the relations (1.3) of an
abstract Coxeter group, hence Γ is an abstract Coxeter group of rank N .

Definition 1.3.3. A subgroup Γ < Isom(Xκ) is a (geometric) Coxeter group
if it is a discrete group generated by the reflections with respect to the
hyperplanes bounding a Coxeter polyhedron P in Xκ.
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Let Γ < Isom(Xκ) be a Coxeter group. If Xκ = Hn,En or Sn, then Γ
is called hyperbolic, Euclidean (affine or parabolic) or spherical (or elliptic),
respectively.

In the sequel we are interested in hyperbolic Coxeter groups of finite
covolume. For this, consider a discrete subgroup Γ < Isom(Hn). Then Γ
has a fundamental domain whose closure can be assumed to be a polyhedron
P ⊂ Hn (see [59, Chapter 6]).

Definition 1.3.4. A discrete subgroup Γ < Isom(Hn) is said to be cocom-
pact if its fundamental polyhedron P ⊂ Hn is compact. The group Γ is said
to be cofinite if P has finite volume. For brevity, a cofinite group Γ is called
a hyperbolic lattice.

For polyhedra in Hn with dihedral angles smaller than or equal to π/2,
like Coxeter polyhedra, Vinberg provides a criterion for compactness and
for being of finite volume [73, Proposition 4.2]. For aspects about volumes
of hyperbolic polyhedra and their computation, see [3, Chapter 7].

General Assumption 1.3.5. In this thesis, unless otherwise specified, hy-
perbolic Coxeter groups will always be assumed to have finite covolume.
While this property is explicitly stated as condition in statements such as
theorems and propositions, we often omit this assumption inside the text
for the sake of simplicity.

A geometric Coxeter group and its Coxeter polyhedron can be most
conveniently described by means of its Coxeter graph and its Gram matrix
as follows.

Definition 1.3.6. Let Γ < Isom(Xκ) be a Coxeter group of rank N with
Coxeter polyhedron P =

⋂N
i=1H

−
ei , N ≥ n+1. The Gram matrix associated

to P and to Γ is the real symmetric matrixG := G(P ) = G(Γ) = (gij)1≤i,j≤N
with coefficients

gij = 〈ei, ej〉κ.

The Gram matrix G of a Coxeter group Γ is unique up to enumeration
of the hyperplanes and can be characterized as follows ([3, Chapter 6]):

i) if Γ < Isom(Sn), then G is positive definite with rank n+ 1;

ii) if Γ < Isom(En), then G is positive semidefinite with rank n;

iii) if Γ < Isom(Hn), then G has signature (n, 1).

Definition 1.3.7. Let Γ be a geometric Coxeter group of rank N . The
Coxeter graph (or Coxeter diagram) of Γ is the graph with N vertices for
which the vertex i corresponds to the hyperplane Hei . Between two vertices
i and j we have:
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i) an edge if the angle between Hei and Hej is π/k, k ≥ 3. If k ≥ 4 then
the edge is labelled with k; if k = 3 the label is omitted. Sometimes, if
k = 4, a double edge is used instead of labelling;

ii) an edge labelled with∞ if Hei and Hej are parallel. Sometimes instead
of labelling, a bold edge is used;

iii) a dotted edge if Hei and Hej are ultraparallel. Sometimes the dotted
edge is labelled with the hyperbolic cosine of the length dHn(Hei , Hej )
of their common perpendicular.

1.3.1 Classification of geometric Coxeter groups

Spherical and Euclidean Coxeter groups have been completely classified by
Coxeter in [14]. They exist in any dimension n ≥ 2. All the irreducible
groups among them are listed in Figure 1.1 and Figure 1.2.

Figure 1.1: Irreducible spherical Coxeter groups of rank n.

Figure 1.2: Irreducible Euclidean Coxeter groups of rank n+ 1.

Concerning Coxeter groups acting cofinitely on Hn, the classification is
far from being achieved. They do not exist for n ≥ 996 [58], while for n ≥ 30
there are no cocompact hyperbolic Coxeter groups [73]. These two bounds
are probably not sharp. In fact, the biggest n for which there is an example
of a cofinite Coxeter group and of a cocompact Coxeter group is n = 21 [9]
and n = 8 [12], respectively.

10



The hyperbolic Coxeter simplices (N = n + 1) have been classified by
Lannér and Koszul. The complete list can be found in [35] where also
all the volumes have been computed. For N = n + 2, the corresponding
classification has been achieved by Kaplinskaya [37], Esselmann [22] and
Tumarkin [65]. For N = n+ 3, Esselmann [21] and Tumarkin [67] classified
the compact Coxeter polyhedra while the classification of the non-compact
polyhedra is not complete. They do not exist for n > 16 [66, Theorem 1].
Furthermore, Roberts classified all the non-compact Coxeter polyhedra with
exactly one non-simple vertex [61]. For N ≥ n + 4 much less is known. A
more precise overview of the situation can be found in [29, §2.2]; see also
the web page of Anna Felikson [1].

1.4 Commensurability

A central theme of this thesis is the commensurability of discrete subgroups
of isometries in Isom(Hn) with particular emphasis on Coxeter groups. We
shall state here a general definition and some basic properties. The main
results on this subject will appear in Chapter 4.

Definition 1.4.1. Let H be a group. Two subgroups H1, H2 < H are
commensurable (in the wide sense) if and only if there exists an element
h ∈ H such that H1 ∩ h−1H2h has finite index in both H1 and h−1H2h.

This notion is an equivalence relation. For our purpose, the group H
will be the group of hyperbolic isometries Isom(Hn) or its index 2 subgroup
Isom+(Hn) of orientation preserving isometries. Some properties are stable
under commensurability.

Let Γ1,Γ2 < Isom(Hn) be commensurable. Then:

• Γ1 is discrete if and only if Γ2 is discrete,

• Γ1 is cofinite if and only if Γ2 is cofinite,

• the covolumes of Γ1 and Γ2 are rational multiples of each other,

• Γ1 is cocompact if and only if Γ2 is cocompact,

• Γ1 is arithmetic if and only if Γ2 is arithmetic (see Section 1.5).

Remark 1.4.2.

i) There is an interesting commensurability invariant for a singly cusped
non-arithmetic hyperbolic orbifold V of finite volume. Write V =
Hn/Γ with cusp C ⊂ V . Then the cusp density is defined by δ(C) =
Vol(C)/Vol(V ), and it turns out to be a commensurability invariant
(see [26], for example). However, we will not make use of this analytic
invariant.
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ii) For non-cocompact non-arithmetic hyperbolic lattices there is a neces-
sary and sufficient commensurability criterion involving the concept of
horoball-packings ([26, Theorem 2.4]). This analytical aspect will not
be treated in this work.

1.5 Arithmeticity, quasi-arithmeticity and
nq-arithmeticity

We close this chapter by splitting discrete subgroups in Isom(Hn) into three
categories: arithmetic, quasi-arithmetic and nq-arithmetic.

Let K ⊂ R be a totally real number field and let V be a vector space of
dimension n+1 over K endowed with a quadratic form q of signature (n, 1).
We denote this quadratic space by (V, q). Moreover for every non-trivial
embedding σ : K ↪→ R assume that the quadratic space (V, qσ) is positive
definite, where qσ denotes the quadratic form obtained by applying σ to
each coefficient of q. Let

O(V, q) := {U ∈ GL(n+ 1,R) | q(Ux) = q(x) ∀x ∈ V ⊗K R}.

Notice that since q has the same signature and rank as the Lorentzian
form q−1, there exists a real invertible matrix S such that S−1 O+(n, 1)S =
O+(V, q).
Consider the ring of integers of K, denoted by OK . Let L be a OK-lattice1

and denote by O(L) < O+(V, q)∩GL(n+ 1,K) the group of linear transfor-
mations with coefficients in K that preserve the lattice L. The group O(L)
is discrete and of finite covolume [27, §2.2].

Definition 1.5.1. A discrete subgroup Γ < Isom(Hn) is called arithmetic
of the simplest type if there exist K, q and L as above such that S−1ΓS is
commensurable with O(L) in O+(V, q)∩GL(n+ 1,K). In this case one says
that Γ is defined over K with quadratic space (V, q).

Remark 1.5.2.

i) There is a more general definition of arithmetic group (see [3, Chapter
6]). Notice that if a hyperbolic Coxeter group is arithmetic, then it is
of the simplest type [69, Lemma 7]. In this thesis whenever a group
in Isom(Hn) is arithmetic it is of the simplest type. Therefore we will
always refer to arithmetic groups of the simplest type as just arithmetic
groups.

ii) There are no arithmetic Coxeter groups in Isom(Hn) for n ≥ 30 [74,
Theorem 2.2].

1Let R be a ring with field of fraction K and V a vector space of dimension n+ 1 over
K. An R-lattice L in V is an R-module in V of rank n+ 1 for which SpanK{L} = V .
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Famous examples of hyperbolic arithmetic groups are PSL(2,Z) and all
the Bianchi groups PSL(2,Od), where Od is the ring of integers of the imag-
inary quadratic field Q(

√
−d).

We now introduce the notion of quasi-arithmetic group, which, as the
name suggests, is a weaker notion of arithmeticity. It is obtained by dropping
the lattice condition.

Definition 1.5.3. A discrete subgroup Γ < Isom(Hn) is called quasi-
arithmetic if there exist K and q as above such that

S−1ΓS ⊂ O+(V, q) ∩GL(n+ 1,K).

In this case one says that Γ is defined over K with quadratic space (V, q).

Remark 1.5.4. If a quasi-arithmetic group in Isom(Hn) is non-cocompact,
then the associated field is Q [74, Chapter 6].

Clearly if a group is arithmetic, then it is quasi-arithmetic. In this thesis,
when a group is quasi-arithmetic but not arithmetic, this will be pointed out
explicitly.

Definition 1.5.5. A discrete subgroup Γ < Isom(Hn) is called non-quasi-
arithmetic, nq-arithmetic from now on, if it is neither arithmetic nor quasi-
arithmetic.

Examples of such groups will appear in Chapter 4 and in Chapter 5.

Remark 1.5.6. The previous definitions apply to every discrete group in
Isom(Hn), not only Coxeter groups. Moreover, as a consequence of the
construction, arithmetic groups have finite covolume while quasi-arithmetic
and nq-arithmetic groups can also have infinite covolume.
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Chapter 2

On right-angled polygons in
hyperbolic space

In this chapter we provide a condensed version of the paper “On right-
angled polygons in hyperbolic space” written jointly with Simon Drewitz
and published in Geometriae Dedicata, June 2019, Vol. 200, Issue 1, pp.
45–59 [19], which can be found entirely in Appendix C.

Throughout this chapter we consider the upper half-space model (Un, dU )
for the hyperbolic space Hn (see Section 1.2). The main objective is to de-
scribe right-angled polygons in Un by means of a set of parameters describing
its sides. By right-angled hyperbolic polygon we mean an oriented closed
orthogonal geodesic edge path in Un.

It was previously shown by Delgove and Retailleau [17] that three quater-
nionic parameters define a right-angled hexagon in the space U5. In their
work, 2×2 quaternionic matrices having Dieudonné determinant 1 are used
in order to describe orientation preserving isometries (or direct isometries)
of U5. This description will be explicitly stated in Section 3.2.1. While
this approach based on quaternions is very convenient in U5, it can not be
extended to arbitrary dimensions.

A description of direct isometries in arbitrary dimensions can be achieved
if we consider Clifford matrices. These are 2×2 matrices with entries in the
extended Clifford group and can be used to represent the group Isom+(Un)
of direct isometries. In particular, with this approach, 2 × 2 quaternionic
Clifford matrices are used to describe direct isometries of U4.

At first we develop the identification of direct hyperbolic isometries with
Clifford matrices. We also introduce the cross ratio of Clifford vectors and
its geometrical interpretation. Then we state the main result as given by
Theorem 2.2.8 about right-angled polygons in Un. It yields an algorithmic
way to construct such polygons, given a set of parameters describing the
side lengths. Lastly we discuss a necessary condition on the parameters
for the realisability of right-angled polygons as closed simplex edge path.
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Furthermore we focus on the realisability of a right-angled pentagon in U4

with all the sides of equal length. For a more detailed description and for
all the proofs we refer to the paper [19] and the references therein.

2.1 Clifford matrices and direct isometries

2.1.1 The real Clifford algebra

Let m ≥ 0. The (real) Clifford algebra of rank m is the associative real
algebra Cm with unit 1 and with generators i1, . . . , im which anticommute
and whose square is −1:

Cm =
〈
i1, . . . , im | ij il = −il ij , i2l = −1 for l 6= j

〉
.

Every element x of the algebra Cm can be uniquely written as x =
∑
xII,

where xI ∈ R and the sum is taken over all the products I = ik1 · · · iks , with
1 ≤ k1 < · · · < ks ≤ m and 1 ≤ s ≤ m. Here the empty product I0 is
included and identified with i0 := 1. Hence Cm is a 2m-dimensional real
vector space. In particular we can identify C0 with R, C1 with C and C2 with
H, the Hamiltonian quaternions. We can induce a Euclidean structure on
Cm by associating to each element x =

∑
xII a norm given by |x|2 =

∑
x2
I .

Denote by <(x) the coefficient x0, called the real part of x, while =(x) =
x−<(x) is called the non-real part of x. If <(x) = 0 we will refer to x as a
pure element of Cm.

On Cm there are three well-known involutions. Let x ∈ Cm with x =∑
xII. Then:

i) x∗ =
∑
xII
∗, where I∗ is obtained from I = ik1 · · · iks by reversing the

order of the factors, that is, I∗ = iks · · · ik1 ;

ii) x′ =
∑
xII
′, where I ′ is obtained from I = ik1 · · · iks by replacing each

factor ik with −ik, that is, I ′ = (−ik1) · · · (−iks) = (−1)sI;

iii) x = (x∗)′ = (x′)∗.

The first and last involutions are anti-automorphisms, while the second one
is an automorphism.

More important for our purpose are the Clifford vectors. These are
Clifford elements of the form x = x0 + x1i1 + · · ·+ xmim. The set

Vm+1 = {x0 + x1i1 + · · ·+ xmim | x0, . . . , xm ∈ R}

of all Clifford vectors is an (m + 1)-dimensional real vector space and can
be identified with the Euclidean space Em+1. Notice that for an element
x ∈ Vm+1 we have x∗ = x and hence x = x′ as well as x + x = 2<(x) and
xx = xx = |x|2. Moreover every non-zero vector x has an inverse given by
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x−1 = x
|x|2 . Hence finite products of non-zero vectors are invertible and they

form the so-called Clifford group Γm. Observe that we have Γm = Cm \ {0}
only for m ∈ {0, 1, 2}.

2.1.2 Clifford matrices, cross ratios and hyperbolic geometry

In this section we discuss how matrices having entries in the extended Clif-
ford group Γn−2∪{0} relate to direct isometries of the hyperbolic space Un,
n ≥ 2. A general reference for this is the work of Waterman [76] (all other
references in this part will be omitted as they can be found in the Appendix
C). After that we look at the cross ratios and exploit their geometrical ap-
plications. As in the previous section, m is a non-negative integer.

Definition 2.1.1. A Clifford matrix is a 2 × 2 matrix A =

(
a b
c d

)
with

a, b, c, d ∈ Γm∪{0} such that ab∗, cd∗, c∗a, d∗b ∈ Vm+1 and ad∗−bc∗ ∈ R\{0}.
The expression ad∗ − bc∗ is the Ahlfors determinant of A.

Denote the set of such matrices by GL(2, Cm). By a result of Vahlen and
Maass, the set

SL(2, Cm) :=

{
A =

(
a b
c d

)
∈ GL(2, Cm) | ad∗ − bc∗ = 1

}
of Clifford matrices with Ahlfors determinant 1 is a multiplicative group. It
is generated by the matrices(

1 t
0 1

)
,

(
0 −1
1 0

)
,

(
a 0
0 (a∗)−1

)
,

where t ∈ Vm+1 and a ∈ Γm \ {0}. Consider the projective group

PSL(2, Cm) = SL(2, Cm)/{±I}.

It is known that representatives

(
a b
c d

)
of elements in PSL(2, Cm) act bi-

jectively on Vm+1 ∪ {∞} by

T (x) = (ax+ b)(cx+ d)−1 (2.1)

with the identification T (−c−1d) =∞, T (∞) = ac−1 if c 6= 0, and T (∞) =
∞ otherwise.

Consider the hyperbolic space (Un, dU ). The base space Un can be in-
terpreted with the help of Clifford vectors as follows:

Un = {x = (x1, x2, . . . , xn) ∈ Rn | xn > 0} ∼= Vn−1 × R>0.
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The compactification Un is given by the union of Un with the boundary
set ∂Un = Vn−1 ∪ {∞} of points at infinity of Un.

Using Poincaré extension, the action of PSL(2, Cn−2) given by (2.1) can
be extended from Vn−1 ∪ {∞} to the upper half-space Un. In this way we
obtain an isomorphism between PSL(2, Cn−2) and the group Möb+(n − 1)
of orientation preserving Möbius transformations of Vn−1 ∪ {∞}. Since the
group Isom+ (Un) of orientation preserving isometries of Un is isomorphic
to Möb+(n− 1), we get the following identification:

Isom+ (Un) ∼= Möb+ (n− 1) ∼= PSL(2, Cn−2). (2.2)

Therefore any direct isometry of Un can be represented by a Clifford
matrix in PSL(2, Cn−2). Classical examples are Isom+(U2) ∼= PSL(2, C0) ∼=
PSL(2,R) and Isom+(U3) ∼= PSL(2, C1) ∼= PSL(2,C).

Remark 2.1.2. Möbius transformations act triply transitively on Vn−1 ∪
{∞}, meaning that for any two triplets of distinct points in Vn−1 ∪ {∞}
there exists a transformation T ∈ Möb(n − 1) which maps the first triplet
to the second one.

We state now the definition of a (generalised) cross ratio. It plays an
important role in the algorithmic construction of a right-angled polygon as
it encodes the geometrical information for the construction.

Definition 2.1.3. Let x, y, z, w be four pairwise different Clifford vectors
in Vn−1. Then

[x, y, z, w] := (x− z)(x− w)−1(y − w)(y − z)−1 ∈ Γn−2 \ {0}

is called the cross ratio of x, y, z and w.

We extend Definition (2.1.3) by continuity to Vn−1 ∪{∞}, allowing x, y
or w to be ∞, by

[∞, y, z, w] = (y − w)(y − z)−1 for x =∞, (2.3)

and similarly for y = ∞ and w = ∞. Moreover, in an analogous way, we
put

[x, y,∞, w] = (x− w)−1(y − w).

The real part and the norm of the cross ratio [x, y, z, w] of four vectors

are invariant under the action of a T =

(
a b
c d

)
∈ SL(2, Cn−2). However,

the cross ratio itself is not an invariant. Indeed, the following holds.

[T (x), T (y), T (z), T (w)] = (cz + d)∗−1[x, y, z, w](cz + d)∗.

Consider two oriented geodesics s and t in Un with endpoints s−, s+ and
t−, t+ all distinct in Vn−1 ∪ {∞}.
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Definition 2.1.4. The cross ratio ∆(s, t) of the geodesics s and t is defined
by

∆(s, t) :=
[
s−, s+, t−, t+

]
.

This specialised version of the cross ratio provides the following geomet-
rical properties for geodesics in Un.

Lemma 2.1.5. Let s and t be two oriented geodesics as above. If s and
t intersect, then ∆(s, t) = ∆(t, s). If s and t are disjoint, then ∆(s, t) =
∆(t, s) if one of the endpoints is ∞ or if the cross ratios are real, otherwise
the two cross ratios are conjugate.

Proposition 2.1.6. Two oriented hyperbolic geodesics s and t intersect
if and only if their cross ratio ∆(s, t) ∈ R<0. Furthermore s and t are
perpendicular if and only if ∆(s, t) = −1.

Now consider three oriented geodesics r, s and t in Un with pairwise
different endpoints r−, r+, s−, s+ and t−, t+ in Vn−1 ∪ {∞}.

Definition 2.1.7. The ordered triple (r, s, t) is called a double bridge if s is
orthogonal to r and t such that r 6= t.

Definition 2.1.8. The quantity

∆(r, s, t) :=
[
s+, s−, r+, t+

]
(2.4)

is called the double bridge cross ratio of (r, s, t).

If | ∆(r, s, t) |> 1, then the intersections r ∩ s and s ∩ t do not coincide
and we call the double bridge properly oriented.

2.2 On right-angled polygons in hyperbolic space

We now have all the tools we need to construct a right-angled polygon of
p edges in Un. We state the precise definition of an oriented right-angled
polygon. Notice that, in contrast with the usual definition, our polygons
need not to be planar.

Definition 2.2.1. Let p ≥ 5. An (oriented) right-angled polygon with p
sides in Un (or p-gon for short), denoted Πp, is a p-tuple of oriented geodesics
(S0, S1, . . . , Sp−1) with Si−1 6= Si+1 for i (mod p) and such that Si is orthog-
onal to Si+1 for 0 ≤ i ≤ p− 2 and Sp−1 is orthogonal to S0.

Definition 2.2.2. A p-gon Πp is said to be non-degenerate if, for i (mod p):

i) consecutive intersections do not coincide, that is Si−1 ∩ Si 6= Si ∩ Si+1;

ii) each triple (Si−1, Si, Si+1) is properly oriented, that is, Si is oriented
from Si−1 to Si+1.

18



∞

0

s

−1

r

1

−x

t

x

Figure 2.1: The standard double bridge configuration.

Remark 2.2.3. It is no restriction to only consider p-gons in Up−1 since
the convex hull of p geodesics can at most have dimension p− 1. Hence, we
will always refer to this case.

Since the direct isometries of Up act triply transitively on Vp−1, we can
always normalise the situation and assume that the first two geodesics of
Πp are S0 = (−1, 1) and S1 = (0,∞). This implies, due to orthogonality,
that the third geodesic is of the form S2 = (−x, x). This configuration is
called the standard double bridge (see Figure 2.1). A quick computation
using (2.3) shows that the double bridge cross ratio of three geodesics in
this configuration is given by

∆((−1, 1), (0,∞), (−x, x)) = [∞, 0, 1, x] = x.

Therefore, provided that the first two geodesics in a double bridge are (−1, 1)
and (0,∞), the double bridge cross ratio completely describes the third
geodesic. Hence the main strategy for the construction of a p-gon will be
to map triples of geodesics into the standard double bridge configuration
and exploit the double bridge cross ratio. For this we introduce adequate
mappings as follows.

Definition 2.2.4. For a set of given Clifford vectors {q1, . . . , qp−3} ⊂ Vp−2\
{0} define, for 1 ≤ i ≤ p− 3, the isometry φi of the upper half-space Up by
means of the following Clifford matrix(√−2 qi

−1
qi
√−2 qi

−1

√−2 qi
−1 −qi

√−2 qi
−1

)
. (2.5)
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The inverse isometry φ−1
i is represented by the Clifford matrix(

qi
√−2 qi

−1
qi
√−2 qi

−1

√−2 qi
−1 −√−2 qi

−1

)
. (2.6)

Remark 2.2.5.

i) For the definition of the square root of a Clifford vector see [19, Section
2.2];

ii) the isometry φi maps the two geodesics (0,∞) and (−qi, qi) into the
geodesics (−1, 1) and (0,∞);

iii) the concatenation φi ◦ φi−1 ◦ · · · ◦ φ1 is denoted by Φi.

Definition 2.2.6. Let (S0, . . . , Sp−1) be a right-angled p-gon. For i = 1,
. . ., p − 3 define the gauged (double bridge) cross ratio ∆̃i by the following
recursive definition:

∆̃1 := ∆ (S0, S1, S2) ,

∆̃i+1 := ∆ (Φi (Si) ,Φi (Si+1) ,Φi (Si+2)) ,

where the Clifford vector qi which is needed to define the map Φi is calculated
along the way as

qi := ∆̃i.

The gauged cross ratios will be the parameters encoding the information
for the construction of p-gons. For this, p− 3 parameters are needed. Let

Pp :=
{

(q1, . . . , qp−3) | qi ∈ Vp−2, |qi| > 1, 1 ≤ i ≤ p− 3
}

be a set of (p− 3)-tuples of non-zero Clifford vectors.

Denote by

RAPp :=
{

(S0, . . . , Sp−1) non-degenerate oriented right-angled p-gon in

Up−1 with S0 = (−1, 1) , S1 = (0,∞)
}

the set of (normalised) non-degenerate oriented right-angled p-gons.

Remark 2.2.7. Notice that a (p − 3)-tuple in Pp, which encodes the ge-
ometrical information of the sides of a p-gon, can a priori still describe a
degenerate p-gon.
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The gauged double bridge cross ratio justifies the definition of the map

∆̃ : RAPp → Pp, Πp = (S1, . . . , Sp−1) 7→ (∆̃1, . . . , ∆̃p−3)

which to each p-gon associates its set of p − 3 gauged double bridge cross
ratios. Denote the image of this map by P∗p := ∆̃ (RAPp) ⊂ Pp. This is
the set of parameters which yield a non-degenerate Πp. Our main result can
now be stated as follows.

Theorem 2.2.8. The map ∆̃ : RAPp → P∗p is a bijection. The inverse
map is given as an explicit construction of the p-gon Πp depending on p− 3
parameters in P∗p .

Concretely, assume we are given p − 3 parameters (q1, . . . , qp−3) ∈ P∗p .
The construction of the Πp goes as follows.

Start The first two geodesics are fixed as S0 = (−1, 1) and S1 = (0,∞).
Since this is the standard double bridge configuration considered above, we
find S2 = (−q1, q1) from the condition ∆(S0, S1, S2) = q1.

The geodesic S3 To find the endpoints of S3, we benefit from the isome-
tries φ1 and φ−1

1 (see (2.5) and (2.6)). The isometry φ1 maps (0,∞) to
(−1, 1), S2 to (0,∞) and S3 to φ1(S3). These three geodesics are now in
the standard double bridge configuration. Since q2 is the cross ratio of this
double bridge, the third geodesic is φ1(S3) = (−q2, q2). We now apply the
isometry φ−1

1 which maps (−1, 1) to (0,∞), (0,∞) to S2 and φ1(S3) to S3.
The geodesic S3 is then given by S3 = (φ−1

1 (−q2), φ−1
1 (q2)).

The next geodesic in the general case The further procedure expands
the previous idea. First we note that the geodesic Φ2(S4) is given by the
parameter q3. The geodesic S4 would then be the image of (−q3, q3) under
the isometry Φ−1

2 mapping (−1, 1), (0,∞) and Φ2(S4) to S2, S3 and S4,
respectively.

In general, assuming we have calculated the geodesics S0, . . . , Sk for
some k with 2 ≤ k ≤ p − 3, we can use Φ−1

k−1 in order to obtain Sk+1 =(
Φ−1
k−1(−qk),Φ−1

k−1(qk)
)
.

Existence of the last geodesic After using all the parameters q1, . . . ,
qp−3, we have determined the geodesics S0, . . . , Sp−2. As a consequence of
Proposition 2.1.6 the last common perpendicular between S0 and Sp−2 exists
and is unique as long as

∆ (S0, Sp−2) /∈ R−.

This last condition is ensured since (q1, . . . , qp−3) ∈ P∗p .
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2.2.1 Realisability conditions

Given any (p−3)-tuple in Pp, one can apply the construction of the previous
section in order to obtain a p-gon. However, without any further assumption
on this tuple, the resulting p-gon can be degenerate. A priori, we do not
know when a (p− 3)-tuple in Pp is actually in P∗p .

In the last part of this chapter we consider right-angled p-gons of the
highest possible dimension. For the realisability of this type of polygons we
have the following necessary criterion on the parameters.

Proposition 2.2.9. If the parameters q1, . . . , qp−3 ∈ Vp−2 give rise to a
right-angled polygon Πp whose intersection points are the vertices of a sim-
plex, then the parameters together with 1 have to form a basis of the Clifford
vectors according to 〈1, q1, . . . , qp−3〉 = Vp−2.

Finally, we consider the realisability of a right-angled pentagon as a 4-
simplex having all the edges of the same length (see Figure 2.2). Essential
for this is the work of Dekster and Wilker [16]. They provide a criterion for
the existence of n-simplices with vertices p1, . . . , pn+1 of given side lengths
and diagonal lengths lij = dU (pi, pj), 1 ≤ i < j ≤ n + 1, in the hyperbolic
space Un.

According to [16], a symmetric (n + 1) × (n + 1)-matrix L = (lij) is
allowable if lii = 0 and lij > 0 for i 6= j. The matrix L is called realisable
in Un if there are n + 1 points p1, . . . , pn+1 in Un with the given distances
dU (pi, pj) = lij .

Their realisability criterion can be quantified as follows.

Theorem 2.2.10. Let L = (lij) be an allowable (n + 1) × (n + 1)-matrix
and let its entries be used to form the (n× n)-matrix S = (sij) where

sij = cosh(li,n+1) cosh(lj,n+1)− cosh(lij).

Then L is realisable if and only if the eigenvalues of S are non-negative. If
L is realisable, then the dimension of such a realisation is equal to the rank
of S.

As a consequence of Theorem 2.2.10, we obtain the following result for
the realisability of a pentagon with all sides of equal length.

Proposition 2.2.11. A right-angled hyperbolic pentagon Π5 = (S0, . . . , S4)
with all side lengths equal to a > 0 is realisable as a hyperbolic 4-simplex if

and only if cosh(a) < γ, where γ = 1+
√

5
2 denotes the golden ratio.
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Figure 2.2: A hyperbolic pentagon with right-angled cyclic edge path of side
length a.

For all the proofs and more details, we refer to our original paper [19].
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Chapter 3

Trace field and
commensurability of
hyperbolic lattices in low
dimensions

In this chapter we start to investigate the commensurability problem of hy-
perbolic lattices in low dimensions as introduced in Section 1.4. Throughout
this chapter the model of reference for the hyperbolic n-space is the upper
half-space model Un, n ≥ 2.

We shall begin with a quick summary about commensurability of dis-
crete subgroups of direct isometries acting on U3. As we have seen in the
previous chapter, isometries in Isom+(U3) can be identified with elements
in PSL(2,C). In this special case the situation is well understood, and two
powerful commensurability invariants are known: the invariant trace field
and the invariant quaternion algebra. The main reference is the book of
Maclachlan and Reid [48].

We then consider the space U5 and discrete groups of direct isometries
acting on it. Following work of Wilker [77], we can describe elements of
Isom+(U5) as 2×2 quaternionic matrices with Dieudonné determinant equal
to 1 (see Section 3.2.1). By complexifying these matrices, we introduce a
trace field associated to a discrete subgroup Γ of Isom+(U5). In this way
and in analogy to the work of Maclachlan and Reid, we will show that this
new trace field is an algebraic number field in the case that Γ is cocompact
and torsion-free (see Section 3.3).
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3.1 Commensurability of Kleinian groups

Let U3 denote the upper half-space model as given by C×R+. From Section
2.1.2 we know that the direct isometries in this model can be identified with
Clifford matrices with entries in the extended Clifford group of the Clifford
algebra C1, namely

Isom+(U3) ∼= PSL(2, C1) = PSL(2,C).

A cofinite discrete subgroup in PSL(2,C) is classically called a Kleinian
group. Kleinian groups and their commensurability have been intensively
studied by Maclachlan, Reid and others (see for example [48]). For a
Kleinian group Γ define the trace field

Q(Tr Γ) = Q(±Tr γ | γ ∈ Γ) (3.1)

which equals the standard trace field of a lift of Γ in SL(2,C). Obviously,
Q(Tr Γ) is a conjugacy invariant. Furthermore, it satisfies the following
arithmetic property.

Theorem 3.1.1 ([48], Theorem 3.1.2). Let Γ be a Kleinian group. Then
Q(Tr Γ) is an algebraic number field.

However Q(Tr Γ) is not a commensurability invariant. Instead, associate
to Γ the group

Γ(2) = 〈γ2 | γ ∈ Γ〉.
Following Maclachlan and Reid we introduce the following notions.

Definition 3.1.2.

i) The field KΓ(2) := Q(Tr(γ) | γ ∈ Γ(2)) is called the invariant trace field ;

ii) the algebraAΓ(2) :=
{∑

aiγi | ai ∈ KΓ(2), γi ∈ Γ(2)
}

, where only finitely
many ai’s are non-vanishing, is called the invariant quaternion algebra.

The terminologies above are justified since both KΓ(2) and AΓ(2) are
commensurability invariants (see [48, Theorem 3.3.4 and Corollary 3.3.5]).

In the special case of arithmetic groups in PSL(2,C), the following im-
portant result holds.

Theorem 3.1.3 ([48], Theorem 8.4.1). Let Γ be an arithmetic Kleinian
group. Then

{
KΓ(2), AΓ(2)

}
is a complete set of commensurability invari-

ants.

For a more in-depth study of these two invariants and for their practical
use we refer to [48].
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3.2 Analogies in higher dimensions

A nice property of U3 = C×R+ is the identification of direct isometries with
small-sized complex matrices. Recall from Section 2.1.2 that 2× 2 Clifford
matrices with Ahlfors determinant 1 represent direct hyperbolic isometries
according to

Isom+(Un) ∼= PSL(2, Cn−2).

For n ≥ 5, the Clifford algebra Cn−2 is not commutative anymore. More
specifically, the definition of a suitable trace for an element γ ∈ SL(2, Cn−2)
which is conjugacy invariant carrying geometrical information becomes dif-
ficult. An attempt is due to Wada [75] who associates to γ a set of n+1 real
traces. These traces are conjugacy invariant and allow one to characterise
the Möbius transformation γ with respect to its fixed-point behaviour. His
approach, however, does not seem adequate to single out a suitable trace
field.

In the following, we look at n = 5 and view Isom+(U5) in a different way
by using quaternions and their complex interpretation.

3.2.1 Direct isometries of the hyperbolic 5-space

Let H = {x1 +x2i+x3j+x4k | x1, x2, x3, x4 ∈ R} denote the normed vector
space of Hamiltonian quaternions and interpret U5 according to

U5 = {x = (x1, x2, x3, x4, t) ∈ R5 | t > 0} ∼= H × R>0,

with boundary given by ∂U5 = H ∪ {∞}. Following Wilker [77], consider
the group

SL4(2,H) :=

{(
a b
c d

)
∈ Mat(2,H) : | ad− aca−1b |= 1

}
,

and the projective group

PSL4(2,H) = SL4(2,H)/{±I}.

The quantity | ad− aca−1b | is called the Dieudonné determinant. Rep-

resentatives

(
a b
c d

)
of elements in PSL4(2,H) act bijectively on H ∪{∞}

by
T (x) = (ax+ b)(cx+ d)−1 (3.2)

with the identification T (−c−1d) =∞, T (∞) = ac−1 if c 6= 0, and T (∞) =
∞ otherwise.

Using Poincaré extension, the action of PSL4(2,H) given by (3.2) can
be extended to the upper half-space U5. In this way we obtain an isomor-
phism between PSL4(2,H) and the group Möb+(4) of orientation preserv-
ing Möbius transformations of H∪{∞} (see also [77, Theorem 2]). Since the
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group Isom+
(
U5
)

of orientation preserving isometries of U5 is isomorphic
to Möb+(4), we get the following identification:

Isom+
(
U5
) ∼= Möb+ (4) ∼= PSL4(2,H). (3.3)

3.2.2 Complexification of quaternionic matrices

Consider a quaternion q = x1 + x2i + x3j + x4k, with i2 = j2 = −1 and
ij = k. This quaternion can be expressed in a unique way by means of two
complex numbers u and v according to

q = (x1 + x2i) + (x3 + x4i)j =: u+ vj ∈ spanC(1, j).

In this way q can be interpreted as the tuple (u, v) ∈ C2 so that ∂U5 =
C2 ∪ {∞}. Similarly to the interpretation of a complex number by a 2 × 2
real matrix, we can furthermore represent q as a complex matrix via

q = u+ vj v
(
u v
−v u

)
. (3.4)

This interpretation enjoys the following properties:

i) q−1 v
(
u v
−v u

)−1

for q 6= 0;

ii) q = x1 − x2i− x3j − x4ij v
(
u −v
v u

)
;

iii) |q|2 = det

(
u v
−v u

)
;

iv) <(q) = x1 = 1
2 Tr

(
u v
−v u

)
.

Inspired by (3.4), define the map ι : SL4(2,H)→ SL(4,C) as

(
a b
c d

)
7→


a1 a2

−a2 a1

b1 b2
−b2 b1

c1 c2

−c2 c1

d1 d2

−d2 d1

 . (3.5)

The map ι is an injective group homomorphism (see [4], [24]). Let M
be the image of SL4(2,H) with respect to ι, that is,M is the matrix group
given by

M =

A =


a1 a2 b1 b2
−a2 a1 −b2 b1
c1 c2 d1 d2

−c2 c1 −d2 d1

 ∈ Mat(4,C)

∣∣∣∣∣ det(A) = 1

 , (3.6)
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which is a connected semisimple Lie group (see [41, Chapter I.17]). By
construction, we get the group isomorphism ι : SL4(2,H)→M.

Based on the correspondence (3.3), we finally obtain the following com-
plexified picture for Isom+(U5):

Isom+(U5) ∼= PSL4(2,H) ∼= PM :=M/{±I} (3.7)

3.3 A trace field for subgroups of Isom+(U5)

We start this section by defining a trace and a trace field that can be associ-
ated to every element and to every subgroup of Isom+(U5) ∼= PSL4(2,H).

Definition 3.3.1. Let A =

(
a b
c d

)
∈ SL4(2,H) be a quaternionic matrix

of Dieudonné determinant 1. The trace of A is defined by

T (A) := <(a+ d) =
1

2
Tr (ι(A)) .

Remark 3.3.2. In [56], Parker and Short define a quantity τ(A) for a matrix
A ∈ SL4(2,H) which takes the role of a quaternionic trace. However, τ(A)
is not a conjugacy invariant and hence not suitable for our purpose.

Let Γ be a discrete subgroup of PSL4(2,H) and consider a lift of Γ to
SL4(2,H) which we denote by the same letter Γ if the context is clear. No-
tice that the traces of elements of PSL4(2,H) and of their lifts to SL4(2,H)
differ only by a sign.

Definition 3.3.3. The field

Q(T (Γ)) := Q(T (γ) | γ ∈ Γ)

is called the trace field associated to Γ.

Obviously, the trace field Q(T (Γ)) is a conjugacy invariant. In the fol-
lowing we prove a result analogous to Theorem 3.1.1 but in a more restrictive
setting.

Theorem 3.3.4. Let Γ < PSL4(2,H) be a torsion-free cocompact discrete
group. Then Q(T (Γ)) is an algebraic number field.

The proof of this theorem is similar to the one of Theorem 3.1.2 in [48]
but requires an adaptation to our situation. A very condensed version of
this strategy can be found in the last paragraph of [8, p. 124].

Proof.
Step 1. Let Γ < PSL4(2,H) be a torsion-free cocompact discrete group.
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Then, Γ is finitely presented, non-elementary2 and irreducible (see [59, The-
orem 13.5.3], [39, Kapitel 2], [40, Chapter 4], for example).

Next, consider a lift of Γ < PSL4(2,H) to SL4(2,H) and pass to
its complexified image in M – denoted by Γ again – by using the group
isomorphism ι : SL4(2,H)→M as given by (3.5).

Since Γ is finitely presented, there is a finite set of generators A =
{A1, . . . , Ak} with Ai ∈M and a finite set of relations R = {R1, . . . , Rl} for
Γ satisfying

Rj(A1, . . . , Ak) = I ∀ 1 ≤ j ≤ l.
Since Γ is non-elementary, there are at least two loxodromic elements

without common fixed-points in ∂U5 = C2 ∪ {∞} (see [38, Corollary 3.25],
for example). Pick two of them and assume that they are in A, say A1

and A2. Modulo conjugation, we can suppose, without loss of generality,
that the fixed-points of A1 and A2 are 0, ∞ and 1, q, respectively, with
q = (u, v) ∈ C2. Indeed, Möbius transformations act triply transitively on
C2 ∪ {∞}, and the trace field Q(T (Γ)) is a conjugacy invariant.

Step 2. Consider the space of deformations of Γ <M,

R = R(Γ,M) = {ρ : Γ→M | ρ is a homomorphism},

equipped with the pointwise convergence topology (see [8]). Denote by ρ0

the identity representation in R.
We shall construct an algebraic variety V(Γ) in R. The first equations

defining V(Γ) are given by the relations

R1 (A1, . . . , Ak) = · · · = Rl (A1, . . . , Ak) = I. (3.8)

The conditions
det(Ai) = 1 for 1 ≤ i ≤ k, (3.9)

yield further k equations.
In this way, we obtain at most 16 l+ k equations. To these equations we

add the ones given by the fixed-points conditions according to

A1(0) = 0, A1(∞) =∞, A2(1) = 1 and A2(q) = q. (3.10)

In the setting (3.2), the fixed-points equations are given by the quaternionic
identities

b1 = 0 = c1 and a2 + b2 = c2 + d2,

which yield a total of 12 equations for the (complex) coefficients of A1 and
A2.

2A hyperbolic group Γ is said to be non-elementary if it does not exist a finite Γ-orbit
in Hn ∪ ∂Hn.
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The equations (3.8), (3.9) and (3.10) are polynomial expressions over Z
and define an algebraic set (for each ρ) in R defined over Q. Choose an
irreducible subset of this algebraic set, which contains the inclusion map ρ0,
and call this algebraic variety V(Γ).

Step 3. The aim is to show that the algebraic variety V(Γ) has dimension
zero. To this end, we need and cite two fundamental results. The first one is
the Local Rigidity Lemma for irreducible lattices in semisimple Lie groups
(see [8, Theorem 1.1]).

Theorem 3.3.5 (Local Rigidity Lemma). Let ρ ∈ R be a deformation of Γ
sufficiently close to the identity ρ0. Then ρ is an isomorphism, and ρ(Γ) is
a lattice.

The second important ingredient is Mostow’s Rigidity Theorem [52].

Theorem 3.3.6 (Mostow’s Rigidity Theorem). For n ≥ 3, let Γ1 and Γ2

be two isomorphic cocompact lattices in Isom(Hn). Then Γ1 and Γ2 are
conjugate in Isom(Hn).

Now, assume that dim(V(Γ)) > 0. Then, there are infinitely many dis-
tinct points in V(Γ) and thus infinitely many distinct ρs ∈ R \ {ρ0} in an
arbitrary neighbourhood of ρ0. By Theorem 3.3.5, for every ρs, the image
group ρs(Γ) is a cocompact lattice isomorphic to ρ0(Γ) = Γ. By Theorem
3.3.6, all these groups are conjugate to Γ in Isom(H5).

This is not possible. Indeed, the equations (3.10) imposed by the fixed-
points conditions on A1 and A2 allow only four possible conjugate images of
Γ. These possibilities are described by the following mappings of the points
{0,∞, 1, q}:

{0,∞, 1, q} → {0,∞, 1, q},
{0,∞, 1, q} → {0,∞, q, 1},
{0,∞, 1, q} → {∞, 0, 1, q},
{0,∞, 1, q} → {∞, 0, q, 1}.

Hence, dim(V(Γ)) = 0.

Step 4. By Step 3, the variety V(Γ) has dimension zero. Hence, V(Γ)
consists of a single point whose coordinates are algebraic numbers (see [48,
Lemma 3.1.5]). Therefore, all the coefficients of the matrices Ai , 1 ≤ i ≤ k ,
are algebraic numbers. Since Γ is generated by A1, . . . , Ak, all the coefficients
of the matrices in Γ lie in a finite extension F of Q. Hence Q(T (Γ)) ⊂ F is
an algebraic number field.

By Theorem 3.3.4 we know that the trace field Q(T (Γ)) is an alge-
braic number field. However it is not clear how to relate Q(T (Γ)) to a
commensurability invariant for Γ < Isom+(U5). In fact, in contrast to the
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three-dimensional case, the trace T (γ) for γ ∈ Γ does not even contain
geometrically relevant information such as the rotational effect of γ.

As a consequence, we do not continue the study of commensurability of
hyperbolic lattices in higher dimensions as started above in terms of trace
fields.

Instead we take another direction: we shall restrict and investigate the
commensurability problem for the important class of hyperbolic Coxeter
groups in Isom(Hn), n ≥ 2, which are characterised by a nice finite presen-
tation. In this way, we are able to obtain new commensurability conditions
which will be exposed in the next chapter.
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Chapter 4

Commensurability of
hyperbolic Coxeter groups

In this chapter we focus our attention on the commensurability of hyperbolic
Coxeter groups. The complete classification of hyperbolic Coxeter groups
into commensurability classes has been achieved for certain classes such as
Coxeter simplices [36] and Coxeter pyramids [28]. This has been done using
methods of algebraic and geometrical nature. However there is no general
method to classify Coxeter groups up to commensurability up to date.

When considering arithmetic hyperbolic lattices, a necessary and suffi-
cient criterion for commensurability is known due to Gromov and Piatetski-
Shapiro [27]. Their result states that two arithmetic hyperbolic lattices are
commensurable if and only if their defining fields coincide and their quadratic
forms are similar over the field.

As our main contribution, we provide a necessary commensurability
condition which applies to any hyperbolic Coxeter group, even the non-
arithmetic ones.

In [69], Vinberg provides an arithmeticity criterion for hyperbolic Cox-
eter groups by associating a field and a quadratic form to them, the Vinberg
field and Vinberg form. We show that they encode commensurability infor-
mation. However this property applied to non-arithmetic hyperbolic Coxeter
groups is a necessary but not sufficient commensurability condition.

In the first part of this chapter we treat arithmetic hyperbolic lattices
and present the commensurability criterion due to Gromov and Piatetski-
Shapiro. We then discuss the theory needed for the classification of quadratic
forms into similarity classes due to Maclachlan [46].

In the second part we exploit the work of Vinberg [69] motivating us to
associate a field and a quadratic form to an arbitrary hyperbolic Coxeter
group. After that, in the third part, we present and prove our commensura-
bility condition in Theorem 4.3.1. We then refine this result by introducing
the notion of the Vinberg ring and showing its commensurability invariance.

32



Section four is devoted to the discussion of some consequences of these con-
ditions, like the stability of quasi-arithmeticity under commensurability. In
the last part, we apply the Hasse-Minkowski theorem in order to classify
Vinberg forms up to similarity. All the developed theory will be illustrated
with examples throughout the chapter.

4.1 Commensurability of arithmetic hyperbolic
lattices

We start by considering hyperbolic lattices which are arithmetic of the sim-
plest type (see Definition 1.5.1). Before we start discussing their commen-
surability, we need the following definitions.

Definition 4.1.1. Let (V1, q1), (V2, q2) be two quadratic spaces of dimension
m ≥ 2 over a field K. Then (V1, q1) and (V2, q2) are

i) isometric (denoted by ∼=) if and only if there is an isomorphism S :
V1 → V2 such that

q1(x) = q2(Sx) ∀x ∈ V1;

ii) similar (denoted by v) if there exist a λ ∈ K∗ such that (V1, q1) and
(V2, λq2) are isometric. The scalar λ is called similarity factor.

Remark 4.1.2.

i) Isometry and similarity induce equivalence relations;

ii) in the sequel, we often abbreviate and speak about isometric (similar)
quadratic forms instead of isometric (similar) quadratic spaces;

iii) in the literature, sometimes two isometric quadratic forms are called
equivalent ;

iv) if one represents quadratic forms with two m × m matrices Q1 and
Q2 over K, then being isometric means that there exists an invertible
matrix S ∈ GL(m,K) such that Q1 = STQ2S.

Let Γ1 and Γ2 be two arithmetic hyperbolic lattices, that is, they are
discrete subgroups of Isom(Hn), n ≥ 2, subject to the Definition 1.5.1. Let
(V1, q1) and (V2, q2) be the quadratic spaces associated to Γ1 and Γ2 over
the fields K1 and K2, respectively.

Theorem 4.1.3 ([27], Theorem 2.6). Let Γ1, Γ2 < Isom(Hn) be two arith-
metic groups as above. Then they are commensurable if and only if K1 =
K2 =: K and their quadratic spaces are similar over K.
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Following Theorem 4.1.3, the commensurability classification of arith-
metic hyperbolic lattices boils down to the similarity classification of their
quadratic forms. In [46], Maclachlan provides such a criterion, describing a
complete set of commensurability invariants for arithmetic hyperbolic lat-
tices. His invariants rely strongly on two elements of the Brauer group of a
quadratic form: the Hasse invariant and the Witt invariant.

In the next section we will develop the algebraic background needed for
the similarity classification. Experts on the matter can skip this section and
go directly to Section 4.1.2, where the criterion of Maclachlan is stated.

4.1.1 The Brauer group and the Hasse invariant

The study of similarity of quadratic forms heavily relies on quaternion alge-
bras and elements of the Brauer group. We recall all the important defini-
tions and properties. For a more detailed explanation we refer to [43]. Let
K be a field of characteristic different from 2, and let q be a quadratic form
of dimension m over K, that is, q is defined on a vector space of dimension
m over K.

Definition 4.1.4. Let a, b ∈ K∗. A quaternion algebra (a, b)K , ofted
denoted by (a, b) if the context is clear, is the algebra over K generated by
the elements 1, i, j, ij with the relations i2 = a, j2 = b and ij = −ji.

A quaternion algebra is a four-dimensional, central and simple algebra3.
Conversely, every four-dimensional, central and simple algebra is a quater-
nion algebra. The basic example of such an algebra is the Hamiltonian
quaternion algebra H = (−1,−1)R.

Let A be a central and simple algebra over K. Then Wedderburn’s
theorem states that there is a division algebra D and a natural number r
such that A ∼= Mat(r,D). The algebra D is unique up to isomorphism.
One can then define an equivalence relation on the set of central simple
algebras in the following way: two central simple algebras A ∼= Mat(r,D)
and A′ ∼= Mat(r′, D′) over K are equivalent if and only if D ∼= D′. In
particular, two central simple algebras of the same dimension are equivalent
if and only if they are isomorphic.

On the set of equivalence classes of central simple algebras we define a
multiplication between classes by means of [A] · [A′] := [A ⊗K A′]. This
operation has [(1, 1)K ] as the neutral element and the inverse of a class [A]
is [A]−1 := [Aop] where Aop denotes the opposite algebra of A, defined by
a ·op b = b ·a. The set of equivalence classes endowed with this multiplication
is an abelian group, the Brauer group, denoted by Br(K). In order to
simplify the notation, we will write A ·B instead of [A] · [B].

3An algebra over K is said to be central if its center is exactly K. Moreover it is said
to be simple if it does not have any non-trivial two-sided ideal.
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Of importance for the commensurability of arithmetic hyperbolic Cox-
eter groups is the set of isomorphism classes of quaternion algebras. This set
gives a subgroup of Br(K) (see [68, Theorem 2.9]). Moreover, the following
computational properties hold.

Proposition 4.1.5. For every a, b, c ∈ K∗, we have the following isomor-
phisms of quaternion algebras over K:

(a, b) ∼= (b, a), (a, c2b) ∼= (a, b), (a, a) ∼= (a,−1),

(a, 1) ∼= (a,−a) ∼= (1, 1), (a, 1− a) ∼= (1, 1) if a 6= 1,

(a, b) · (a, c) ∼= (a, bc).

If the field K is a number field, there is a very powerful tool to decide if
two quaternion algebras are isomorphic and, hence, equivalent.

Theorem 4.1.6 ([46], Theorem 4.1). Let K be a number field. Two quater-
nion algebras over K are isomorphic if and only if they have the same ram-
ification set.

Remark 4.1.7. For the definition of a ramification set Ram(A) for a quater-
nion algebra A and its theory we refer to [46]. In this thesis, the compu-
tations of ramification sets are done using the package RamifiedPlaces of
Magma c©.

The similarity classification of quadratic forms relies on two elements
of the Brauer group, which are closely related to one another: the Hasse
invariant and the Witt invariant.

Definition 4.1.8. The Hasse invariant s(q) of a diagonal quadratic form
q = 〈a1, . . . , am〉 of dimension m over K is the element of the Brauer group
Br(K) represented by the quaternion algebra

s(q) =
⊗
i<j

(ai, aj)K .

The Hasse invariant s(q) is independent of the diagonalisation chosen.
It is moreover an isometry invariant (see [43, Proposition 3.18]). However it
is not a similarity invariant. Indeed, for any quadratic form q of dimension
m over K and for any λ ∈ K∗ we have (see also [50])

s(λq) =

{
(λ,disc(q)) · s(q) m even,

(λ, (−1)
m−1

2 ) · s(q) m odd,
(4.1)

where disc(q) = (−1)
m(m−1)

2 det(q) denotes the discriminant of q (sometimes
also called the signed determinant).

We pass now to the Witt invariant c(q) of a quadratic space (V, q) over
K. Associated to (V, q) is a Clifford algebra Cl and its even part Cl0 (see
for example [43, Chapter 5]).
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Definition 4.1.9. Let (V, q) be a quadratic space over a field K. The Witt
invariant c(q) is the element of Br(K) defined as follows:

c(q) :=

{[
Cl0(V, q)

]
if dimV is odd,[

Cl(V, q)
]

if dimV is even.

We can circumvent the technicalities of the definition above since there is
a close relationship between the Hasse invariant s(q) and the Witt invariant
c(q) according to the following proposition.

Proposition 4.1.10 ([43], Chapter V, Proposition 3.20). Let (V, q) be a
quadratic space over K. The Hasse invariant s(q) and the Witt invariant
c(q) are related as follows:

c(q) =


s(q) dimV ≡ 1, 2 (mod 8),
s(q) · (−1,− det q) dimV ≡ 3, 4 (mod 8),
s(q) · (−1,−1) dimV ≡ 5, 6 (mod 8),
s(q) · (−1,det q) dimV ≡ 7, 8 (mod 8).

(4.2)

4.1.2 Maclachlan’s similarity classification

As already mentioned, Maclachlan gives a complete set of invariants de-
scribing the similarity class of a quadratic form q which has appropriate
signature, that is: q is of dimension n+ 1 ≥ 3 over a totally real field K, q
is of signature (n, 1), and the image of q under every non-trivial embedding
σ : K ↪→ R becomes positive definite4.

Let Γ be an arithmetic group with defining field K acting on Hn. Let
(V, q) be the quadratic space of dimension n + 1 over K associated to Γ
and put δ := disc(q). Since Γ is arithmetic, q has appropriate signature.
Denote by B the quaternion algebra representing the Witt invariant c(q).
The similarity class of (V, q) depends on the parity of n as follows.

Theorem 4.1.11 ([46], Theorem 7.2). When n is even, the similarity class
of the quadratic space (V, q) of dimension n+ 1 is in one-to-one correspon-
dence with the isomorphism class of the quaternion algebra B.

Theorem 4.1.12 ([46], Theorem 7.4). When n is odd, the similarity class of
the quadratic space (V, q) of dimension n+1 is in one-to-one correspondence
with the isomorphism class of the quaternion algebra B ⊗K K(

√
δ) over

K(
√
δ). Moreover, if δ is a square in K∗, then the similarity class is in

one-to-one correspondence with the isomorphism class of B over Q.

Remark 4.1.13. Maclachlan’s similarity classification for quadratic forms
as stated above is also valid for quasi-arithmetic hyperbolic lattices. Indeed,
their quadratic forms have appropriate signature as well (see Section 4.5).

4For the image of q under σ we mean applying the map σ to every coefficient of q.
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4.2 Vinberg’s arithmeticity criterion and
Vinberg’s construction

Deciding whether a hyperbolic Coxeter group is arithmetic, quasi-arithmetic
or nq-arithmetic can be done by means of the well-known arithmeticity
criterion of Vinberg [69, Theorem 2]. A crucial role is played by the cycles
of a matrix.

Definition 4.2.1. Let C = (cij)1≤i,j≤m be a matrix. A cycle (or cycle
product) is defined as

ci1i2ci2i3 . . . cil−1ilcili1

for any {i1, i2, . . . , il} ⊂ {1, 2, . . . ,m}. A cycle is called simple if the indices
ij in the cycle are all distinct.

Theorem 4.2.2 (Vinberg’s arithmeticity criterion). Let Γ < Isom(Hn) be a
Coxeter group of rank N and denote by G = (gij)1≤i,j≤N its Gram matrix.

Let K̃ be the field generated by the entries of G and let K(Γ) be the field
generated by all the possible cycles of G. Then Γ is quasi-arithmetic if and
only if:

i) K̃ is totally real;

ii) for any embedding σ : K̃ ↪→ R which is not the identity on K(Γ), the
matrix Gσ is positive semidefinite.

Moreover, a quasi-arithmetic group Γ is arithmetic if and only if

iii) the cycles of 2G are algebraic integers in K(Γ).

In both cases, Γ is defined over K(Γ).

Remark 4.2.3.

i) As usual Gσ is the matrix obtained by applying the embedding σ the
every coefficient of G;

ii) by Remark 1 of [69], a non-cocompact hyperbolic Coxeter group is quasi-
arithmetic if and only if it is defined over Q. This implies that a non-
cocompact Coxeter group is arithmetic if and only if the cycles of 2G
are rational integers;

iii) if the Coxeter graph of a quasi-arithmetic hyperbolic Coxeter group does
not have any dotted edges, then the group is arithmetic ([69, Remark
3]).
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By Theorem 4.1.3, we can detect the commensurability of arithmetic hy-
perbolic Coxeter groups with the help of their defining fields and quadratic
forms. The criterion of Vinberg explicitly describes these fields in terms
of the cycles of their Gram matrices. Furthermore, the construction of the
quadratic form is given in the proof of Theorem 4.2.2 and goes as follows
(see also [48, §10.4], [47] and [23]).

Let Γ be a hyperbolic Coxeter group of rank N and let e1, . . . , eN ∈
Rn,1 be the outer normal unit vectors of its Coxeter polyhedron. Let G =
(gij)1≤i,j≤N be the Gram matrix of Γ. For any {i1, i2, . . . , ik} ⊂ {1, 2, . . . , N}
consider the cyclic product of 2G

bi1i2...ik := 2kgi1i2gi2i3 . . . gik−1ikgiki1 . (4.3)

Define the field K(Γ) := Q({bi1i2...ik}) of all cycles of 2G. It is obvious that
K(Γ) is generated by the simple cycles.

Remark 4.2.4.

i) A non-zero cycle in K(Γ) corresponds to a closed path on the Coxeter
graph of Γ;

ii) the power of 2 in the definition (4.3) has no influence on the computation
of the cycle field K(Γ). It is left in the definition anyway for coherence
with Vinberg’s arithmeticity criterion part iii). In Section 4.3.4, we will
use the cycles (4.3) to define a certain ring.

Next, for {i1, i2, . . . , ik} ⊂ {1, 2, . . . , N}, define the vectors

v1 := 2e1 and vi1i2...ik := 2kg1i1gi1i2 . . . gik−1ikeik . (4.4)

Consider the K(Γ)-vector space V spanned by the vectors {vi1i2...ik}
according to (4.4). By [23, Lemma 1], V is of dimension n+ 1. Moreover, V
is left invariant by Γ. Indeed, let sej be a generating reflection of Γ. We get

sej (vi1i2...ik) = vi1i2...ik − 2〈vi1i2...ik , ej〉ej
= vi1i2...ik − 2k+1g1i1gi1i2 . . . gik−1ik〈eik , ej〉ej (4.5)

= vi1i2...ik − vi1i2...ikj .

Let us compute the Lorentzian product of two spanning vectors of V :

〈vi1i2...ik , vj1j2...jl〉 = 2kg1i1gi1i2 . . . gik−1ik · 2lg1j1gj1j2 . . . gjl−1jl · gikjl
=

1

2
(2k+l+1g1i1gi1i2 . . . gik−1ikgikjlgjljl−1

. . . gj11) (4.6)

=
1

2
· b1i1...ikjl...j1 ∈ K(Γ).

38



Since 2G is of signature (n, 1), the restriction of the Lorentzian product
on V yields a quadratic form q = qV of signature (n, 1) on V .

By combining the equations (4.5) and (4.6) we also get

〈sej (vi1i2...ik), sej (vj1j2...jl)〉 = 〈vi1i2...ik , vj1j2...jl〉. (4.7)

Indeed, by linearity of the Lorentzian product and by commuting factors
appropriately 〈sej (vi1i2...ik), sej (vj1j2...jl)〉 is equal to

1

2
· b1i1...ikjl...j1 − b1i1...ikjjl...j1 +

1

2
· b1i1...ikjjjl...j1 .

Since gjj = 1, it follows that 1
2 · b1i1...ikjjjl...j1 = b1i1...ikjjl...j1 , and we get the

equality (4.7).
Let us make the following important observation: by the construction of

the K(Γ)-vector space V in terms of the vectors (4.4) and the form qV we
obtain a natural embedding Γ ↪→ O(V, q). This construction is independent
of the arithmetic nature of Γ.

Therefore any hyperbolic Coxeter group has an associated field and
quadratic form which justifies the following definition.

Definition 4.2.5. Let Γ be a hyperbolic Coxeter group. Then

i) the field K(Γ) = Q({bi1i2...il}) is called the Vinberg field of Γ;

ii) the quadratic form q = qV is called the Vinberg form of Γ;

iii) the quadratic space (V, q) is called the Vinberg space of Γ.

Example 4.2.6. Let us illustrate the Vinberg construction with an example.
Consider the nq-arithmetic Coxeter pyramid group Γ acting cofinitely on H4

and defined by the graph given in Figure 4.1.

4 4

4

∞

Figure 4.1: The Coxeter group Γ in Isom(H4).

Its Gram matrix is

G =



1 −
√

2/2 0 0 0 0

−
√

2/2 1 −
√

2/2 0 0 0

0 −
√

2/2 1 −1/2 0 0

0 0 −1/2 1 −
√

2/2 −1/2

0 0 0 −
√

2/2 1 −1
0 0 0 −1/2 −1 1

 .
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The Coxeter pyramid has the following outer normal unit vectors:

e1 = (1, 0, 0, 0, 0),

e2 =

(−1√
2
,

1√
2
, 0, 0, 0

)
,

e3 = (0,−1, 1, 0, 1),

e4 =

(
0, 0,−3/4,

−1√
2
,
−1

4

)
,

e5 = (0, 0, 0, 1, 0),

e6 =
(

0, 0, 1 +
√

2,−1, 1 +
√

2
)
.

The group Γ has Vinberg field K(Γ) = Q
(√

2
)
. By the construction of

Vinberg, let V be the Q(
√

2)-vector space of dimension 5 spanned by the
vectors as given by (4.4). The following vectors form a basis of V :

v1 := 2e1 = (2, 0, 0, 0, 0),

v2 := 4g11g12e2 = (2,−2, 0, 0, 0),

v3 := 8g11g12g23e3 = (0,−4, 4, 0,−4),

v4 := 16g11g12g23g34e4 =
(

0, 0, 3, 2
√

2, 1
)
,

v5 := 32g11g12g23g34g45e5 =
(

0, 0, 0, 4
√

2, 0
)
.

The matrix representing the Vinberg form q equals

Q = 〈vi, vj〉1≤i,j≤5 =


4 4 0 0 0
4 8 8 0 0
0 8 16 8 0
0 0 8 16 16
0 0 0 16 32

 .

4.2.1 The Vinberg field and the Vinberg form of a Kleinian
group

In this part we see how the Vinberg field and the Vinberg form of a Coxeter
group in Isom+(H3) are linked with commensurability invariants of Kleinian
groups.

By Section 3.1, we know that Isom+(H3) ∼= PSL(2,C). In this con-
text, we have the two commensurability invariants as given by the invariant
trace field KΓ(2) and the invariant quaternion algebra AΓ(2). Recall that
these invariants form a complete set of commensurability invariants if Γ is
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arithmetic. Furthermore, they are connected to the Vinberg field and the
Vinberg form as follows.

Theorem 4.2.7 ([47], Theorem 3.1). Let Γ be a Kleinian group with Vin-
berg field K(Γ) and diagonalised Vinberg form q = diag(q1, q2, q3, q4) with
discriminant δ. Then

i) KΓ(2) = K(Γ)(
√
δ);

ii) AΓ(2) ∼= (−q1 q2,−q1 q3)KΓ(2).

This theorem suggests that the Vinberg field and the Vinberg form
should contain commensurability information for discrete groups in Isom(Hn)
for n ≥ 2, whether they are arithmetic or non-arithmetic. A corresponding
result is given by Theorem 4.3.1.

4.2.2 The field of definition of a hyperbolic Coxeter group

Let us provide first some elements about rings of definition which are needed
later in this chapter. Fundamental is the paper of Vinberg [71].

Definition 4.2.8. Let H be a Lie group. The adjoint trace field Q(Tr AdH)
of H is defined as the field generated by the traces of the adjoint represen-
tation of the elements of H, namely

Q(Tr AdH) = Q(Tr Ad(h) | h ∈ H).

Let U be a finite dimensional vector space over a field F , and let R ⊂ F
be an integrally closed Noetherian ring. Denote by ∆ a family of linear
transformations of U .

Definition 4.2.9. The ring R is said to be a ring of definition for ∆ if U
contains an R-lattice which is invariant under ∆.

If a principal ideal domain R is a ring of definition for ∆, then we can
find a basis of U such that every element of ∆ can be written as a matrix
having entries in R.

Remark 4.2.10. When R is a field we call R a field of definition. In this
case any R-lattice is a vector space. Recall that fields are always integrally
closed Noetherian principal ideal domains.

Let us specialise the context and consider a Coxeter group Γ < Isom(Hn).
As we have seen in Section 4.2, the space Rn,1 contains the K(Γ)-module
V which is invariant under Γ. That is, the Vinberg field K(Γ) is a field of
definition for Γ. This is not a surprise as K(Γ) is defined by means of the
cycles of the Gram matrix of Γ.
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Remark 4.2.11. The Vinberg field K(Γ) is actually the smallest field of
definition associated to Γ. This is a consequence of the following result.

Lemma 4.2.12 ([71], Lemma 11 and Lemma 12). Let Γ be a hyperbolic
Coxeter group with Gram matrix G and let F be a field of characteristic 0.
An integrally closed Noetherian ring R ⊂ F is a ring of definition for Γ if
and only if R contains all the simple cycles of 2G.

4.3 New commensurability conditions for
hyperbolic Coxeter groups

4.3.1 Stating the theorem

By Theorem 4.1.3, we know that if two arithmetic hyperbolic lattices are
commensurable, then their defining fields are equal and the associated qua-
dratic spaces are similar over this field. This holds in particular for arith-
metic hyperbolic Coxeter groups. In the sequel, we extend this result to
arbitrary hyperbolic Coxeter groups by exploring their Vinberg fields and
Vinberg forms. This will give us new necessary commensurability conditions
as follows.

Theorem 4.3.1. Let Γ1 and Γ2 be two commensurable cofinite hyperbolic
Coxeter groups acting on Hn, n ≥ 2. Then their Vinberg fields coincide and
the two associated Vinberg forms are similar over this field.

4.3.2 Proof of the theorem

We begin the proof by showing that two commensurable Coxeter groups in
in Isom(Hn) have the same Vinberg field. This proof relies on Theorem 5
of the paper [71] of Vinberg. We recapitulate here a more specific version
suitable to our context.

Theorem 4.3.2. Let Γ be a cofinite hyperbolic Coxeter group with Vinberg
space (V, q) and Gram matrix G. Let R be an integrally closed Noetherian
ring. Then the following are equivalent:

i) R is a ring of definition of Γ;

ii) R is a ring of definition of Ad Γ;

iii) R contains all the simple cyclic products of 2G.

Remark 4.3.3. It is important to notice that in [71] Vinberg considers
Zariski dense groups generated by reflections of a quadratic space defined
over an algebraically closed field. This hypothesis does not apply directly to
our situation since the isometry group PO(n, 1) of Klein’s projective model
Kn is defined over the reals.
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Our version of the theorem can be retrieved from the original one as
follows. Pass to the complexified space Rn+1⊗RC endowed with the standard
(real) Lorentzian form q−1. Let OC(n, 1) be the group of complex (n +
1) × (n + 1) matrices which preserve q−1, and form the projective group
POC(n, 1) = OC(n, 1)/{±I}.

Recall that a cofinite hyperbolic Coxeter group is Zariski dense (over
R) in PO(n, 1) (see [40, Chapter 4]). This property remains valid in the
complexified context of POC(n, 1) over C. We can now apply the original
Theorem 5 of [71] which implies Theorem 4.3.2.

By means of Theorem 4.3.2, we can prove the following result.

Proposition 4.3.4. Let Γ < Isom(Hn) be a cofinite Coxeter group, n ≥ 2.
Then the associated Vinberg field and the adjoint trace field coincide, that is

K(Γ) = Q(Tr Ad Γ). (4.8)

Proof. By Remark 4.2.11, the Vinberg field K(Γ) is the smallest field of
definition of Γ. By point i) of Theorem 4.3.2, K(Γ) is a field of definition of
Ad Γ as well and by point iii) K(Γ) is contained in every field of definition
of Ad Γ. On the other hand, Q(Tr Ad Γ) is the smallest field of definition of
Ad Γ ([71, Corrollary of Theorem 1]). Hence, the equality (4.8) follows.

Corollary 4.3.5. Let Γ1, Γ2 < Isom(Hn) be two cofinite Coxeter groups,
n ≥ 2. If Γ1 and Γ2 are commensurable, then their associated Vinberg fields
coincide, that is,

K(Γ1) = K(Γ2).

Proof. By Proposition 4.3.4 we know thatK(Γ1) = Q(Tr Ad Γ1) andK(Γ2) =
Q(Tr Ad Γ2). Since the adjoint trace field of a cofinite group in Isom(Hn) is a
commensurability invariant (see [18, Proposition 12.2.1]), the claim follows.

Remark 4.3.6.

i) By Corollary 1 of Theorem 4 of [71], if a hyperbolic Coxeter group Γ is
generated by elements γ with traces Tr(γ) ∈ Q \ {0}, then the smallest
field of definition of Γ is Q(Tr Γ). Since reflections in O+(n, 1) have
traces equal to n− 1, we also get the equality

K(Γ) = Q(Tr Γ). (4.9)

ii) By the Local Rigidity Theorem [55, Chapter 1], the adjoint trace field
Q(Tr Ad Γ) of a Coxeter group in Isom(Hn) is a number field for n ≥ 4.

43



Therefore, by Proposition 4.3.4, the Vinberg field K(Γ) is a number
field. Moreover, K(Γ) is a number field for n = 3 as well. This is a
consequence of the connection between K(Γ) and the invariant trace
field KΓ(2) (see Theorem 4.2.7) and the fact that KΓ(2) is a number
field.

iii) The Vinberg field K(Γ) is totally real for any quasi-arithmetic hyper-
bolic Coxeter group. Some tests support the conjecture that this re-
mains true for nq-arithmetic hyperbolic Coxeter groups. This question
was also raised by V. Emery.

For the proof of our theorem we now have to show that two commensu-
rable hyperbolic Coxeter groups have similar Vinberg forms. The proof will
follow the same strategy as indicated by Gromov and Piateski-Shapiro in
Theorem 2.6 of [27] for arithmetic groups, and which has been elaborated
by Johnson, Kellerhals, Ratcliffe and Tschantz in Theorem 1 of [36] for the
special case of hyperbolic Coxeter simplex groups.

Consider two commensurable hyperbolic Coxeter groups Γ1 and Γ2 rep-
resented in O+(n, 1) and denote by K their Vinberg field. There is a matrix
X ∈ O+(n, 1) and there are two subgroups H1 < Γ1 and H2 < Γ2, each of
finite index, such that H1 = X−1H2X. We may assume that H1 and H2 are
contained in SO+(n, 1), the index two subgroup of O+(n, 1) of determinant
one matrices. Let (V1, q1) be the Vinberg space over K associated to Γ1 and
equipped with a basis {v1, . . . , vn+1} according to (4.4) such that all the
elements of Γ1 are matrices over K (since K is a field of definition of Γ). It
is clear that the forms q1 and q−1 are equivalent over R. The same reason-
ing applies to the Vinberg space (V2, q2). Denote by Q1 and Q2 the matrix
representations of the Vinberg forms q1 and q2 in the relative bases. Let
us represent the isometries between the Vinberg forms and the Lorentzian
form q−1 with the real matrices T1 and T2. We get that the matrix

S := T−1
2 XT1 (4.10)

represents an isometry between q1 and q2, since Q1 = STQ2S. Furthermore
define the groups H ′1 := T−1

1 H1T1 and H ′2 := T−1
2 H2T2.

Consider the isomorphism between the orthogonal groups O(q1) and
O(q2) given by

φ : A→ SAS−1. (4.11)

Lemma 4.3.7. The map φ restricts to a K-linear map on Mat(n+ 1,K).

Proof. Let i ∈ {1, 2}. The isometry between qi and q−1 gives a group
isomorphism between O(qi) and O(q−1). This isomorphism maps O+(qi)
onto O+(n, 1), where O+(qi) is the group of qi-orthogonal maps which leave
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each sheet of the hyperboloid Hn+1
i = {x ∈ Rn+1 | qi(x) = −1} invariant.

Analogously, SO+(qi) is mapped onto SO+(n, 1) and hence H ′i ⊂ SO+(qi).
Since SO+(n, 1) is a non-compact connected simple Lie group, the same can
be said for SO+(qi). Since H ′i has finite covolume, by the Borel density
theorem [10] we get that SpanR(H ′i) = SpanR(SO+(qi)) in Mat(n + 1,R).
Now, the action of SO+(n, 1) on Cn+1 is irreducible5. Therefore the ac-
tion of SO+(qi) is irreducible as well. By Burnside’s theorem [13] (see
also [42]) we get that SpanR(SO+(qi)) = Mat(n+ 1,R), which implies that
SpanR(H ′i) = Mat(n+ 1,R).

Recall that H ′i ⊂ Mat(n + 1,K), since K is a field of definition for Hi.
Note that for each α ∈ K and C ∈ Mat(n+ 1,K) we have φ(αC) = αφ(C).
By the same arguments as before, we have that SpanK(H ′i) = Mat(n+1,K).
Moreover, by (4.10),

φ(H ′1) = φ(T−1
1 H1T1) = T−1

2 XH1X
−1T2 = T−1

2 H2T2 = H ′2.

We deduce that φ(SpanK(H ′1)) = SpanK(H ′2). Therefore φ restricts to a
K-linear map on Mat(n+ 1,K).

Based on Lemma 4.3.7 we are finally ready to prove the last step as
given by the following proposition. Its proof is a direct adaptation of the
corresponding step in the proof of [36, Theorem 1].

Proposition 4.3.8. Let Γ1, Γ2 be two commensurable Coxeter groups in
Isom(Hn), n ≥ 2, with Vinberg field K(Γ1) = K(Γ2) =: K. Then the two
Vinberg forms q1 and q2 are similar over K. Moreover, the similarity factor
is positive.

Proof. Let 1 ≤ i, j ≤ n+ 1 and define the matrix Iij ∈ Mat(n+ 1,K) with
coefficient [I]ij = 1 and all the other coefficients equal to zero. Consider the
isomorphism φ according to (4.11) and define Mij := φ(Iij) = SIijS

−1. By
Lemma 4.3.7, Mij ∈ Mat(n + 1,K). The matrix SIij =: Sij has the j-th
column which is equal to the i-th column of S and all the other coefficients
are equal to zero. Observe that [Mij ]kl = [S]ki[S

−1]jl for all k, l, i, j. Since
the matrix S−1 is invertible, we can always find a pair {j, l} such that
[S−1]jl 6= 0. Let us denote the inverse of the coefficient [S−1]jl by λ. In this
way, every coefficient of S can be written as λ multiplied with an entry of
a matrix of the form Mij ∈ Mat(n+ 1,K). Therefore there exists a matrix
M ∈ Mat(n+ 1,K) such that S = λM . Since Q1 = STQ2S holds, we have
Q1 = λ2MTQ2M , with Q1, Q2 and M all in Mat(n + 1,K). Thus λ2 is a
positive element belonging to K so that q1 is isometric to λ2q2.

5For the detailed proof of this statement clarifying a gap in the original proof of Theo-
rem 1 in [36], see ”Erratum: Commensurability classes of hyperbolic Coxeter groups” by
J. Ratcliffe and S. Tschantz given in Appendix D.
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4.3.3 About the converse of the theorem

By combining Theorem 4.1.3 with Theorem 4.3.1 we have a necessary and
sufficient commensurability criterion for hyperbolic Coxeter groups which
are arithmetic. There is the question whether the converse of Theorem 4.3.1
remains valid in the non-arithmetic case. This is not the case, as shown by
the following example.

Example 4.3.9. Consider the two non-cocompact quasi-arithmetic (but not
arithmetic) Coxeter cube groups Γ1 and Γ2 acting on H3 and defined by the
graphs in Figure 4.2 (see [34]). Observe that they both have Q as Vinberg
field. Since Γ1 and Γ2 are quasi-arithmetic, we can apply Maclachlan’s cri-
terion to decide whether the Vinberg spaces (V1, q1) and (V2, q2) are similar
(see Remark 4.1.13).

5
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√
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2

Γ1

3
2

6

3
√
3
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6
2
√

3

6

Γ2

Figure 4.2: Quasi-arithmetic Coxeter cube groups Γ1 and Γ2 acting on H3.

With Vinberg’s construction, we can compute the matrices representing
q1 and q2 and diagonalise them over Q. We obtain

q1 = diag

(
4, 3,
−225

4
,
225

4

)
and q2 = diag(4, 3, 15,−15).

The quadratic forms q1 and q2 have both (−1, 3) as Hasse invariant
and therefore they have identical Witt invariant represented by the quater-
nion algebra B = (1, 1) (see Section 4.1.1). Hence, the ramification set of
B ⊗Q Q(

√
−1) over Q(

√
−1) is identical for both groups. This implies that

the Vinberg spaces are similar. However, as shown in [78] by means of a
geometric argument, Γ1 and Γ2 are not commensurable.

4.3.4 The Vinberg ring

In this section we are looking for additional commensurability invariants for
arbitrary hyperbolic Coxeter groups.
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As a motivation consider the following situation. Let Γ1 and Γ2 be
two hyperbolic Coxeter groups. Assume that Γ1 is arithmetic and Γ2 is
quasi-arithmetic but not arithmetic. Hence they can not be commensurable.
Denote by G1 and G2 their Gram matrices, and assume that they both have
the same Vinberg field K. Let O be the ring of integers of the number field
K (see Remark 4.3.6, part ii)). Due to Vinberg’s arithmeticity criterion,
the cycles of 2G1 are in O while the cycles of 2G2 are not all in O. Based
on this observation let us introduce the following ring.

Definition 4.3.10. Let Γ < Isom(Hn), n ≥ 2, be a cofinite Coxeter group
with Gram matrix G. Consider all cycles bi1i2...ik = 2kgi1i2gi2i3 . . . gik−1ikgiki1
of 2G. The ring

R(Γ) := O({bi1i2...ik})
is called the Vinberg ring of Γ.

We show that the Vinberg ring is a ring of definition for certain groups
and hence a commensurability invariant.

Proposition 4.3.11. Let Γ < Isom(Hn), n ≥ 2, be a cofinite Coxeter group
with Gram matrix G. Assume that its Vinberg field K is a number field.
Then the Vinberg ring R(Γ) is a commensurability invariant.

Proof. The main idea for the proof is to use some results of Davis about
overrings6 ([15]) in the same way as used by Mila in [51, Section 2.1]. By
hypothesis the Vinberg field K is a number field. Thus there exists a min-
imal ring of definition R for Γ ([71, Corollary to Theorem 1]) which equals
the integral closure of Z[Tr Ad Γ] in K. Clearly R is integrally closed and
therefore contains the ring of integers O of K. Thus R is the integral clo-
sure of O[Tr Ad Γ] =: R′ in K. The ring R′ is an overring of O. Since O is
a Noetherian integral Dedekind domain, its overring R′ is integrally closed
([15, Theorem 1]). Therefore R = R′ which means that O[Tr Ad Γ] is the
smallest ring of definition for Γ. Moreover, the Vinberg ring R(Γ) is also
an overring of O, so that it is integrally closed as well. It is furthermore
Noetherian since it is a subring of the number field K (see [25, Theorem]).
Hence R(Γ) is a ring of definition for Γ. By Theorem 4.3.2, R(Γ) ⊂ R′.
Now, R′ is the smallest ring of definition so that R(Γ) = O[Tr Ad Γ]. By
Theorem 3 of [71], rings of definition are commensurability invariants. Thus
R(Γ) is a commensurability invariant.

Remark 4.3.12. Notice that the Vinberg ring as commensurability invari-
ant is superfluous when considering arithmetic groups. Indeed, let Γ1 and
Γ2 be two arithmetic hyperbolic Coxeter groups with Vinberg fields K1, K2

6An overring of an integral domain is a subring of the quotient field containing that
given ring. In our case, the integral domain is the ring of integers O of the Vinberg field
K, which has the Vinberg field as its quotient field.
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and Gram matrices G1 and G2, respectively. Let O1 and O2 denote the
rings of integers of K1 and K2. By arithmeticity, every cycle of 2Gi is in
Oi, and hence R(Γi) = Oi, i ∈ {1, 2}. Now, if K1 6= K2, the groups Γ1

and Γ2 are incommensurable. However, if K1 = K2, then R(Γ1) = R(Γ2).
Hence, in the latter case, we do not gain any additional commensurability
information.

4.4 Some applications

We now investigate to which extent the Vinberg form of a hyperbolic Cox-
eter group is a commensurability invariant. We shall see that it encodes
information such as appropriate signature and cocompactness, which both
detect incommensurability.

Proposition 4.4.1. Let Γ1, Γ2 < Isom(Hn) be two commensurable cofinite
Coxeter groups with identical Vinberg field K and with Vinberg forms q1

and q2. Then q1 has appropriate signature if and only if q2 has appropriate
signature.

Proof. It is enough to show one implication. Assume that q1 has appro-
priate signature. Let Q1 and Q2 be matrix representations of q1 and q2,
respectively. By assumption we know that Qσ1 is positive definite for every
non-trivial embedding σ : K ↪→ R. Since Γ1 and Γ2 are commensurable we
know that there is a matrix S ∈ Mat(n+ 1,K) such that Q1 = λSTQ2S for
some λ ∈ K, λ > 0 (see Proposition 4.3.8). Let M :=

√
λS. It follows that

Qσ1 = (MTQ2M)σ = (Mσ)TQσ2M
σ.

By Silvester’s law of inertia, two congruent matrices have the same sig-
nature. Hence Qσ2 is positive definite for all non-trivial embeddings σ as
well. It follows that Γ2 has appropriate signature.

The fact that the appropriate signature property for a quadratic form
is stable under commensurability implies the following, probably folklore
result.

Corollary 4.4.2. Let Γ1, Γ2 < Isom(Hn) be two commensurable cofinite
Coxeter groups. Then Γ1 is quasi-arithmetic if and only if Γ2 is quasi-
arithmetic.

Another property which is preserved by similarity of the Vinberg form
is the isotropy property.

Definition 4.4.3. Let (V, q) be a quadratic space. The form q is said to be
isotropic if there is a v ∈ V \ {0} such that q(v) = 0.
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It is known that an arithmetic hyperbolic lattice is non-cocompact if its
quadratic form is isotropic (see [27, Section 2.3], for example). This result
translates into the context of hyperbolic Coxeter groups as follows. Let
q1 and q2 be the Vinberg forms of two commensurable hyperbolic Coxeter
groups defined over K.

Lemma 4.4.4. The form q1 is isotropic if and only if q2 is isotropic.

Proof. Let Q1 and Q2 be matrix representations of q1 and q2, respectively.
By commensurability, Q1 = λSTQ2S for some invertible matrix S and a
positive λ ∈ K, as above. Let M =

√
λS so that Q1 = MTQ2M . Since

q1 is isotropic, there exists a non-zero v ∈ V such that Q1v = 0. Hence
(MTQ2M)v = 0. Let v′ = Mv. Then v′ 6= 0 since M is invertible and
v 6= 0. If Q2v

′ 6= 0, then MTQ2v
′ 6= 0, contradicting Q1v = 0. Therefore

Q2v
′ = 0, and the result follows.

Incommensurability test using the Vinberg field

The Vinberg field is a very powerful commensurability invariant since it is
fairly easy to compute even by hand, depending on the complexity of the
graphs, of course. Consider the two non-cocompact nq-arithmetic Coxeter
pyramid groups Γ1 and Γ2 acting on H4 as shown in Figure 4.3.

6

4

∞

Γ1

6

5

∞

Γ2

Figure 4.3: Two Coxeter pyramid groups Γ1 and Γ2 in Isom(H4).

The Gram matrices G(Γ1) =: G and G(Γ2) =: G′ are

G =



1 −
√

3/2 0 0 0 0

−
√

3/2 1 −1/2 0 0 0
0 −1/2 1 −1/2 0 0

0 0 −1/2 1 −
√

2/2 −1/2

0 0 0 −
√

2/2 1 −1
0 0 0 −1/2 −1 1

 ,

G′ =



1 −
√

3/2 0 0 0 0

−
√

3/2 1 −1/2 0 0 0
0 −1/2 1 −1/2 0 0

0 0 −1/2 1 −(1 +
√

5)/4 −1/2

0 0 0 −(1 +
√

5)/4 1 −1
0 0 0 −1/2 −1 1

 .
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For G we have the cycle b456 = 23g45g56g64 = −2
√

2 while all the other
simple cycles of G lie in Q. For G′ we consider the cycle b′45 = 22g′45g

′
54 =

1
2

(
3 +
√

5
)
. All other simple cycles of G′ are either in Q or Q

(√
5
)
. There-

fore the Vinberg fields are K(Γ1) = Q
(√

2
)

and K(Γ2) = Q
(√

5
)
. Thus the

two groups Γ1 and Γ2 are incommensurable.

Incommensurability test using the Vinberg ring

Consider the two non-cocompact quasi-arithmetic (but not arithmetic) Cox-
eter cube groups Γ1 and Γ2 in Isom(H3) defined in Figure 4.4. Similarly to
the groups defined in Figure 4.2, Γ1 and Γ2 have Q as Vinberg field and
similar quadratic forms. Their Vinberg rings are given by R(Γ1) = Z[1/3]
and R(Γ2) = Z[1/2], respectively. By Proposition 4.3.11 the groups Γ1 and
Γ2 are therefore incommensurable.

6

2
√
3

3

6

5
2

6

6

5
2

Γ1

3
2

6

3
√
3

4

6
2
√

3

6

Γ2

Figure 4.4: Two Coxeter cube groups Γ1 and Γ2 in Isom(H3).

Caution 4.4.5. Two hyperbolic Coxeter groups having the same Vinberg
field, the same Vinberg ring and similar Vinberg forms do not have to be
commensurable. As an example, consider the two groups as given by Figure
4.2. They have the same Vinberg field, similar quadratic forms and identical
Vinberg ring Z[1/2]. However they are incommensurable!

4.5 Similarity classification of the Vinberg forms

Consider two Coxeter groups in Isom(Hn) having the same Vinberg field
and the same Vinberg ring. Our aim is to classify their Vinberg forms
up to similarity. This classification should be compatible with the one of
Maclachlan in the case of quasi-arithmetic hyperbolic Coxeter groups (see
Section 4.1.2). As we shall see, the results here depend on the parity of the
dimension n. For n even, a similarity criterion can be stated. For n odd, we
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can provide a necessary condition for similarity, only. We start by recalling
the Hasse-Minkowski Theorem in terms of the Hasse invariant see ([43], [5]).

Theorem 4.5.1. Let K be a number field and let q1 and q2 be two quadratic
forms over K. For a λ ∈ K∗, q1 and λq2 are isometric if and only if the
following properties are satisfied:

i) dim(q1) = dim(λq2);

ii) det(q1) ≡ det(λq2) in K∗ mod (K∗)2;

iii) s(q1) = s(λq2);

iv) sgn(σ(q1)) = sgn(σ(λq2)) for all real embeddings σ : K ↪→ R.

The even dimensional case

For n even, let Γ1, Γ2 < Isom(Hn) be Coxeter groups with the same Vinberg
field K, and denote by q1 and q2 the associated Vinberg forms over K. Recall
that dim(q1) = dim(q2) = n+ 1 =: m, i.e. the dimension of both quadratic
forms is odd. Then, condition ii) of the Hasse-Minkowski Theorem 4.5.1
implies that det(q1) ≡ λ det(q2) in K∗ mod (K∗)2. This means that λ can

only be the value which balances the two determinants, that is, λ = det(q1)
det(q2) ∈

K∗/(K∗)2 (see also the proof of [50, Proposition 5.4]). Using (4.1), we get
the following simplification for the Hasse invariant s(λq2):

s(λq2) =

{
s(q2), m ≡ 1 mod 4;

(λ,−1) · s(q2), m ≡ 3 mod 4.

Hence, for λ = det(q1)
det(q2) ∈ K∗/(K∗)2, we obtain the complete set of simi-

larity invariants for Vinberg forms as shown in Table 4.1.

n Similarity criterion

n ≡ 0 mod 4
s(q1) = s(q2)

sgn(σ(q1)) = sgn(σ(λq2))

n ≡ 2 mod 4
s(q1) = (λ,−1) · s(q2)

sgn(σ(q1)) = sgn(σ(λq2))

Table 4.1: Similarity criterion for Vinberg forms of hyperbolic Coxeter
groups.

By specialising to quasi-arithmetic groups, whose forms q1 and q2 have
appropriate signature, it is easy to check that the equation sgn(σ(q1)) =
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n Similarity criterion

n ≡ 0 mod 4 s(q1) = s(q2)

n ≡ 2 mod 4 s(q1) = (λ,−1) · s(q2)

Table 4.2: Similarity criterion for Vinberg forms of quasi-arithmetic hyper-
bolic Coxeter groups.

sgn(σ(λq2)) is always satisfied. Therefore, for quasi-arithmetic hyperbolic
Coxeter groups, the criterion can be reduced according to Table 4.2.

Table 4.2 is compatible with the classification of Maclachlan. Indeed,
since the dimensions and the determinants of q1 and λq2 are the same,
having the same Hasse invariant implies having the same Witt invariant by
(4.2), i.e. c(q1) = c(λq2). Since the quadratic forms are of odd dimension,
one even gets c(q1) = c(q2).

The odd dimensional case

For n odd, let Γ1, Γ2 < Isom(Hn) be Coxeter groups. If they are quasi-
arithmetic, we refer to the similarity classification provided by Maclachlan.
Otherwise, the similarity problem for their even-dimensional Vinberg forms
q1 and q2 is more involved. We present here a partial result, only.

Applying condition ii) of the Hasse-Minkowski Theorem 4.5.1 we get
det(q1) ≡ det(λq2) in K∗ mod (K∗)2 which reduces to det(q1) ≡ det(q2)
mod (K∗)2. In contrast to the previous case, we can not extract any infor-
mation about λ. This fact can be stated in the following lemma, sometimes
referred to as the ratio-test.

Lemma 4.5.2. Let Γ1, Γ2 < Isom(Hn), n odd, be two commensurable cofi-
nite Coxeter groups with Vinberg field K and Vinberg forms q1 and q2, re-
spectively. Then, det(q1) ≡ det(q2) ∈ K∗ mod (K∗)2.

Example 4.5.3. Consider the two cocompact quasi-arithmetic (but not
arithmetic) Coxeter groups Γ1, Γ2 in Isom(H4) given in Figure 4.5. The
groups Γ1 and Γ2 are so-called crystallographic Napier cycles (see [33]).

The weights li and l′i of the dotted edges in the Coxeter graphs are

l1 =

√
1

11

(
10 + 3

√
5
)
, l′1 =

√
2

11

(
7 +
√

5
)
,

l2 =
1

2

√(
5 +
√

5
)
, l′2 =

√
2

19

(
9 +
√

5
)
,

l3 =

√
1

11

(
16 + 7

√
3
)
, l′3 =

√
1

209

(
233 + 104

√
5
)
.
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l2

l3l1

5

4

Γ1

l′2

l′3l′1

5

5

Γ2

Figure 4.5: The Coxeter groups Γ1 and Γ2 in Isom(H4).

The groups Γ1 and Γ2 have both K = Q
(√

5
)

as their Vinberg field.
The diagonalised associated Vinberg forms over K are

q1 = diag
(

4, 4, 4,−2− 2
√

5, 20 + 8
√

5
)
,

q2 = diag

(
4,

5

2
+

1

2

√
5, 2 +

2

5

√
5,
−37

2
− 17

2

√
5,

312

19
+

136

19

√
5

)
.

Using the theory as presented in Section 4.1.1, we compute their Hasse
invariants as follows.

c(Γ1) =
(
−2− 2

√
5, 5 + 2

√
5
)
,

c(Γ2) =
(

10 + 2
√

5,−1
)
·
(
−74− 34

√
5, 1482 + 646

√
5
)
.

The ramification set Ram(Γ1) contains two prime ideals, one generated by 2,
and the other generated by 5 and −1 + 2

√
5. The ramification set Ram(Γ2)

is empty. Since Ram(Γ1) 6= Ram(Γ2), the two quaternion algebras repre-
senting c(Γ1) and c(Γ2) are not isomorphic. Hence the Vinberg forms q1 and
q2 are not similar, and the groups Γ1 and Γ2 are incommensurable.
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Chapter 5

New generators for the
Vinberg field

In this last chapter we discuss various views on the Vinberg field of a hy-
perbolic Coxeter group. We start with a summary of known results about
possible Vinberg fields associated to arithmetic hyperbolic Coxeter groups.
We also present a result about possible Vinberg fields associated to quasi-
arithmetic Coxeter groups, imposing restrictions on the Coxeter graph.

We then provide a new result for a finite volume hyperbolic Coxeter n-
polyhedron P defining a Coxeter group with Vinberg field of degree d. This
result gives the range of the admissible dihedral angles of P in terms of d.

In the last two parts we describe new generators for the Vinberg field
of a quasi-arithmetic hyperbolic Coxeter group. The first set of generators
is given by the coefficients of the characteristic polynomial of the associ-
ated Gram matrix while the second set consists of the coefficients of the
characteristic polynomial of any Coxeter transformation of the group.

We conclude by formulating a conjecture generalising the above results
for nq-arithmetic hyperbolic Coxeter groups.

5.1 The Vinberg field of a quasi-arithmetic hyper-
bolic Coxeter group

In this part we present some results about possible Vinberg fields associated
to quasi-arithmetic Coxeter groups in Isom(Hn), n ≥ 2. Recall from part ii)
of Remark 4.2.3 that a non-cocompact quasi-arithmetic Coxeter group has
Vinberg field Q. Moreover recall from Remark 1.5.2 that arithmetic Coxeter
groups exist only for n < 30.

We start by considering compact hyperbolic Coxeter n-simplices, which
were classified by Lannér and exist only for n ≤ 4.

Definition 5.1.1. A Lannér graph is the Coxeter graph of a compact hy-
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perbolic Coxeter simplex. The complete list of Lannér graphs is given in
Table 5.17.

Table 5.1: Complete list of Lannér graphs.

Essential for the following is the fact [67, Corollary 2.1] that the Coxeter
graph of a cocompact hyperbolic Coxeter group contains a subgraph which
is a Lannér graph (called a Lannér subgraph).

Consider a cocompact quasi-arithmetic hyperbolic Coxeter group. Its
Vinberg form satisfies the appropriate signature condition. This property is
crucial for the proof of the following result of Vinberg.

Theorem 5.1.2 ([72], Proposition 17). For a cocompact quasi-arithmetic
hyperbolic Coxeter group, the Vinberg field is generated by the determinant
of any Lannér subgraph8 of the Coxeter graph.

Vinberg exploited the above result for larger dimensions as follows.

Proposition 5.1.3 ([72], Theorem 2 and Theorem 3). Let Γ < Isom(Hn) be
a cocompact arithmetic Coxeter group. For n ≥ 14 the only possible Vinberg
fields for Γ are

Q(
√

2),Q(
√

3),Q(
√

5),Q(
√

6),Q(
√

2,
√

3),Q(
√

2,
√

5),Q(cos 2π/m)

with m = 7, 9, 11, 15, 16, 20. More specifically, for n ≥ 22 the possible Vin-
berg fields are

Q(
√

2),Q(
√

5),Q(cos 2π/7).
7A double edge between vertices corresponds to the weight 4 while a triple edge corre-

sponds to the weight 5. As usual, a single edge corresponds to the weight 3.
8The determinant of a Coxeter graph is the determinant of the corresponding Gram

matrix.
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We exploit Theorem 5.1.2 by assuming that the Coxeter graph contains
a Lannér subgraph of order at least three and present the following result.

Proposition 5.1.4. Let Γ < Isom(Hn) be a cocompact quasi-arithmetic
Coxeter group such that its Coxeter graph contains a Lannér subgraph of
order at least three. The possible Vinberg fields for Γ are

Q,Q(
√

2),Q(
√

3),Q(
√

5),Q(
√

6),Q(
√

2,
√

3),Q(
√

2,
√

5),Q(cos 2π/m)

for m = 7, 9, 11, 15, 16, 20.

Proof. By Theorem 5.1.2, the Vinberg field of Γ is the extension of Q by
the determinant of any Lannér subgraph. Since Γ is quasi-arithmetic, any
such Lannér subgraph of order at least three describes an arithmetic Lannér
group. Indeed, the subgroups corresponding to these Lannér subgraphs must
have the appropriate signature property. Moreover, Lannér graphs of order
at least three do not have dotted edges. These two conditions imply that
the Lannér subgraphs describe arithmetic groups (see Remark 4.2.3, iii)).

The arithmetic Lannér groups of order three have been determined by
Takeuchi [64]: there are finitely many examples. The Lannér groups of
orders four and five are all arithmetic with one exception (see [36], for ex-
ample). Hence, we have to compute finitely many determinants, and the
result follows.

Remark 5.1.5. When the Coxeter graph of Γ contains only Lannér sub-
graphs of order two, other fields can arise. In his PhD thesis [21], Esselmann
gives examples of such cocompact arithmetic hyperbolic Coxeter groups with
Vinberg fields Q(

√
13), Q(

√
17) and Q(

√
21).

We close this part by summarising known results about the extension
degree [K : Q] =: d of the Vinberg field K over Q of an arithmetic Coxeter
group. A lot of work has been done in this direction, especially by V. Nikulin,
in order to find an effective upper bound for d. For details about the related
Vinberg fields, see [53]. The Table 5.2 provides a rough survey.

n d ≤ Reference

2 11 Maclachlan [45]

3 35 Belolipetsky [6]

4, 5 35 Nikulin [54]

≥ 6 25 Nikulin [54]

Table 5.2: Possible extension degree d of the Vinberg field of an arithmetic
hyperbolic Coxeter group in Isom(Hn).
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5.2 The Vinberg field and the dihedral angles of a
hyperbolic Coxeter group

Let Γ < Isom(Hn), n > 2, be a cofinite Coxeter group with Coxeter polyhe-
dron P and Coxeter graph Σ. Suppose that two hyperplanes Hi1 and Hi2

bounding P intersect under the angle of π
m , m ≥ 2. This implies that Σ

contains the subgraph
•–m–—–• (5.1)

which consists only of two nodes if m = 2.
Let K be the Vinberg field of Γ. By Remark 4.3.6, ii), K is an algebraic

number field of degree d := [K : Q] ≥ 1.

Proposition 5.2.1. Let Γ < Isom(Hn), n > 2, be a cofinite Coxeter group
with Coxeter polyhedron P and Vinberg field K of degree d. Then, for any
dihedral angle π

m of P one has

φ(m) ≤ 2 d,

where φ(m) is the Euler’s totient function.

Proof. Let a = am := cos
(

2π
m

)
and ξ := e2πi/m. For Euler’s totient function

φ(m), which is the number of positive integers, relatively coprime to m,
between 1 and m, both included, it is well-known that

[Q(ξ) : Q] = φ(m). (5.2)

We first compute the degree [Q(am) : Q], by using a standard method. For

m = 2 this degree is 1. Let m > 2. Since ξ+ξ−1

2 = am, the field Q(ξ) contains
Q(am). Moreover,

ξ2 − 2a ξ + 1 = 0.

Hence ξ is a zero of P (t) = t2 − 2at+ 1 ∈ Q(a)[t] together with its complex
conjugate ξ. Since m > 2, ξ and ξ are non-real, and consequently they are
not in Q(a). This implies that P (t) is irreducible over Q(a), and we have
[Q(ξ) : Q(a)] = degP (t) = 2. By the tower property, we obtain

[Q(ξ) : Q(a)] · [Q(a) : Q] = [Q(ξ) : Q]. (5.3)

By (5.2) and (5.3), for m > 2, we get

[Q(a) : Q] = φ(m)/2. (5.4)

Next, consider the Vinberg field K of Γ. To every dihedral angle π
m of

P corresponds a subgraph of the Coxeter graph as in (5.1) and the cycle
bi1i2 = 4 cos2

(
π
m

)
∈ K (see (4.3)). This forces [Q(4 cos2

(
π
m

)
) : Q] ≤ d.
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By the angle doubling property of the cosine function we have

Q
(

4 cos2
( π
m

))
= Q

(
cos

(
2π

m

))
.

Therefore, by (5.4), the weight m must satisfy the inequality

[Q
(

cos

(
2π

m

))
: Q] = φ(m)/2 ≤ d.

Example 5.2.2. Let Γ be an arithmetic Coxeter group in Isom(Hn), n ≥ 14.
By Proposition 5.1.3, the degree d = [K : Q] is smaller than or equal to five.
For d = 5, Proposition 5.2.1 yields φ(m) ≤ 10, for any dihedral angle π

m . In
general, for x not equal to 2 or 6, Euler’s function φ(x) satisfies

φ(x) ≥ √x.

Thus, for m ≤ 100, we have to check when φ(m) ≤ 10. As a result, for
n ≥ 14, all the possible values for m are

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 22, 24, 30.

5.3 The Gram field of a hyperbolic Coxeter group

For n ≥ 2, consider a Coxeter group Γ in Isom(Hn) of rank N . Let G be its
Gram matrix of signature (n, 1) with characteristic polynomial

χG(t) = a0 + a1t+ · · ·+ aN t
N , aN = 1.

The matrix G is uniquely defined by Γ up to simultaneous permutation of
its lines and columns which would yield a similar matrix G′ with identical
characteristic polynomial. Let us remark that, by [70, Proposition 16], G′

can be related to G by means of a positive diagonal matrix D such that

G′ = D−1GD.

Notice that aN−1 = (−1)N−1 Tr(G) = (−1)N−1N . Moreover, each co-
efficient ar of χG, r < N , can be expressed as the sum of all the principal
minors of size N − r (see equation (A.1) of Appendix A). In particular, ar
vanishes for all r < N − (n+ 1).

Denote by K̃ the field generated by all the entries of G as in Theorem
4.2.2. Clearly all the coefficients a0, . . . , aN of χG are in K̃. We know that
K̃ contains the Vinberg field K. The following two examples show that the
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coefficients of χG are not only elements but even generate the Vinberg field
K.

Consider the Coxeter group Γ1 in Isom(H4) defined by the Coxeter
graph given in Figure 5.1 (see [61]). The group Γ1 is arithmetic and non-
cocompact. We have that K̃1 = Q(

√
2) and K1 = Q. Furthermore, the

characteristic polynomial of the Gram matrix G(Γ1) turns out to be

t8 − 8t7 +
33

2
t6 + 19t5 − 1711

16
t4 +

493

4
t3 − 171

4
t2.

2

2

4 4

∞

Figure 5.1: The Coxeter group Γ1 in Isom(H4).

Consider the Coxeter group Γ2 in Isom(H4) defined by the Coxeter graph
given in Figure 5.2 (see [33]). The group Γ2 is arithmetic and cocompact.

We have that K̃2 = Q
(
cos
(
π
8

)
,
√

2
)

= Q
(√

2 +
√

2
)

and K2 = Q(
√

2).

8 4 8

Figure 5.2: The Coxeter group Γ2 in Isom(H4).

The characteristic polynomial of the Gram matrix G(Γ2) is

t6 − 6t5 +
1

64

(
832− 32

√
2
)
t4 +

1

64

(
−768 + 128

√
2
)
t3

+
1

64

(
268− 152

√
2
)
t2 +

1

64

(
−24 + 48

√
2
)
t

In summary, the coefficients of χG(Γ1) and χG(Γ2) generate the Vinberg
fields K1 and K2, respectively.

These examples motivate the following definition and are at the basis of
the next result.

Definition 5.3.1. Let Γ < Isom(Hn) be a Coxeter group of rank N . Let
G be its Gram matrix with characteristic polynomial χG(t) = a0 + a1t +
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· · · + aN t
N , aN = 1. The Gram field K(G) is the field generated by the

coefficients of χG(t) over Q, namely

K(G) = Q(aj | 0 ≤ j ≤ N).

Proposition 5.3.2. Let Γ be a cofinite quasi-arithmetic hyperbolic Coxeter
group with Vinberg field K. Then

K = K(G).

Proof. We prove first the inclusion K ⊇ K(G). For this, let Σ be the Coxeter
graph of Γ and denote by γ a cyclic subgraph of length ≥ 2 of Σ. Denote
by p(γ) the product of all the entries of G corresponding to the weights of
γ. In particular, for the cyclic subgraph γ of length 2 given by •–m–—–•, we get
p(γ) = cos2

(
π
m

)
.

In this way the determinant det(G) of the Gram matrix G can be ex-
pressed according to ([72, Proposition 11])

det(G) =
∑

(−1)sp(γ1) · · · p(γs), (5.5)

where {γ1, . . . , γs} ranges over all unordered collections of pairwise disjoint
cyclic subgraphs of Σ, including the empty one. The same result applies to
every principal submatrix of G.

By Appendix A, equation (A.1), the coefficients of χG can be expressed as
the sum of principal minors of G which together with (5.5) yields K ⊇ K(G).

Assume that K ) K(G). Then there exists a non-trivial embedding
σ : K ↪→ R which is the identity on K(G). Let Gσ be the matrix ob-
tained by applying σ to every coefficient of G. If χG =

∑N
i=0 aix

i is the

characteristic polynomial of G, then χGσ =
∑N

i=0 σ(ai)x
i (since σ is a field

homomorphism). Since σ fixes the coefficients of χG, we get

χG = χGσ .

In particular, Gσ has signature (n, 1) and is not positive semidefinite. This
is a contradiction to part ii) of Theorem 4.2.2 and the claim follows.

5.4 The Coxeter field of a hyperbolic Coxeter
group

Let Γ < Isom(Hn), n ≥ 2, be a cofinite Coxeter group with natural set
of generators {s1, . . . , sN}. Our aim is to study a Coxeter transformation
C = s1 · · · sN of Γ defined up to the ordering of the factors.

With the real coefficients a0, . . . , an+1 of the characteristic polynomial
χC(t) we define a new field, the Coxeter field K(C) = Q(aj | 1 ≤ j ≤
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n+ 1), and prove that it coincides with the Vinberg field K(Γ) if Γ is quasi-
arithmetic.

The proof is based on the work of Howlett [31] and the theory of M -
matrices which we are going to review briefly.

5.4.1 Abstract Coxeter groups and M-matrices

Let W = (W,S) be a Coxeter system with generating set S = {s1, . . . , sN}
satisfying the relations (1.3). By Tits’ theory, it is known that W can be
represented as a subgroup ρ(W ) of GL(V ) for a real vector space V of
dimension N equipped with a suitable symmetric bilinear form B (see [32],
for example).

Recall that W is finite (affine) if B is positive definite (positive semidef-
inite). We denote by rad(V ) = {v ∈ V | B(v, v′) = 0 ∀v′ ∈ V } the radical
of B which will play a role later on.

A Coxeter element c ∈ W is the product of the N generators in S
arranged in any order. The representative CT ∈ GL(V ) of c is called a
Coxeter transformation of W .

For a Coxeter element c = s1 · · · sN , the matrix of CT with respect to a
basis {v1, . . . , vN} of V , denoted again by CT , can be written according to
(see [31], for example)

CT = −U−1UT , (5.6)

where U ∈ GL(N,R) is given by

U =


1

1 ∗
. . .

0 1
1

 , (5.7)

with [U ]st = 2B(vs, vt) for t > s. Notice that

U + UT = 2B. (5.8)

By means of the theory of M -matrices, Howlett ([31, Theorem 4.1],
see also [2]) characterised abstract Coxeter groups in terms of a Coxeter
transformation CT and its eigenvalues. For example, W is finite if and only
if CT is of finite order with eigenvalues on the unit circle.

More concretely, an M-matrix is a real matrix with non-positive off-
diagonal entries all of whose principal minors are positive. For example, the
matrix U given by (5.7) is an M -matrix.

The proof of Howlett’s Theorem 4.1 in [31] is based on the following
results.
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Lemma 5.4.1 ([31], Lemma 3.1). Let U be a real matrix such that U +UT

is positive definite. Then U is invertible and −U−1UT is diagonalisable over
C with all of its eigenvalues having modulus one.

Lemma 5.4.2 ([31], Lemma 3.2 and Corollary 3.3). Let U be an M -matrix
such that U + UT is not positive definite. Then −U−1UT has a real eigen-
value λ ≥ 1. If U+UT is not positive semidefinite, then λ > 1. If U+UT is
positive semidefinite, all the eigenvalues of −U−1UT have modulus one and
−U−1UT is not diagonalisable.

Later we will also need another lemma, which is implicitly stated in
Howlett’s proof of Lemma 5.4.2.

Lemma 5.4.3. Let U be an invertible real matrix such that U + UT is
positive semidefinite. Then the eigenvalues of −U−1UT have all modulus
one.

Proof. For ε > 0 define the matrix U ε := U + εI. Since U + UT is positive
semidefinite, U ε + (U ε)T is positive definite. By Lemma 5.4.1, all the eigen-
values of −(U ε)−1(U ε)T have modulus one. The entries of U ε depend con-
tinuously on ε. The same can be said for −(U ε)−1(U ε)T and the coefficients
of its characteristic polynomial. Hence the eigenvalues of −(U ε)−1(U ε)T and
their modulus depend continuously on ε, and the claim follows.

5.4.2 Coxeter transformations of a hyperbolic Coxeter group

Let Γ < Isom(Hn) be a hyperbolic Coxeter group with generating reflections
s1, . . . , sN . In this way Γ represents a geometric realisation of an abstract
Coxeter group. Let P ∈ Hn be its Coxeter polyhedron with outer unit
normal vectors e1, . . . , eN and associated Gram matrix G ∈ Mat(N,R).

Let C ∈ Γ be a Coxeter transformation of Γ. Our goal is to construct
a new field K(C) associated to C which we can identify later with the
Vinberg field K(Γ). Our motivation comes from [60, Theorem 1.8, (iv)],
due to Reiner, Ripoll and Stump, relating Coxeter transformations of a
finite complex reflection group to its field of definition9 (see also Malle in
[49, Section 7A]).

Inspired by this, we state the following definition.

Definition 5.4.4. Let Γ < Isom(Hn) be a Coxeter group. Let C ∈ Γ be a
Coxeter transformation with characteristic polynomial χC(t) = a0 + a1t +
· · ·+ an+1t

n+1, an+1 = 1. The Coxeter field K(C) is the field generated by
the coefficients of χC(t) over Q, namely

K(C) = Q(aj | 0 ≤ j ≤ n+ 1).

9In [60], the field of definition of a Coxeter group W is the field generated by the traces
of all elements in ρ(W ).
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Consider the characteristic polynomial χC(t) = a0 +a1t+ · · ·+an+1t
n+1

as above. It is not difficult to see that χC(t) is palindromic (aj = an+1−j)
if N = n + 1 + 2k and it is pseudo-palindromic (aj = −an+1−j) if N =
n+ 1 + (2k + 1), for some k ≥ 0.

Furthermore, N−(n+1) is the dimension of the radical rad
(
RN
)

for the
Tits representation space

(
RN , G

)
. Clearly, every element in Γ viewed in

GL
(
RN
)

acts as the identity on rad
(
RN
)
. Hence the same is true for every

Coxeter transformation CT ∈ GL
(
RN
)

of Γ. Since dim
(
RN/ rad

(
RN
))

=
n+ 1, the characteristic polynomials χC and χCT are related by

(t− 1)(N−(n+1))χC(t) = χCT (t). (5.9)

With this preparation we are ready to prove the following result.

Proposition 5.4.5. Let Γ be a cofinite quasi-arithmetic hyperbolic Coxeter
group with Vinberg field K, and let C be any Coxeter transformation of Γ.
Then

K = K(C).

Proof. We first show that K ⊇ K(C). Since the Vinberg field K is a field of
definition (see Remark 4.2.11), the Coxeter transformation C can be written
as a matrix with coefficients in K by means of a suitable basis. Since a
basis change leaves the characteristic polynomial invariant, we have that
K ⊇ K(C).

Assume that K ) K(C). Then there exists a non-trivial embedding σ :
K ↪→ R that is the identity on K(C). Let CT be the Coxeter transformation
acting on

(
RN , G

)
which corresponds to C in the sense of Tits. By (5.6),

CT = −U−1UT where U is an M -matrix. By Lemma 5.4.2, CT has a real
eigenvalue λ > 1. Moreover, as a consequence of (5.9), λ is an eigenvalue of
C as well.

Apply σ to the coefficients of the Gram matrix G of Γ, and denote the
resulting matrix by Gσ. Notice that Uσ is invertible but in general not an
M -matrix anymore (its off-diagonal entries may become positive). Define
Cσ := −(Uσ)−1(Uσ)T . By (5.8), we have the equation Uσ + (Uσ)T = 2Gσ

and thus, by part ii) of Theorem 4.2.2, Uσ + (Uσ)T is positive semidefinite.
Moreover, since σ is a field homomorphism, the characteristic polynomial
of Cσ is obtained by applying σ to the coefficients of the characteristic
polynomial of CT . Since σ is the identity on K(C) leaving the characteristic
polynomial χC invariant, the identity (5.9) yields

χCT = χCσ .

Hence the two polynomials have the same eigenvalues. This is impossi-
ble, since CT has an eigenvalue λ > 1 and since, by Lemma 5.4.3, all the
eigenvalues of Cσ have modulus one.
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5.5 Conclusion

By Proposition 5.3.2 and Proposition 5.4.5, the Vinberg field, the Gram
field and the Coxeter field of a quasi-arithmetic hyperbolic Coxeter group Γ
coincide. Essential for their proofs is that the matrix Gσ becomes positive
semidefinite for every non-trivial embedding.

A natural question is whether this phenomenon holds also for nq-arithme-
tic hyperbolic Coxeter groups. Based on various tests, we formulate the
following conjecture.

Conjecture 5.5.1. Let Γ < Isom(Hn) be a cofinite Coxeter group. Then
the Vinberg field, the Gram field and the Coxeter field of Γ coincide, that is,

K(Γ) = K(G) = K(C).

For the proof of the Conjecture new ideas have to be developed since we
do not dispose of the appropriate signature property anymore. In Appendix
B, we illustrate the testing of the above Conjecture by means of graph-
theoretical tools on the level of the Coxeter graphs.
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Appendix A

On the coefficients of the
characteristic polynomial of
a matrix

Let G be an N × N complex matrix, N ≥ 2. Denote its characteristic
polynomial by

χG(t) = a0 + a1t+ · · ·+ aN t
N , aN = 1.

In this appendix we present three ways to express the coefficients of χG.
In the following, let m be an integer with 1 ≤ m ≤ N .

The coefficients in terms of principal minors

Let Sm(G) denote the sum of all the principal minors of G of size m, of
which there are

(
N
m

)
. Then (see [30, p. 53], for example)

aN−m = Sm(G). (A.1)

The coefficients in terms of traces

Denote by TRm(G) the trace of the m-th power matrix Gm of the matrix
G. Moreover consider a partition of m as partial sums of sizes s1, . . . , sj
according to

m = (r1 + r1 + · · ·+ r1) + (r2 + · · ·+ r2) + · · ·+ (rj + · · ·+ rj) =

j∑
i=1

risi,

with integers r1, . . . , rj satisfying r1 > r2 > · · · > rj > 0.
Using Newton’s formulae for symmetric functions, one can show that

(see [44], for example)

aN−m = −
∑ j∏

i=1

(−TRri(G))si

rsii · si!
, (A.2)
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where the sum is taken over all the partitions of m.

The coefficients in terms of eigenvalues

Let λ1, . . . , λN be the eigenvalues of G. Define the function Eigm(G) as

Eigm(G) =
∑

1≤k1<···<km≤N

m∏
i=1

λki .

Then (see [30, p. 54] and [11], for example)

aN−m = Eigm(G). (A.3)
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Appendix B

An approach to test the
Conjecture 5.5.1

In this appendix we show a way how to test the Conjecture 5.5.1 formulated
as follows: let Γ < Isom(Hn) be a cofinite Coxeter group of rank N . Then
the Vinberg field, the Gram field and the Coxeter field of Γ coincide, that
is,

K(Γ) = K(G) = K(C).

The test K(Γ) = K(G) is easily computable given the Gram matrix G
of Γ. Therefore we only check the equality K(Γ) = K(C) for every Coxeter
transformation C of Γ.

The difficulty of this is that Γ has at most N ! Coxeter elements. How-
ever, since the characteristic polynomials are conjugacy invariants, regroup-
ing Coxeter elements into conjugacy classes allows to compute K(C) for a
representative of each class, only.

In the following we present a graph theoretical tool to regroup Coxeter
elements into conjugacy classes in general which will be exploited later in
our particular context.

B.1 Some graph terminology

Let Σ be a graph and consider two vertices u and v in its vertex set. A path
ω is a sequence of vertices u = vi1 , vi2 , . . . , vir = v such that vl is adjacent to
vl+1 for every i1 ≤ l ≤ ir−1. The length of a path is the number of edges of
the path. The inverse path −ω is obtained by reversing the sequence, going
from v to u. If a path is defined by a cycle of the graph, that is u = v, we
call it a cyclic path.

Assume we have an orientation on Σ. When the edge between two ver-
tices vi and vj is oriented from vi to vj we write vi → vj . Let vi and vi+1

be two adjacent vertices of a path ω. The edge between vi and vi+1 is for-
ward if vi → vi+1. Otherwise the edge is backward. A directed path is a
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sequence of vertices u = vi1 , vi2 , . . . , vir = v such that vl → vl+1 holds for
every i1 ≤ l ≤ ir− 1. If u = v, we call ω a directed cycle. An oriented graph
is called acyclic if it does not contain any directed cycle.

A vertex v of Σ is called a source if for every adjacent vertex u we have
v → u. Furthermore, v is said to be a sink if u → v. We can define an
operation on an oriented graph which changes an acyclic orientation into
another acyclic orientation as follows.

Definition B.1.1. Let v be a source of an oriented graph. A source-to-sink
operation on v, or ss-operation, means reversing all the orientations around
v. With this operation v is turned into a sink (see Figure B.1).

Figure B.1: Source-to-sink operation.

The ss-operation yields an equivalence relation on the set of all orienta-
tions on a graph ([63, p. 4]): two orientations O1 and O2 are ss-equivalent
if and only if O2 can be obtained from O1 using only ss-operations.

B.2 Conjugacy classes of Coxeter elements

Let Γ be an abstract Coxeter group of rank N with Coxeter graph Σ. If Σ
is a tree, then the equality K(Γ) = K(C) for hyperbolic Coxeter groups can
be efficiently tested due to the following proposition.

Proposition B.2.1 ([32], Proposition 3.16). Let Γ be a hyperbolic Coxeter
group. If the Coxeter graph of Γ is a tree, then all the Coxeter elements are
conjugate.

Suppose that the Coxeter graph Σ of Γ is not a tree. The partition
of Coxeter elements into conjugacy classes becomes more involved. In the
following we shall discuss this problem.

Put an enumeration on the vertices v1, . . . , vN of Σ. Notice that to each
enumeration corresponds a Coxeter element obtained by multiplying the
corresponding generators following the order of the enumeration. There is
the following theorem which links enumerations and acyclic orientations of
Σ.

Theorem B.2.2 ([62], Theorem 1.5). Let Σ be a Coxeter graph. Then
there is a one-to-one correspondence between the set of acyclic orientations
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on Σ and the enumerations of its vertices v1, . . . , vN up to shuffling, that is,
switching the enumeration index of two vertices if there is no edge between
them.

Remark B.2.3. Notice that if two vertices of the Coxeter graph Σ have
no edge between them, then the two corresponding generators of the associ-
ated Coxeter group commute with each other. Therefore two enumerations
obtained by shuffling one into the other correspond to the same Coxeter
element.

Let O1 be an acyclic orientation on the Coxeter graph Σ with corre-
sponding enumeration v1, . . . , vN . Then there is a sink which we denote
by v. It is not difficult to check that, by shuffling enumerations, one can
assume that vN = v. Apply the ss-operation on v and get the new acyclic
orientation O2. The enumeration (up to shuffling) corresponding to O2 is
then v, v1, . . . , vN−1.

Therefore the Coxeter element c1 = sv1 · · · svN−1 sv of Γ associated to the
first enumeration is conjugate to the Coxeter element c2 = sv sv1 · · · svN−1

given by the second enumeration, namely

c1 = s−1
v c2sv.

Thus two Coxeter elements corresponding to two ss-equivalent acyclic ori-
entations are in the same conjugacy class.

Hence, the number of conjugacy classes of Coxeter elements is bounded
from above by the number of ss-classes of acyclic orientations of the Coxeter
graph Σ. Even more is true: Eriksson and Eriksson [20] have proved that
the number of conjugacy classes of Coxeter elements is equal to the number
of ss-classes.

For example, if the Coxeter graph Σ contains only one cycle, then the
number of conjugacy classes of Coxeter elements is ν − 1, where ν is the
number of vertices of the cycle (see also [63]).

In order to state the next result we need to introduce the following notion
for an arbitrary graph.

Definition B.2.4. Let O be an orientation assigned to a graph. The flow
difference of a cycle is the integer dO obtained by subtracting the number
of backward edges from the number of forward edges.

With the above definition we can state the following theorem.

Theorem B.2.5 ([57], Theorem 1). Consider a graph with an acyclic orien-
tation O1. Another orientation O2 can be obtained from O1 by ss-operations
if and only if dO1 = dO2 for every cycle of the graph.
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In the following simple example, we apply the above knowledge to pass
from a Coxeter element to its conjugacy class and then test more easily the
equality K(Γ) = K(C) of the Conjecture 5.5.1.

Example B.2.6. Consider the nq-arithmetic hyperbolic Coxeter simplex
group Γ with Coxeter graph Σ given in Figure B.2.

s4 s3

5

s2s1

4

Figure B.2: The Coxeter group Γ in Isom(H3).

The graph Σ is a cycle with ν = 4 vertices. Hence there are three
conjugacy classes of Coxeter elements.

Let the bottom left vertex on the graph be the start and end vertex
for a walk on the cycle going counter-clockwise. Consider the three acyclic
orientations a, b and c of Σ with flow difference 2, 0 and −2, respectively
(see Figure B.3).

v4 v3

5

v2v1

4

v3 v4

5

v2v1

4

v2 v3

5

v4v1

4

a b

c

Figure B.3: The three acyclic orientations a, b and c of Σ.

Enumerating the vertices of the graph Σ as shown in Figure B.3, we
compute the three Coxeter elements ca, cb, cc each representing a conjugacy
class: ca = s1s2s3s4, cb = s1s2s4s3 and cc = s1s4s3s2.

The three corresponding Coxeter transformations Ca, Cb, Cc ∈ GL(R4)
can be computed as described in the proof of Theorem 5.3 in [29]. Conse-
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quently we obtain the characteristic polynomials

χCa(t) = t4 − βt3 − t2 − βt+ 1,

χCb(t) = t4 − 1

2

(
3 +
√

5
)
t3 −

(
1 +
√

2 +
√

10
)
t2 − 1

2

(
3 +
√

5
)
t+ 1,

χCc(t) = t4 − βt3 − t2 − βt+ 1,

where β = 1
2

(
3 +
√

2 +
√

5 +
√

10
)
.

Therefore K(Ca) = K(Cb) = K(Cc) = Q
(√

2,
√

5
)

= K(Γ) as conjec-
tured.
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Appendix C

On right-angled polygons in
hyperbolic space

Attached to this appendix is the paper “On right-angled polygons in hy-
perbolic space” written jointly with Simon Drewitz and published in Ge-
ometriae Dedicata, June 2019, Vol. 200, Issue 1, pp. 45–59 [19]. DOI:
https://doi.org/10.1007/s10711-018-0357-y. A condensed version of this pa-
per is presented in Chapter 2.

Appendix D

Erratum to the paper
“Commensurability classes of
hyperbolic Coxeter groups”

Attached to this appendix is the Erratum, due to J. Ratcliffe and S. Tschantz,
fixing a gap in the proof of Theorem 1 of [36]. We used some ideas of this
proof to demonstrate Proposition 4.3.7. The publication of the Erratum
here in this work has been authorised by J. Ratcliffe and S. Tschantz.
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Abstract We study oriented right-angled polygons in hyperbolic spaces of arbitrary dimen-
sions, that is, finite sequences (S0, S1, . . . , Sp−1) of oriented geodesics in the hyperbolic
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1 Introduction

For n ≥ 0, let Hn+2 denote the real hyperbolic (n + 2)-space. The boundary of this space
can be described with Clifford vectors. These are special elements of the Clifford algebra Cn ,
which is the unitary associative algebra generated by n elements i1, . . . , in such that i j il =
−il i j , i2l = −1 for l �= j . The group of orientation preserving isometries Isom+(Hn+2) of
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with coefficients in the multiplicative group generated by Clifford vectors and with Ahlfors
determinant 1.

In this context, we describe hyperbolic right-angled polygons for which we mean right-
angled closed edge paths in n + 2 dimensions. We show how to construct a hyperbolic
right-angled polygon �p of p sides, p > 4, by prescribing a parameter set consisting of
p − 3 Clifford vectors in ∂Hn+2. Such a construction is achieved in an arbitrary dimension.
No connection between the dimension of the space and the number of sides of the polygon
is required.

Similar objects have already been studied in dimension 2 and 3 by Thurston [8] and by
Fenchel [9], who studied right-angled hexagons. Costa andMartínez [5] studied right-angled
polygons with an arbitrary number of sides in the hyperbolic plane. More recently Delgove
and Retailleau [7] classified right-angled hexagons in H5. In their work, 2 × 2 quaternionic
matrices having Dieudonné determinant 1 are used in order to describe the direct isometries
of H5. While this approach based on quaternions is very convenient, it can not be extended
to arbitrary dimensions. By using Clifford matrices instead, we are able to generalise the
construction to any dimension. Particularly, 2× 2 quaternionic Clifford matrices are used to
describe direct isometries of H4.

In the first section we develop more precisely the connection between hyperbolic space
and the Clifford algebra. Then we discuss the role of the cross ratio for Clifford vectors
and its geometrical interpretation. Our main result, the algorithmic construction of �p , is
presented in the second section. In the last part we treat the case when the convex hull of
the p vertices of the polygon �p give rise to a hyperbolic (p − 1)-simplex. A necessary
condition for its realisation is stated. As a conclusion we discuss in more details a special
case in 4 dimensions, supposing that all the edges of the edge path have equal length. By
exploiting the work of Dekster and Wilker [6] we explicitly state a necessary and sufficient
condition for realisability depending on such a side length. Surprisingly, it turns out that the

side length must be related to the golden ratio γ = 1+√
5

2 .

2 The real Clifford algebra and hyperbolic space

In this section we present the notion of Clifford algebra and its relation to isometries of
hyperbolic space. For a more complete description we refer to the works of Ahlfors [1,2],
Vahlen [13] and Waterman [14] (see also [11, Section 7]).

2.1 The real Clifford algebra Cn

Consider the real Clifford algebra Cn generated by i1, . . . , in , that is

Cn = 〈
i1, . . . , in | i j il = −il i j , i

2
l = −1 for l �= j

〉
,

which is a unitary associative real algebra. Every element x of the algebra Cn can be uniquely
written as x = ∑

xI I , where xI ∈ R and the sum is taken over all the products I = ik1 · · · ikm ,
with 1 ≤ k1 < · · · < km ≤ n and 1 ≤ m ≤ n. Here the empty product I0 is included and
identified with i0 := 1. Hence Cn is a 2n-dimensional real vector space. In particular we can
identify C0 with R, C1 with C and C2 with H, the Hamiltonian quaternions. To each element
x = ∑

xI I we associate a norm as given by |x |2 = ∑
x2I , inducing a Euclidean structure on

Cn . Denote with �(x) the coefficient x0, called the real part of x , while �(x) = x − �(x) is
called the non-real part of x . If �(x) = 0 we will refer to x as a pure element of Cn .
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On Cn there are three well-known involutions. Let x ∈ Cn , x = ∑
xI I . Then:

(i) x∗ = ∑
xI I ∗, where I ∗ is obtained from I = ik1 · · · ikm by reversing the order of the

factors, that is I ∗ = ikm · · · ik1 ;
(ii) x ′ = ∑

xI I ′, where I ′ is obtained from I = ik1 · · · ikm by replacing each factor ik with
−ik , that is I ′ = (−ik1) · · · (−ikm ) = (−1)m I ;

(iii) x = (x∗)′ = (x ′)∗.

The involutions (i) and (iii) are anti-automorphisms, while the involution (ii) is an automor-
phism.

Of particular interest are Clifford elements of the form x = x0 + x1i1 + · · ·+ xnin , called
Clifford vectors. The set

Vn+1 = {x0 + x1i1 + · · · + xnin | x0, . . . , xn ∈ R}
of all Clifford vectors is an (n + 1)-dimensional real vector space, naturally isomorphic to
the Euclidean space Rn+1. Notice that for an element x ∈ Vn+1 we have x∗ = x and hence
x = x ′ as well as x + x = 2�(x) and xx = xx = |x |2. Moreover every non-zero vector x
has an inverse given by x−1 = x

|x |2 . Hence finite products of non-zero vectors are invertible

and they form the so-called Clifford group �n . Observe that we have �n = Cn\{0} only for
n ∈ {0, 1, 2}.
2.2 Square root of a Clifford vector

Next we introduce the notion of the square root of a Clifford vector. It will be a generalisation
of the square root of quaternions (see [10] for example) in the following way:

Proposition 1 Let y ∈ Vn+1\{0} be a Clifford vector. If y /∈ R<0, then there exist exactly
two elements x1, x2 ∈ Vn+1 such that x21 = x22 = y; x1 and x2 are both called a square root
of y. If y ∈ R<0, we have the three following situations depending on n:

• If n = 0, then there is no element x ∈ V1 such that x2 = y,
• If n = 1, then there are exactly two elements x1, x2 ∈ V2 such that x21 = x22 = y,
• If n ≥ 2, then there are uncountably many square roots of y.

Proof Suppose that x2 = y, with x, y ∈ Vn+1\{0}. Then x2 = y and |x |2 = |y|. We have
the following two equations:

x(x + x) = xx + x2 = |y| + y, (1)

(x + x)2 = x2 + 2xx + x2 = y + 2|y| + y = 2(�(y) + |y|). (2)

Observe that the term 2(�(y) + |y|) ≥ 0.
Now let y /∈ R<0, then we have �(y) + |y| > 0, and the element

x := |y| + y√
2(�(y) + |y|) ∈ Vn+1 (3)

satisfies x2 = y. Indeed,

x2 = |y|2 + 2|y|y + y2

2�(y) + 2|y| = (y + 2|y| + y)y

2�(y) + 2|y| = y.

Notice that in the special case if y ∈ R>0, the identity (3) yields x = ±√
y as desired. For

y /∈ R the square roots of y have to lie in the plane spanned by 1 and y which is isomorphic
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to C, ensuring the non-existence of more than two roots. By abuse of notation the square root
x of y is denoted by

√
y := x .

Let y ∈ R<0. For n = 0 or 1 the assertion is trivial. Let n ≥ 2. We can write y = −z2 for
some z ∈ R>0. In this case consider x := z · u where u is a pure Clifford vector with norm
1. In general for any pure Clifford vector we have

0 = (u + u)u = uu + u2 = |u|2 + u2,

which implies u2 = −|u|2. Hence x2 = z2u2 = −z2|u|2 = −z2. ��
Remark 1 Notice that Proposition 1 remains true for y ∈ �2 = H\{0} since y + y = 2�(y)
still holds. However, it does not hold for a general element of Cn or even �n , n ≥ 3. Indeed,
for an arbitrary y ∈ �n one has y + y �= 2�(y). For example let y = i1i2i3 ∈ �n, n ≥ 3.
Then y + y = 2i1i2i3. Hence Eq. (2) does not hold.

Remark 2 For the square root
√
y of a Clifford vector y ∈ Vn+1\R≤0 we have:

• For all positive μ ∈ R>0,
√

μy = √
μ

√
y,

• For the inverse
√
y−1 = √

y−1 = 1
|y|

√
y.

• The square root of −y can be found by a rotation of 90◦: √−y = i
√
y for some pure

Clifford vector i with i2 = −1. This also holds for negative y ∈ R<0.

2.3 Clifford matrices and hyperbolic isometries

We now take a look at matrices having entries in the extended Clifford group �n ∪{0}. These
matrices will be used to explicitly represent direct isometries of the hyperbolic space Hn+2

(see for example [14] and [11, Section 7]).

A Clifford matrix is a 2 × 2 matrix A =
(
a b
c d

)
with

a, b, c, d ∈ �n ∪ {0}, ab∗, cd∗, c∗a, d∗b ∈ Vn+1, ad∗ − bc∗ ∈ R\{0},
wheread∗−bc∗ is theAhlfors determinant of A.Denote the set of suchmatrices byGL(2, Cn).
By a result of Vahlen and Maass [2, p. 221] the set

SL(2, Cn) =
{
A =

(
a b
c d

)
∈ GL(2, Cn) | ad∗ − bc∗ = 1

}
(4)

of Clifford matrices with Ahlfors determinant 1 is a multiplicative group.

Each element T =
(
a b
c d

)
∈ SL(2, Cn) has the inverse matrix T−1 =

(
d∗ −b∗

−c∗ a∗
)
.

Furthermore SL(2, Cn) is generated by the matrices
(
1 t
0 1

)
,

(
0 −1
1 0

)
,

(
a 0
0 a∗−1

)
,

where t ∈ Vn+1 and a ∈ �n (see for example [11, Section 7]).
The group SL(2, Cn) plays an important role in our investigation since it is closely related

to the group of orientation preserving isometries of the hyperbolic (n + 2)-space realised in
the upper half-space according to

Hn+2 = {
x = (x0, x1, . . . , xn+1) ∈ Rn+2 | xn+1 > 0

}

∼= Vn+1 × R>0.
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The compactification Hn+2 is given by the union of Hn+2 with the boundary set ∂Hn+2 =
Vn+1 ∪ {∞} of points at infinity of Hn+2.

Consider the projective group

PSL(2, Cn) = SL(2, Cn)/{±I }.
It is known that this group acts bijectively on Vn+1 ∪ {∞} by

T (x) = (ax + b)(cx + d)−1 (5)

with T (−c−1d) = ∞, T (∞) = ac−1 if c �= 0, and T (∞) = ∞ otherwise. By Poincaré
extension, the action (5) can be extended to the upper half-space Hn+2. In this way we obtain
an isomorphism between PSL(2, Cn) and the group Möb+(n + 1) of orientation preserving
Möbius transformations of Vn+1 ∪ {∞} (see [4,14]). Since the group Isom+ (

Hn+2
)
of

orientation preserving isometries of Hn+2 is isomorphic toMöb+(n+1), we get the following
identification:

Isom+ (
Hn+2) ∼= Möb+ (n + 1) ∼= PSL(2, Cn). (6)

Therefore any direct isometry of Hn+2 can be represented by a Clifford matrix in
PSL(2, Cn).

Finally, we remark that Möbius transformations act triply transitively on Vn+1 ∪ {∞}
(see [15, Section 6], for example). That is, given two triplets {x1, x2, x3} and {x ′

1, x
′
2, x

′
3} of

distinct points in the boundary, there always exists a transformation T ∈ Möb(n + 1) with
T (xi ) = x ′

i . For n = 0 this map is unique and for n = 1 it is unique if one demands that it
preserves the orientation. In higher dimensions this map is not unique anymore.

2.4 The cross ratio

As in the classical case, we shall use the cross ratio to study configurations of points in
Vn+1 ∪ {∞}.
Definition 1 Let x, y, z, w be four pairwise different Clifford vectors in Vn+1. Then

[x, y, z, w] := (x − z)(x − w)−1(y − w)(y − z)−1 ∈ �n\{0} (7)

is called the cross ratio of x, y, z and w.

We extend the definition (7) by continuity to Vn+1 ∪ {∞}, allowing x , y or w to be ∞, by

[∞, y, z, w] = (y − w)(y − z)−1 for x = ∞, (8)

and similarly for y = ∞ and w = ∞. Moreover in an analogous way we put

[x, y,∞, w] = (x − w)−1(y − w).

The cross ratio satisfies the following transformation behaviour (see [4, Lemma 6.2]):

[T (x), T (y), T (z), T (w)] = (cz + d)∗−1[x, y, z, w](cz + d)∗, (9)

for all T =
(
a b
c d

)
∈ SL(2, Cn).

Hence, the real part and the norm of the cross ratio [x, y, z, w] of four vectors are invariant
under the action of T . However, the cross ratio itself is not an invariant.

We specialise the cross ratio in the following way: consider two oriented geodesics s, t in
Hn+2 whose endpoints s−, s+ and t−, t+ are four distinct points in Vn+1 ∪ {∞}.
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Definition 2 The cross ratio �(s, t) of s and t is defined by

�(s, t) := [
s−, s+, t−, t+

]
. (10)

Lemma 1 Let s and t be two geodesics as above. If s and t intersect then �(s, t) = �(t, s).
If s and t are disjoint, then �(s, t) = �(t, s) if one of the endpoints is ∞ or if the cross
ratios are real, otherwise the two cross ratios are conjugate.

Proof Assuming one of the endpoints to be infinity, let s = (x,∞) with x ∈ Vn+1. We can

apply a translation

(
1 −x
0 1

)
such that s is mapped to (0,∞). By (9), any translation leaves

the cross ratio unchanged. Using (8) it is easy to see that �(s, t) = �(t, s).
Let now s and t be two arbitrary geodesics with no endpoint at infinity. We know that we

can always find an isometry T =
(
a b
c d

)
∈ SL(2, Cn) mapping the two endpoints of one of

the geodesics to 0 and ∞. Using (9) and what we have just discussed above we get

(ct− + d)∗−1[s−, s+, t−, t+](ct− + d)∗ = [
T (s−), T (s+), T (t−), T (t+)

]

= [
T (t−), T (t+), T (s−), T (s+)

]

= (cs− + d)∗−1[t−, t+, s−, s+](cs− + d)∗.

Hence the two cross ratios �(s, t) and �(t, s) are conjugate. This implies that if the cross
ratios are real, then the equality �(s, t) = �(t, s) holds. In particular, if two geodesics
intersect, then �(s, t) = �(t, s) by Proposition 2 below. ��

Now consider three geodesics r, s and t in Hn+2 with pairwise different endpoints
r−, r+, s−, s+ and t−, t+ in Vn−1 ∪ {∞}.
Definition 3 The quantity

�(r, s, t) := [
s+, s−, r+, t+

]
(11)

is called the double bridge cross ratio of (r, s, t).

Definition 4 The ordered triple (r, s, t) is called a double bridge if s is orthogonal to r and
t such that r �= t . If |�(r, s, t)| > 1, then the intersections r ∩ s and s ∩ t do not coincide
and we call the double bridge properly oriented.

Consider a properly oriented double bridge (r, s, t). The norm of �(r, s, t) encodes the
hyperbolic length of the geodesic segment [r, t] on s between r and t . Indeed, assume w.l.o.g.
that the endpoints of s in the double bridge (r, s, t) are s− = 0 and s+ = ∞ (see Fig. 1). The
hyperbolic distance δ of two points p, q ∈ s in Hn+2 with pn+2 > qn+2 is equal to (see [3,
p. 131])

δ = log

(
pn+2

qn+2

)
.

On the other hand, by (7) we get

|�(r, s, t)| = |[∞, 0, r+, t+]| = |t+|
|r+| .

If we take p = s ∩ t and q = r ∩ s, we conclude that δ = log(|�(r, s, t)|).
The following results will be of importance:
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Fig. 1 Double bridge

Proposition 2 Two hyperbolic geodesics s and t intersect if and only if their cross ratio
�(s, t) ∈ R<0. Furthermore s and t are perpendicular if and only if �(s, t) = −1.

Proof Since hyperbolic isometries act triply transitively, there is an isometry represented by
A ∈ SL(2, Cn) mapping s and t into (0,∞) and (1, x), x ∈ Vn+1. Then, by (7) and (8), the
cross ratio of A(s) and A(t) equals �(A(s), A(t)) = [0,∞, 1, x] = x−1, and the assertions
follow for A(s) and A(t). Moreover, by (9), a real cross ratio stays invariant under isometry.

��
Proposition 3 Let s = (0,∞) and t = (1, y) with y �= 0,∞ be two disjoint geodesics in
Hn+2. Then the common perpendicular l is (−√

y,
√
y). This perpendicular is unique up to

orientation.

Proof Let l = (z, w) denote the common perpendicular between s and t . By Proposition 2
and by (8), we get

�(s, l) = [0,∞, z, w] = −1. (12)

and
�(t, l) = [1, y, z, w] = −1. (13)

Equation (12) yields z = −w. The Eq. (13) states that

(1 − z)(1 + z)−1 = −(y − z)(y + z)−1. (14)

It is easy to see that (1 − z)(1 + z)−1 = (1 + z)−1(1 − z), so that

(1 − z)(y + z) = −(1 + z)(y − z).

By expanding the above equation we obtain y = z2. Notice that by construction, since s and
t are disjoint, we have y /∈ R<0. Hence, by applying Proposition 1, the result follows for
l = (±√

y,∓√
y). ��
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Fig. 2 Standard configuration
double bridge

3 The main theorem

3.1 Preliminaries

Our aim is to construct oriented right-angled polygons in hyperbolic space from a minimal
number of prescribed parameters.

Definition 5 An oriented right-angled polygon with p sides in Hn+2 (or p-gon for short),
n ≥ 0, is a p-tuple of oriented geodesics (S0, S1, . . . , Sp−1)with Si−1 �= Si+1 for i (mod p)
and such that Si is orthogonal to Si+1 for 0 ≤ i ≤ p − 2 and Sp−1 is orthogonal to S0.

We usually denote it by �p .
We call such a p-gon�p non-degenerate if consecutive intersections do not coincide (that

is Si−1 ∩ Si �= Si ∩ Si+1 for i (mod p)) and the double bridges (Si−1, Si , Si+1), i (mod p),
are properly oriented.

We can take p ≥ 5 since the simplest case of a right-angled polygon is the pentagon. There
cannot be a hyperbolic rectangle since the common perpendicular of two geodesics S0 and
S2 is unique. Hence if there was a hyperbolic rectangle (S0, S1, S2, S3), two geodesics would
have to be identical.

Note that it is no restriction to only consider p-gons in H p−1 since the convex hull of p
geodesics can at most have dimension p − 1. Hence, we will always refer to this case.

Recall that the one-point compactified vector space Vp−2 ∪ {∞} forms the boundary of
hyperbolic (p − 1)-space

H p−1 = {
(x, y) ∈ Vp−2 × R>0

}
.

Consider the standard configuration double bridge (r, s, t) similar to Sect. 2.4 with r =
(−1, 1), s = (0,∞) and t = (−x, x) for x ∈ Vp−2\ {−1, 0, 1} (see Fig. 2).

A small computation shows that the double bridge cross ratio is given by

�((−1, 1), (0,∞), (−x, x)) = [∞, 0, 1, x] = x . (15)
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If conversely the first two geodesics of this double bridge and a desired double bridge
cross ratio q are given, one can construct the third geodesic as (− q, q). In the general case
this is not easy since the Clifford vectors do not commute. In view of (15) we shall start with
the configuration given by the geodesics (−1, 1), (0,∞) and (−x, x). If the double bridges
are supposed to be properly oriented, this poses the immediate restriction |x | > 1.

To construct more geodesics we will have to apply certain isometries to achieve this
configuration from a general double bridge. These isometries depend on the double bridge
cross ratios in the right-angled polygon �p they are part of.

Definition 6 For a set of given Clifford vectors
{
q1, . . . , qp−3

} ⊂ Vp−2\ {0} define the
isometries φi of upper half-space by the following Möbius transformations:

φi : x �→ √−2 qi
−1

(x + qi ) (x − qi )
−1

√−2 qi , 1 ≤ i ≤ p − 3. (16)

If qi ∈ R>0, choose
√−2 qi := √

2 qi i1.
Let 	i be the concatenation 	i := φi ◦ φi−1 ◦ · · · ◦ φ1.

Note that the isometries φi carry the two geodesics (0,∞) and (− qi , qi ) into the geodesics
(−1, 1) and (0,∞) of a double bridge in the aforementioned setting. However, these isome-
tries are not uniquely defined by this property. We will always apply these φi if we need an
isometry which maps given geodesics to specific other geodesics in a polygon �p .

The Clifford matrix corresponding to φi is
(√−2 qi

−1 qi
√−2 qi

−1

√−2 qi
−1 − qi

√−2 qi
−1

)

. (17)

The inverse φ−1
i (x) = √−qi (1 + x)(1 − x)−1√−qi is represented by the matrix

(
qi

√−2 qi
−1 qi

√−2 qi
−1

√−2 qi
−1 −√−2 qi

−1

)

. (18)

Repeatedly applying these isometries to geodesics in a �p enables us to standardise the
cross ratio of a double bridge in a p-gon and eliminate the problem of the cross ratio not
being invariant under isometries (Fig. 3).

3.2 The theorem

Definition 7 Let
(
S0, . . . , Sp−1

)
be a right-angled p-gon. Define the gauged double bridge

cross ratios �̃i for i = 1, . . ., p − 3 by the following recursive definition:

�̃1 := �(S0, S1, S2) , (19)

�̃i+1 := �(	i (Si ) ,	i (Si+1) ,	i (Si+2)) . (20)

The Clifford vectors qi which are needed to define the maps 	i are calculated along the way
as

qi = �̃i . (21)

These gauged double bridge cross ratios will be the parameters describing the non-
degenerate right-angled p-gons in H p−1 in the Theorem 1 below. Hence consider the set

Pp := {
(q1, . . . , qp−3) | qi ∈ Vp−2, |qi | > 1, 1 ≤ i ≤ p − 3

}
(22)
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Fig. 3 Gauging by an isometry

of (p − 3)-tuples of non-zero Clifford vectors. Denote by

RAPp :=
{ (

S0, . . . , Sp−1
)
non-degenerate right-angled polygon in H p−1

with S0 = (−1, 1) , S1 = (0,∞)
}

(23)

the set of non-degenerate right-angled polygons with p sides. The calculation of the gauged
double bridge cross ratios gives a map �̃ : RAPp → Pp . Denote the image of this map by
P∗

p := �̃
(
RAPp

) ⊂ Pp . This is the set of parameters which will yield a non-degenerate �p

in the construction below.

Theorem 1 The map �̃ : RAPp → P∗
p is a bijection. The inverse map can be given as an

explicit construction of a right-angled p-gon �p from a tuple of p − 3 parameters in P∗
p.

3.3 Proof of Theorem 1

Bijectivity It is sufficient to prove the injectivity of �̃ since it is surjective by definition.
Note that in the standard configuration double bridge of Fig. 2, there is a one-to-one cor-
respondence of Clifford vectors x and geodesics t = (−x, x) as given by Eq. (15). Now
assume there are two p-gons �p = (S0, . . . , Sp−1), �′

p = (S′
0, . . . , S

′
p−1) ∈ RAPp such

that �̃
(
�p

) = �̃
(
�′

p

)
= (

q1, . . . , qp−3
)
. By definition S0 = S′

0 and S1 = S′
1. By the

above correspondence we also have S2 = S′
2. Furthermore the maps φ1, . . . , φp−3 are the

same for both �p and �′
p since these maps are defined by q1, . . . , qp−3 as given in Eq. (16).

Therefore the map 	i yields the same one-to-one correspondence between geodesics and
Clifford vectors in both p-gons.

Construction of the polygon �p The inverse map �̃−1 is given by the construction of a �p

from p − 3 parameters q1, . . . , qp−3 ∈ Vp−2.
Assume we are given p − 3 parameters (q1, …, qp−3) ∈ P∗

p .
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Start The first two geodesics are fixed as S0 = (−1, 1) and S1 = (0,∞). Since this is
the standard configuration double bridge considered above, we find S2 = (− q1, q1) if we
demand �(S0, S1, S2) = q1.

The geodesic S3 To find the endpoints of S3, we benefit from the isometry φ−1
1 above which

maps (−1, 1) to (0,∞) and (0,∞) to S2. If q2 was the cross ratio of a double bridge involving
(−1, 1) and (0,∞), the third geodesic would be (− q2, q2). Since S3 is part of the double
bridge starting with (0,∞) and S2, S3 can be found by applying φ−1

1 to (− q2, q2), that is
S3 = (φ−1

1 (− q2), φ
−1
1 (q2)).

The next geodesic in the general case The further procedure expands the previous idea. First
we note that the next geodesic is given by the parameter q3. The geodesic S4 would then be
the image of (− q3, q3) under the isometry 	−1

2 mapping (−1, 1) and (0,∞) to S2 and S3,
respectively.

In general, assuming we have calculated the geodesics S0, . . . , Sk for some k with 2 ≤
k ≤ p − 3, we can use 	−1

k−1 in order to obtain Sk+1 = (	−1
k−1(− qk),	

−1
k−1(qk)).

Existence of the last geodesic After using all the parameters q1, . . . , qp−3, we have deter-
mined the geodesics S0, . . . , Sp−2. As a consequence of Proposition 2 the last common
perpendicular between S0 and Sp−2 exists and is unique as long as

�
(
S0, Sp−2

)
/∈ R−. (24)

This is ensured by the set P∗ ⊂ P . ��
Remark 3 Since the Clifford vectors do not commute, one cannot directly compute the com-
mon perpendicular Sp−1 using the equations

�
(
Sp−1, S0

) = −1, �
(
Sp−1, Sp−2

) = −1. (25)

However, one can use an isometry to obtain a nice configuration where the terms in the
equations above commute. Writing Sp−2 = (a, b), consider the isometry

ψ : x �→α−1 (1 + x)(1 − x)−1 α−1 (26)

where α := √−(1 + a)(1 − a)−1. This isometrymaps S0 to (0,∞) and Sp−2 to (1, c)where
c := α−1 (1 + b)(1 − b)−1 α−1.

Hence, by Proposition 3

Sp−1 = (
ψ−1 (−√

c
)
, ψ−1 (√

c
))

(27)

modulo orientation where ψ−1 is given by

ψ−1(x) = (α x α − 1) (α x α + 1)−1 . (28)

Remark 4 A major drawback is that we cannot explicitly describe P∗
p . One can take a set of

parameters
(
q1, . . . , qp−3

) ∈ Pp , apply the above construction and afterwards checkwhether
the created object actually is a non-degenerate right-angled p-gon.

If all the parameters qi have norm |qi | > 1 the proper orientation of the geodesics
S1, . . . , Sp−3 is automatically guaranteed. So one needs to check the orientation of S0, Sp−2

and Sp−1. This can be done by calculating the norm of the double bridge cross ratios with
the respective geodesic as the central one. Since the norm of the cross ratio is invariant under
isometry we do not have to use the gauged double bridge cross ratios at this point. If the
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orientation of Sp−1 is wrong, one can just invert it. If the orientation of Sp−2 is wrong, one
needs to replace the parameter qp−3 by − qp−3 and the construction yields the same �p just
with the inverted orientation of Sp−2. If the orientation of S0 is wrong, one can replace the
parameter q1 by − q1. This introduces a factor i to the left and to the right of the map φ−1

1 ,
where i is a root of −1 in the plane spanned by 1 and q1; respectively i = i1 if q1 is real.
Such a map is a rotation of 180◦ in the plane spanned by 1 and i .

After some exemplary calculations, we conjecture that for p = 5 the set

{(q1, q2) ∈ P5 | �(q1) �= 0, q1 �⊥ q2} (29)

yields non-degenerate right-angled 5-gons up to orientation.

4 Right-angled polygons with full span

One natural question which arises when studying right-angled polygons is the question of the
dimension of the resulting object. In this section we consider right-angled p-gons which have
the highest possible dimension. This is the case if the p intersection points are the vertices of
a (p − 1)-simplex. Thus the parameters will be taken from a (p − 2)-dimensional Clifford
vector space Vp−2 ⊂ Cp−3.

4.1 A necessary condition for the realisation of ( p− 1)-simplices

If we want some set of parameters to yield a simplex, we need to pass to a new dimension
with every new geodesic in the construction. This basic idea results in the following theorem:

Theorem 2 If the parameters q1, . . . , qp−3 ∈ Cp−3 give rise to a right-angled polygon �p

whose intersection points are the vertices of a simplex, then the parameters together with 1
have to form a basis of the Clifford vectors according to

〈
1, q1, . . . , qp−3

〉 = Vp−2.

This theorem is a consequence of the following lemma:

Lemma 2 Let (S0, S1, . . . , Sk), k ≥ 2 be a finite sequence of geodesics in upper-half space
H p−1 such that S0 = (−1, 1), S1 = (0,∞) and Si−1 ⊥ Si for i = 1, . . . , k. Furthermore
denote by qi := �̃ (Si−1, Si , Si+1) the gauged double bridge cross ratios of the respective
double bridges for i = 1, . . . , k − 1 and write Si = (S−

i , S+
i ) for all geodesics.

Then the linear subspace of Vp−2 spanned by the endpoints of the geodesics is the same
as the subspace spanned by {1, q0, q1, . . . , qk−1}. In symbols this means

〈
S±
0 , S±

2 , S±
3 , . . . , S±

k

〉 = 〈1, q1, q2, . . . , qk−1〉 . (30)

The geodesic S1 is left out since ∞ /∈ Vp−2.

Proof Weprove this by induction over k. For k = 2 the lemma is plain, since S2 = (− q1, q1).
Hence, we have to prove

〈
1, q1, q2, . . . , qk−1, S

±
k+1

〉 = 〈1, q1, q2, . . . , qk〉. We know that

Sk+1 is given as the image of (− qk, qk) under the isometry 	−1
k−1. This isometry is given

as a concatenation of the maps φ−1
i : x �→ √−qi (1 + x)(1 − x)−1√−qi , 1 ≤ i ≤ k − 1.

If qi /∈ R, φ−1
i restricts to an isometry on H3 where the boundary is given as ∂H3 =

〈1, qi 〉 ∪ {∞}. Likewise, φi restricts to an isometry on H4 where the boundary is given as
∂H4 = 〈1, qi , qk〉∪{∞}. The case qi ∈ R follows in the samemanner, by yielding isometries
leaving corresponding subspaces H2 and H3 invariant. Thus follows the statement. ��
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Fig. 4 Hyperbolic pentagon with
right-angled cyclic edge path

Notice that the theorem above does not give a sufficient condition. If the parameters qi are
pairwise orthogonal to each other and pure Clifford vectors then the geodesics S0 and Sp−2

will contribute sides of length 0.

4.2 Hyperbolic 4-simplices with an orthogonal cyclic edge path

In the end, it would be nice to have an a priori condition on the parameters of at least
some family of pentagons. Dekster and Wilker [6] proved a criterion for the existence of n-
simplices with vertices p1, . . . , pn+1 with given side and diagonal lengths li j = d

(
pi , p j

)
,

1 ≤ i < j ≤ n + 1 in a Euclidean, spherical or hyperbolic space X ∈ {
En, Sn, Hn

}
. They

call a symmetric (n + 1) × (n + 1)-matrix L = (li j ) allowable if lii = 0 and li j > 0 for
i �= j . The matrix L is called realisable in the space X if there are n+1 points p1, . . . , pn+1

in X with the given distances d
(
pi , p j

) = li j . They gave a criterion for realisability in each
of the three above cases. We are especially interested in the hyperbolic case.

Theorem 3 [6, Theorem 1 (hyperbolic case)] Let L = (li j ) be an allowable (n+1)×(n+1)-
matrix and let its entries be used to form the (n × n)-matrix S = (si j ) where

si j = cosh li,n+1 cosh l j,n+1 − cosh li j .

Then L is realisable if and only if the eigenvalues of S are non-negative. If L is realisable
then the dimension of each realisation is equal to the rank of S.

Nowwe can easily treat the case of a hyperbolic pentagon having a cyclic edge path along
which all sides have the same length (Fig. 4). With [6] we can get a criterion on the side
lengths and due to symmetry it might be possible to find the corresponding orientations of
the sides.

Lemma 3 A right-angled hyperbolic pentagon �5 = (S0, . . . , S4) with all side lengths

equal to a > 0 is realisable as a 4-simplex if and only if cosh(a) < γ , where γ = 1+√
5

2
denotes the golden ratio.

Proof By using hyperbolic trigonometry (see for example [12, Section 3.5]) we obtain the
relation cosh(b) = cosh2(a). We can now construct the two matrices L and S as in [6,
Theorem 1]. We get
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L =

⎛

⎜⎜⎜⎜
⎝

0 a b b a
a 0 a b b
b a 0 a b
b b a 0 a
a b b a 0

⎞

⎟⎟⎟⎟
⎠

.

Let us define x := cosh(a). We then have

S =

⎛

⎜⎜
⎝

x2 − 1 x3 − x x3 − x2 0
x3 − x x4 − 1 x4 − x x3 − x2

x3 − x2 x4 − x x4 − 1 x3 − x
0 x3 − x2 x3 − x x2 − 1

⎞

⎟⎟
⎠ .

By Dekster’s and Wilker’s Theorem, the matrix L is realisable as a 4-simplex if and only
if all the eigenvalues of S are positive. This is true if and only if S is positive definite. By
Sylvester’s criterion, it is enough to check that all the top left minors of S have positive
determinant:

det1 = x2 − 1,

det2 = x4 − 2 x2 + 1 = (x2 − 1)2 = (x + 1)2(x − 1)2,

det3 = −x8 + 2 x7 + x6 − 2 x5 − 2 x4 + 3 x2 − 1,

det4 = det(S) = 2 x10 − 10 x9 + 15 x8 − 15 x6 + 2 x5 + 10 x4 − 5 x2 + 1.

Notice that x > 1 since a must be greater than 0. Hence det1 and det2 are always greater

than 0. Furthermore, det3 is positive whenever −1 < x < 1−√
5

2 or 1 < x < 1+√
5

2 , hence
only the latter has to be considered. The determinant of S is positive everywhere except in
1−√

5
2 , 1, 1+√

5
2 , where it vanishes. Combining everything we obtain that S is positive definite

whenever 1 < x < γ , giving us the desired result. ��
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ERRATUM: COMMENSURABILITY CLASSES OF HYPERBOLIC

COXETER GROUPS

N.W. JOHNSON, R. KELLERHALS, J.G. RATCLIFFE, S.T. TSCHANTZ

Abstract. In this note we fill a gap in our previously published paper [2].

1. Introduction

In our paper [2], there is a gap in the proof of Theorem 1. The gap is caused
by a miss application of Burnside’s theorem [1]. Burnside’s theorem requires an
algebraically closed field, and so we need to work over C rather than R. The gap
is filled by the following lemma and a few comments after the proof.

The positive special Lorentz group SO+(n, 1) is the connected component of
the identity of the Lorentz group O(n, 1). In our paper SO+(n, 1) is denoted by
PSO(n, 1), and in the following we will use the notation of our paper [2]. We will
assume n ≥ 2.

Lemma 1.1. The group PSO(n, 1) acts irreducibly on Cn+1, that is, there is
no proper complex vector subspace of Cn+1 that is invariant under the action of
PSO(n, 1) by left matrix multiplication.

Proof. On the contrary, assume that W is a proper complex vector subspace of
Cn+1 that is invariant under the action of PSO(n, 1) by left matrix multiplication.
As stated in the proof of Theorem 1, there is no proper real vector subspace of Rn+1

that is invariant under the action of PSO(n, 1) by left matrix multiplication. This
follows from the fact that PSO(n, 1) acts transitively on the sets of k-dimensional
time-like, space-like, and light-like vector subspaces of Rn,1 for each k = 1, . . . , n.

Let WR = W ∩ Rn+1. Then iWR ⊂ W . Now WR is invariant under the action
of PSO(n, 1). Hence WR = {0} or WR = Rn+1, but the latter case implies that
W = Cn+1, which is not the case. Therefore WR = {0}.

Let w ∈ W . Then we can write w = u + vi, with u, v ∈ Rn+1. Notice that if
u = 0, then v = 0, since if u = 0, then v = −iw ∈WR = {0}.

Let U be the set of u ∈ Rn+1 such that u+ vi ∈W for some v ∈ Rn+1. Then U
is a subspace of Rn+1 which is invariant under the action of PSO(n, 1). Therefore
U = {0} or U = Rn+1, but the former case implies that W = {0} which is not the
case. Therefore U = Rn+1.

Suppose w = u + vi ∈ W with u, v ∈ Rn+1. We claim that v is uniquely
determined by u. Suppose u+vji ∈W with vj ∈ Rn+1 for j = 1, 2. The (v1−v2)i ∈
W , and so (v1− v2) = 0. We write w = u+u′i. The map κ : Rn+1 → Rn+1 defined
by κ(u) = u′ is obviously a linear transformation over R.

Now −i(u+ u′i) = u′ − ui, and so u′′ = −u. Therefore κ is a complex structure
on Rn+1. Let C be the matrix for κ with respect to the standard basis of Rn+1.

1991 Mathematics Subject Classification. 20F55.
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Then C2 = −In+1. Hence (detC)2 = (−1)n+1. Therefore n must be odd, and so n
is at least 3. Moreover C2 = −In+1 implies that the eigenvalues of C are ±i.

Let u ∈ Rn+1, and let A ∈ PSO(n, 1). Then A(u + u′i) = Au + (Au′)i. Hence
(Au)′ = Au′. Therefore CA = AC. Thus C commutes with every element of
PSO(n, 1).

Now let A be the block diagonal (n+1)× (n+1) matrix whose first block is −I2
and whose second block is In−1. Then A ∈ PSO(n, 1). Now CA = AC implies that
C = (cij) is a block diagonal matrix whose first block is 2 × 2 and whose second
block is (n− 1)× (n− 1). In particular cij = 0 for i = 3, . . . , n+ 1 and j = 1, 2.

Let B be the block diagonal (n+1)×(n+1) matrix whose first block is I1, whose
second block is −I2, and whose third block is In−2. Then A ∈ PSO(n, 1). Now
CA = AC implies that c12 = 0 = c21. Therefore c11 and c22 are real eigenvalues of
C, which is a contradiction, since the eigenvalues of C are ±i. �

The gap in the proof of Theorem 1 of [2] is bridged by the following argument.
The above lemma implies that PSO(Fi) acts irreducibly on Cn+1 for i = 1, 2. There-
fore by Burnside’s theorem [1] (Theorem IX.3 [3]), we have that SpanC(PSO(Fi)) =
M(n + 1,C) for i = 1, 2. As the elements of PSO(Fi) are real matrices, we have
that SpanR(PSO(Fi)) = M(n+ 1,R).
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tions Mathématiques de l’IHÉS, volume 800. Springer, Berlin, 1980.
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[72] È. Vinberg. The absence of crystallographic groups of reflections in
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